Technical Report TR-535 May, 1977
SEL-1 NASA-NSG-5123

THE SOFTWARE ENGINEERING LABORATORY*

Victor R. Basi]i1, Marvin V. Zelkowitz1

Frank E. McGarryZ, Robert W. Reiter1

Walter F. Truszkowskiz, David L. weissT’3

T - Department of Computer Science, University of Maryland, College Park, Md.
2 - NASA Goddard Space Flight Center, Greenbelt, Md.
3 - Naval Research Laboratory, Washington, D.C.

*Research supported in part by Nationa1.Aeronautics and Space Administration
grant NSG-5123 to the University of Maryland.






.THE SOFTWARE ENGINEERING LABORATORY

Victor R. Basili
Marvin V. Zelkowitz
Frank E. McGarry
Robert W. Reiter
Watter F. Truszkowski
David L. Weiss

Abstract

The .development of techniques: to produce cost-effective reliable soft-
ware first requires the collection of quantitative and qualitative data on
the development process. Towards this end, the Software Engineering Labora-
tory has been organized in conjunction with NASA Goddard Space Flight Center.
The purpose of the Software Engineering Laboratory is to monitor existing .
software methodologies and develop and measure the effectiveness of alter-
nate methodologies. ' o

Initially, three aspects of the software development 1ife cycle are
to be investigated. These are: (1) management aspects in estimating team
organization, resource requirements, schedules and reliability factors in
the finished software product, (2) error characteristics and their causes,
and (3) program structure and its relation to well-developed software.



I. Introduction

A great deal of time and money has been and will continue to be spent
in developing software. Much effort hés gone into the generation of various
software development methodologies that are meant to improve both the process
and the product ([MYER, 757, [BAKE, 75]). Unfortunately, it has not always
been clear what the under1ying.princip1es involved in the software develop-
ment process are and what effect the methodologies have; it is not always
clear what constitutes a better product. Thus progress in finding techniques
that‘broduce better, cheaper software depends on developing new deeper under-
standings of good software and the software deVe]opment process through study-
ing the underlying principles involved in softﬁare‘and‘the.deveTOPment-proéess.
At the same time we must continue to produce software :. . . B

To gain a better knowledge of what is good in the current methodo1og1es
and what is still needed, and to help understand the under1y1ng pr1nc1p1es of
the software development process, we must ana]yze current techn1ques under—
stand what we are doing right, understand what we are doing wrong, and under-
stand what we can change.

There are several ways of doing this. One way is to analyze the develop-
 ment process and the product at various stages of development. Unfortunately,
such analysis is a tedious procéss. But it must be ﬁerformed if Qe are to
gain any reaf insight into the problems of software development and make im-
provements in the process. We need to study carefully the effect of various
changes in the development process or the product to determine whether or net
a particular methodology has any real effect, dpd more 1mpoFtant1y, what kind
of effect ([THAY, 761[WALS, 77]). |

This rgquires measures of all kind:, quantifiable and nonquaﬁtifiable.
Nonquantifiable measures, although subjective, reveal a great deal of informa-

tion about the product. We can "see" good design and code that meets the prob-



lem requirements in a clear, undérstandab]e, effective way and is easy to
modify and maintain in unforeseen circumstances. This kind of understanding
is clearly needed, and'cTearTy.fruitfu1; it 1s accomplished by reading and
understanding the design and code. Unfortunately, these judgements are not
easy to quantify. They require a great deal of time to analyze and measure
each product, or class of products.

A secondary approach is to develop a set of measures that attempt to
quantify these qualitative characteristics of good software design and de-
velopment. Although there is currently no mechanical way of evaluating de-
sign, the development of quantitative measures that correlate wél] with sub-
jective'judgements of qua1ity can aid in the understanding and evaluation of
the product and process. For example, the "goodness™ of a product is related
to the time it takes to modify it aﬁd the aspects of its organizational struc-
ture that permif ease of modification and ease of finding and correcting errors
Where ease is measured in terms of the time required, number of places code
- needs to be changed, etc. The "goodness" of the'deve1opment methodology is
related to the “"goodness" of the product it produces, e.g., the number and
difficulty of finding errors in the product it produces.

It is important to understand what characterizes classes of problems and
products, what kinds of problems are encountered and errors made in the de-
velopment of a particular class of products, whether or not a particular method-
ology helps in exposing or minimizing the number or effect of a‘c1ass of er-
rors, what the relationship is between methodology and management control,
estimating, eth’ A better understanding of the factors that affect the de-
velopment of software and.thejr interrelationships is required in order to
gain better insights into the underlying principles. The Software Engineering

Laboratory has been established at NASA Goddard Space Flight Center in coopera-

3



tion with the University of Maryland to promote such understanding. The
goals of the laboratory are to analyze the software development process and
the software produced in order to understand the development process, the
software product jtself, the effect of various "improvements" on the process
with respect to the methodology, and to develop quantitative measures that
correlate well with intuitive notions of good‘software.

The next section gives an overview of the research objectives and ex-
periments being performed at the Laboratory. Section III contains the current
list of factors that affect the software development process or product and
are to be studied or neutralized. The data co]lectioh and data management
activities are discussed in Section IV and Section V discusses the research
objectives in greater detail. The last sectioﬁ contains information on the
current status and future plans for the Laboratory.
| Appendix 1 contains a 1ist of personnel associated with the Software
Engineering Laboratory. Appendix 2 contains the data collection forms and
their associated instructions that are used for all projects being studied.
Appendix 3 contains a description df'the strﬁcture of the data base of fn- |
formétion collected on the projects and Appendix' 4 describes the development
environment at NASA Goddard Space Fligth Center and the details of all the

projécts currentTy under study.



II. Activities

It is clear that many kinds of data can be gathered and analyzed to
develop quantitative information about the software process and the product
that it leads to. The laboratory has limited funding and personnel and for
this reason has 1imited its scope to studying three very specific areas re-
Tated to reliability, management, and complexity. It is expected tﬁat the
scope will eventually éxpand as we learn more about the collection of valid
data and what can be done with it. The data collection methods and the stor-
age and retrieval system are described in Section IV. In this section we dis-
cuss the research activities and the two classes of experiments to be run.

The research objectives can be divided into three basic areas: reliability,
management and complexity. Because error-free software is as yet an unattain-
able goal, the re]iabi1ity study will provide insight into the nature and
causes of software errors. We would like to classify errors, expose tech-
niques that reduce the total number or classes of errofs, and detect the ef-
fect or Tifetime of these errors. We expect to detect the point at which er-
rors enter the process and the relative costs of finding and fixing them.

Management of the softwaré development process is as poorly understood
as the technology involved. We believe that a major effort should be expended
on this area. The management aspect of the Software Engineering Laboratory
involves the analysis of the management process, the classification of pro-
jects from a management point of view and the development of reasonable manage-
ment measures for estimating time, cost, and productivity. We will study the
effect of various factors, such as time, money, size, computer access, tech-
niques, tools, organization, standards, milestones, etc. MWe would‘1ike td_
understand'at what point in the development process, estimates become.reason-

ably accurate, how one can measure good visibility and management control and



under what conditions certain methodologies help provide management control.

Lastly, there is a relation between the development methodology and
the product it'produces. A good methodoTogy should help produce a less com-
plex product'than a "bad" one. We are trying to discover whether the com-
plexity of a software system can be measured by the structure of the result-
ing programs. Do various techniques create a more systematic structure, one
that is easier to read and maintain, where data and function are Tocalized
with a minimal amount of-iﬁteraction Béé&géﬁ”ﬁodules? The r]eatidnship be -
tween various complexity measures of program structure will be examined
throughout the development process and such measures as error rate,'deve1op—
ment time, the accuracy and speed of modification, etc., will be correlated
with-these complexity measures. |

Two kiﬁds.of experiments will bé conducted: screening ekperiments and
controlled experiments. In the screening experiments, we are collecting data
on & large assortment of projects of varying sizes and types. The impact on
the development procéss is manifested'by the requirement that the developers
fi11 out a set of data collection forms (see Section IV). The purpose of the
screening experiments is to determine how software is developed now. We are
organizing a data bank of information to classify projects for future reference
and public availability, analyze what methodoTogies are being used as opposed
to what methoddlogies are supposed to be used, demonstrate how carefully the
~actual implementation of a methodology can be monitored, discﬁver what para-
meters can be validly iso]afed, exposé the parametehs that appear to be caus-
ing major prdb]ems, and discover the appropriate milestones and technigues |
that show'success under certain conditions. While the daté collected 1ﬁ the
screening experiments may not be complete or totally accurate, it will provide

input for the more strictly monitored controlled experiments.

6



The purpose of the controlled experiments is to discover the effect of
various factors on the software development process and product in a reason-
ably controlled environment{ . A set of duplicate deve]dpments will be per-
formed and detailed data collected for all of them. A carefully chosen set
of techniques will be taught to and used by one of the development groups,
denoted as the "impacted” group. We will then analyze the effect of the in-
troduced factors by comparing thé impacted development process and product
in a reasonably c¢ontrolled environment.

The experiment must be designed in such a way as to insure that we are
testing the real hypothesis, i.e., to guarantee that we are measuring what
we think we are measuring. It is important that all the contributing factors
be well understood and the factors that we are not studying be neutralized
[CAMP, 66]. Our approach is first to develop a particular experimental de-
sign, analyze its ability to neutralize potential interfering factors, (i.e.,
“individual programmer capability) and perform one experiment. Based on this
experience, the design will be modified and experiments repeated until we have
arrived at a reasonable standard.

One current experimental design is to have two groups, Group 1 and Group
2, each develop a product, A. We will then impact Group 2 with a set of fac-
tors by teaching them the use of certain deye]opment techniques. Both groups
will then develop a second small project B to give Group 2 some experience
with the techniques in an operating environment. Then both groﬁps will de-
velop product C, Group 2 using the new approach. This gives us several points
of comparison. We can discover any difference in personnel by comparing pro-
Jject A for both groups; the two groups can then be more honestly compared in
_ project C by factoring out differences from project A. The measures developed

for the areas of interest will be used to compare the two processes and pro-

ducts.



In a second controlled experiment, several large scale projects (5 to
10 man years each) are to be carefully monitored with some of the personnel
gfven a training course and set methodology to use. Using the notation
above, these will be a set of C projects with no A and B. Uhile fhe pro-
Jects are not identical, they'are highly similar and should yield informa-
tion about differences.in techniques. In Section VI, both of these control-

led experiments will be described in greater detail.



III. Factors

There are a large number of factors that affect the software development
process and software product. Initia]ly; we are interested in a list of
potential factors to establish the kind of data that needs to be collected.
Next, we are interested in the kinds of factors that we can reliably measure.
From this measurable set of factdrs,-we would 1ike to isolate those that ap-
pear to have a major inpact on the development process and product, i.e.,
those whose use or non-use show large variation in our measures. Finally,
when we have a better understanding of the factors affecting the software
development process, we want to quantify them in some way by perturbing them
to study their effects or neutralizing them to make sure they are not affect-
ing factors that are under study.. _

Qur procedufe is to start with as complete a 1ist of factors and cate-
gories of factors as pqssib]e. We expect continally to build, iterate, and
refine this Tist through the activities of the laboratory. The development
of reporting forms and automated tools have helped define the 1ist.of factors
that we can isolate. The screening experiments will help further isolate
Fhose factors which we can méasure and those that appear to be contributing
strongly to the vérious measures associated with errors, complexity of pro-
gram structure, management difficulties, etc. The controlled experiments
will be used to demonstrate the effect of the various factors that have been
shown worth isolated study.

A list-of factors is given below, categorized by their association to
the problem, the people, the process, the product, the resources, and the

tools. Some factors may fit in more than one category but are listed only

once.

A. People Factors: These include all the individuals invoived in the soft-

ware development process including managers, analysts, designers, pro-

9



B.

C.

grammers, librarians, etc. People related factors that can affect the
deveIopment process include:

number of people involved

level of expertise of the individual members-

organization of the group

previous experience with the problem

previous experience with the methodo]ogy

previous experience with working with-other members of the group

ability to communicate '

morale of the individuals

capability of each individual

Problem Factbrs: The problem is the application or task for which a soft-

ware system is being deve]opéd. Problem related factors include:
typé of problem (mathematical, database manipulation, etc.)
relative newness to state of the.art requirements
magnitude of the problem
susceptibility to change
new start or modification of an éxisting system
final product.required, e.qg., object code, source, documentation, etc.
state of the prob]ém definitiqn, e.g., rough requirements'vs. formal
specification |
“ 'importance of the problem
constraints placed on the solution

Process Factors: The procesé consists of the particular methodologies,

techniques, and standards used in each area of the software development.
Process factors include:
Programming Languages

* Process Design Language ([VANL, 76])

10



Specification Language
Use of Tlibrarian ([BAKE, 751)
Walk-throughs ([BAKE, 75])
Test Plan
Code Reading
Top Down Design
Top Down Development {stubs)
Tterative Enhancement ([BASI, 76])
Chief Programmer Team ([BAKE, 75])
Chapin Charts
MIPO Charts ([STAY, 76])
Data Flow Diagrams
Reporting Mechdnisms
“Structured Programming ([MILL, 72], [DAHL,'72]) '
HOS Techniques ([HAMI, 761) |
. Milestones

D. Product Factors: The product of a software development effort'is the

sdftware system itself. Product factors include:
| de]iverab]eé | )

size in lines of code,.words of memory, etc.

efficiency tests

real-time requriements

correctness

portability

structure of control

in-1ipe documentation

structure of data

number of modules

1



size of modules
connectivity of modules
target machine architecture

overlay sizes

E. Resource Factors: The résources are the nonhuman elements allocated and

expanded to accomplish the software development. Resource_factors include:

Target machine system

Development machine system

Development software

Deadlines

Budget

Response times and turnaround times
(Note there is a relationship- between resource and product factors in that
the resources define a set of limits within which the product must perform.
Sometimes these external constraints can be a dominating force on the product
and sometimes they are only a minor factor, e.g., it is easy to get_the prod-
uct to perform well within the set of constraints.)

F. Tool Factors: The tools, although also a resource factor, are listed

separately due to the important impact they have on development. Tools
are the various supportive automated‘aids used during the_various phases
of the development process.. Tool facfors include ([REIF, 75],[BOEH, 751,
BROW, 731): o

Requirements analyzers (e.g., PSL/PSA) [TEIC, 77]

System design analyzers

Source code analyzers (e.g., FACES [RAMA, 741)

Database systems (e.g., DOMONIC [DOMO, 75])

PDL processors

Automatic flowcharters

12



Automated development Tibraries
Implementation languages

Analysis facilities

Testing tools ([RAMA, 757, [MILL, 75]) -

Maintenance tools

13



IV. Data Collection

Data collection occurs as four components- reporting forms, interviews,
automa£i§~c011ection of data by the computer system, and use of automated
data analysis routines.

A. fgrgé;.iThé seven forms that appear in Appendix 2 were defined ‘to obtain
information on several of the factors given in Section III. These forms
are filled out by various members of the project development team and are
used to gather information at various states of the development process.
They reveal the resource estimates at inception, the overall layout of
the system, the dpdating of the estimates and the achievement of milestones,
the time spent in various activities, the expenditures of resources, and
an audit of all changes to the system. Several redundancy checks have
been included to validate the accuracy of the information obtained.

‘Briefly, the seven forms are as follows:
1. The General Project Summary - This form is used to classify the proF
Jject and will be used in conjunction with the other reporting forms
to measure the estimated versus actual development progress. It is
filled out by the project manager at the beginning of the project, at
. each major milestone, and at the end. The final report should accurately
describe the system development 11fe cycle.
2. The Programmer/Analyst Survey - Th1s form is to classify the background
of the personnel on ‘each project. . It is filled out once at the start
of the project by all personnel. |
3. The Component Summary - This form is used to keep track of the compon-.':
ents of a system. A component is a piece of the system identified by
name or common function (e.g., an entry in a tree chart or baseline o

diagram for the system at any point in time, or a shared section off:

14



data such as a COMMON block). With the information on this form com-
bined with the information on the Component Status Report, the struc-
ture and status of the system and its development can be monitored.
This - form is filied out.for each component at the time that the com-
ponent is defined, at the time it is completed, and at any point in
time when a major modification is made. It is filied out by the per-
son responsible for that component.

4. The Component Status Report - This form is used to keep track of the
development of each component in the system. The form is turned in
at the end of each week and for each component 1ists the number of
hours spent on it. This form is filled out by persons working oh the
.project._ |

.5. Thé Resource Summary - This form keeps track of the project costs on

| a weekly basis. It 1s'f111ed out by the project manager everyIWeek
Qf the project duration. It should corre1ate.c1ose1y with the 6om—
ponent status report. |

.:6.' Chénge Report - The change report form is filled out every time the
system changes because of change or error in design, code, specifi-
cations or requirements. The form identifies the error, its cause
and other facets of the project that.are affected.

7. Computer Program Run Analysis - This form is used to monitor the com-
puter activities used in the project. An"entry is made every time
the computer is used by the person initiating the run.

fnterviews: Interviews are used to validate the accuracy of the.Forms

and to supplement the informatioh contained on them in areas where it‘is

.jmpossible to expect reasonably accuréte information in a form formét.

:In the first case spot check.interviews are conducted with 1ndfv1dua]s

filling out the forms to check that they have given correct information

15



as interpreted by an independent observer. This would include agreement
about such things as the cause of an error or at what point in the de-
velopment process the error was caused or detected.

In the second case, interviews will be held to gather information
in depth on several management decisions, e.g., why a particular personnel
_organization was chosen, why a particular set of people was picked, etc.
These are the kindsrof questions that often require discussion rather
than a simple answer on a form.

Automatic Data Collection: The easiest and most accurate way to gather

information is throdgh an automated system. Throughout the history of

the project, more and more emphaéis will be placed on the automatic coT-
lection of data as we become more aware what data we want to collect, i.e.,
what data is the most valuable and what data we can or need to get, etc.
More energy wi]]lbe expended in the development or procurement of automatic
collection tools as the laboratory continues.

The most basic information gathering device is the program develop-
ment library. The librarian will automatically record data and alleviate
the clerical burden from the manager and the programmers. Copies of the
current state of affairs of the development 1ibrary wfl] be.pefiodica11y
archived to preserve the history of the developing product.

A second technique for gathering data automatically is to analyze
the product itself, gathering information about its structure using a
program analyzer system. A set of modifications to the FACES syﬁtem is |
current?y underway to and will progress as the laboratory gains more ex-
perience. These modifications are geared at.getfing more of the'kfﬁd of
information about the product requires for our measures.

Database analysis: The above data collected on the project wi11 be stored

in a computerized database. Data analysis routines will be written to

16



collect derived data from the raw data in the database. The data that

is being collected is to be processed by PDP11-based system that is near-
ing completion. For ease of implementation, it utilizes the INGRES re-
lational database system [HELD, 75] which runs under the UNIX operating
.system.

The data that is collected on the reporting forms will é{ther be
encoded onto magnetic tape via CRT terminals at NASA/GSFC or eise_entered
into a file on the Univac 1100/40 at the University of Maryland. The
magnetic tape {or Univac file) will then be moved to the PDP11 in the
Department pf Computer Science at the University of Maryland and stored
as a file under UNIX. | _ |

After archiving, the next stage.is to validate the encoded data. .A
table~-driven ptogram, written in the systems programming.language C, has
been developed that reads in the raw data, validates the entries, and if
correct, enters it into anlINGRES file. The data describing the forms
is read by the program as a set of tables. These tables are direct analogs
of the data on the paper forms and thus allow for easy modification should
the forms need to be altered. (See Appendix 3)

‘Software to perform all of the above has been written and is now under
test. The next level of software is now being designed. Initially, English
queries can be posed to INGRES in order to retrieve certain fields within
tHe database, and these retrieved records can be converted back into a
UNIX file. This UNIX file can then be printed or read by a C of FORTRAN
pfogram in order to be.processed. |

The goal of the database implementation, however, is to automate this
~process as much as possible. The QUEL query language existé to interface
between a C program and INGRES. A system is now being designed that will
utilize this 1anguage so that data can be retrieved directly Ey the analysis

programs without the need for operator intervention.
17



V. Current Investigations

The Software Engineering Laboratory is currently emphasizing three

general areas in software development. These three areas are as follows:

1. Management
Management may:be defined as the deliberate and judicious use of

resources to accomp1ish an objective. In the software development con-

text the resources refer to such entities as people, time, doilars, com-

puter systems and peripherals, programming méthodo10gies and standards,

Tanguages, and the 1ike. The manager,.given a project or a problem to

be solved, manipulates these resources withfn a managément structure and

according to some master stratagem, to evolve the ultimate objective - a

piece of quality software.

The goal of this managemént study within the context of the Software

'Engineering Laboratbry is two-fold: ”

a.' to investigate the variogs management techniques, cukrent]y in vogue,
which are the driving forces behind the projecté studied under the
Lab's auspices and, by careful analysis of the principles in play,
come to a fuller appreciation of them noting both their successes
and failures. - |

b. to help evolve and develop a software enginéering methodology (or
methodologies as the case may be) for effective management of soft-
-ware projects.. The overall goal, in this respect; is to devise a
set'of management practices and principles which highlights and maxi-
mizes the successes while minimizing:the failures of currently used
management techniques. | |

In ordér to:achieve the goals of this investigation the fo1low;
ing plan will be followed. The management of a project will be

viewed as a management function which relates resources and quality

18



software products. The internal workings of this function will be
deciphered in terms of its composing sub-functions, i.e., planning,
organizing, staffing, coordinating, directing, and controlling.

Each of these sub-functions will be given an unambiguous meaning

in the framework of the software development process and will be
discussed in terms of the three basic levels of management, i.e.,
strategic, tactical, and operatiéna1 - with emphasis being placed

on the operational Tevel. The definition or modelling of these sub-
functions of the mamagement function will be done in such a way that
_.quantitative measures for each of them can be.devised. These measures
will be used in the evaluation of the management techniques which are
applied to the projects studied by the Lab.

The measures will deal with such, often elusive, quantities as
time/cost tradeoffs, milestone prediction, resource estimation and
allocation, project status and visibility, and productivity.

Several sets of management measures have appeared in the open
literature. As examples of the types of guantitative measures that
can be used, aspects of the work of Tausworthe [TAUS, 76] and Baum-
gartner [BAUM, 63] will be reviewed.

Tausworthe's set revolves around the concept of 'Index of Pro-
ductivity' P which is defined by P = L/{WT) where L is the total
number of error-free source code Tines excluding comments, W is the
number of programmers, and T 1is the average time each worker spent
in the software development effort. The units of this productivity
index are lines/day. Tausworthe expands on the concept T by setting
T=Tp+ (W—L)_TNP where T, equals average productive time, and
represents time spent interfacing with other team members. Then

Tnp ,
an index of individual productivity becomes -PI = L/_TP . He notes that

19



if TNP/T = 1/(W-1) then the overall productivity P will not be
achieved and the project will fail. Additionally Tausworthe developed
measures for job integration.

Baumgartner's work involves the concept of Status Index., Let-
ting P représent progress, SP represent scheduled progress, B-
budget, and AE-actual expenditurfs, then the Status Index SI equals
(P/SP)(B/AE). This index can be used to relate actual progress and
costs with the budget and milestone predictions in the project plan.
If SI =1 then all is well, if SI < 1 then this indicates less
than expected progress, and if SI > T then performance has exceeded
expected progress. Careful use of this index technique can provide
information to the manager regarding time/cost performance, time/cost
projections, anticipated schedule slippage, and can allow him fo rank
critical problem areas and redirect resources.

Note that in the examp?és cited the following types of informa-
tion were required - coqe'TQngth, number of programmers, time, mile-
stones, budget and actual expenditures.

Though the exact measures and statistical tests, which will be
used in this particular management study, have yet to be fully deter-
mined, the data wh%ch will be evaluated metrically and statistically
to yield management information will primarily be extracted from the
data collection forms established by the Lab (see Appendix 2)

A11 of the forms contain data which contribute to overall pro-
Ject visibility for the manager. However, three are of particular
importance. These are General Project Summary, Resource Summary, Pro-
grammar/Analyst Survey. These forms solicit information regarding re-
sources, time, cost, size, milestones, manpower hours, computer usage,

and experience of team members.

20



An underlying hypothesis of this management study is that one may
devise a highly quantifiable model of the management process as it
relates to software development. Most managers, though acquainted
with some principles and guidelines for management, more often than
not resort to personalized heuristics in their attempt to achieve
quality.software. The managementzdata, collectez on the forms,
along with more personalized interviews will help divine these
'rules of thumb'. At this point the exiéting management model may
be managed to incorporate those with proven success. This is a very
.téntative area and one which poses special problems. It may be that
Some heuristics, which Tead to qualitative judgements, cannot easily
be.quantified if at all. At this point only time will tell. |

It is anticipated that this phase of the Laboratory's work will
proceed through the process of iterative refinement. With each itera-
tion and refinement a clearer more cohesive model relating to the

management of the software development process will evolve.

Errors

According to the folklore of computer science, the first program ever
written to run on a digital computer contained an error. Since then, an
| often discussed, but rarely achieved, goal of programmers is to produce
programs that are error free. Although it would be of interest to know
the circumstances surrounding that first error, and the reasons it oc-
curred, such information was apparently never carefully recorded. Unfor-
tunately, few analysts, designers, programmers; etc., ever bother to re-
cord their errors and the reasons for them. As a result, there is little

agreement in the software community as to what constitutes an error, what

the most common kinds of errors are, or why software errors occur.

21



For the purposes of the Software Engineering Laboratory, our work-
ing definition of a reliable system is one in which its require-
ments accurately reflect the needs of its users and the demands of
its environment, and if it performs as specified by its requirements.
We then separate errors into two classes: errors in requiréments,
i.e., those cases in which a change must be made in requirements
(and consequently their implementation} for the system to operéte
as desired, and errors in implementation of requirements. The latter
case_might involve incorrect specifications, incorrect design, im-
proper transTatipns of design into code, or. incorrect documentation.

Most previous studies on errors either involved small university
projects or else studied bniy a small élass of errofs, thus there
is Tittle historical data available that permits careful study of
the way that software is developed ([SHOO, 75], [THAY, 76], [ENDR, 751,
[GAnN, 751, [LITE, 761, [AMOR, 73]). The main goal of this study
is to gain 1nsfght into the software development prbcess. In par-
ticular the objectives of the reliability study are
e to develop methods for accurate measurement of errors,

e to discover the kinds of errors that are prevalent in the softwarek
under study,

e to discover the principal causes of errors in the software under
study, and

e to evaluate potential error-prevention techniques.

Since studies of software errors depend on information furnished
by humaﬁ beings about themselves and the kihds of mistakes they make,
it is extremely important to develop valid, consistent techniques
for gathering error data and estimating its accuracy. (A valid

technique yields data on the desired subject, i.e., the object mea-

22



sured is really the one the experimenter thinks he measured. A consistent
technique yields reproducible resulté, i.e., the same data will be ob-
tained in the same circumstances when the experiment is repeated.) Such
techniques can be used by other investigators to repeat the measurements
to provide comparable data. Only in this way can a large body of useful
data be accumu1ated by the. software engineering community.

Because software errors are unique, i.e., once an error is corrected
it does not recur in the corrected system, meaningful patterns of error
occurrences can onjy‘be found by placing errors with similar attributes
into a single category. As an example, one might place all errors result-
ing from an improperly specified interface into the category of interface
errors. (Note that some of these errors might also be placed into other
categories, depending on what other attributes they have.) The categories
selected depend on the attributes of errors that are of interest to the
investigator. The initial categorizations of errors to be investigated
in the laboratory studies are relatively broad, and will be refined as
results are obtained from the screening and controlled experiments. A
prime purpose of the screéning experiments from the reliability viewpoint
is to discover into which of the broad categories most errors tend to fall.

The initial error classification scheme to be used in the reliability
studies is listed below. The categories are intended to be inclusive but
not exclusive, i.e., some errors will fall into more than one category.
Errors will be categorized according to:

o whether or not they are caused by a misunderstanding, and if so whether
it was a misunderstanding of requirements, functional specifications,
design, language, hardware environment, software environment, or some
other factor

e the time at which they entered the system

23



e modifications to the system that generated them
e activities used for error detection
e time required to find the cause
e time required to design the correction
e whether or not they are clerical errors
The above 1ist will be refined, categorizations added, and categories
split into subcategories as more insight is gained into the software
development process. |

The approach we are taking in the reliability study is that of
~strong inference - hypotheses are formu]ated, experiements are performed
to provide data to confirm or deny the hypotheses, and_new.hypotheses
are generated.‘ The starting point for the process consists.of hypotheses
taken from the software engineering literature, the experimenter's_back—
ground and intuition, and the data provided by the screening experiments.

The error data collection process is based on the assumption that
“once past the initial design and coding stages, every event of signifi-
cancé to the.deve1opment_process is reflected in a change to the system.
Changes can occur in reguirements, specifications, design, code, the hard-
ware environment, or the ﬁoftware environment. A form, caliéd the change
| report form has been gesigned to provide-informatioh on each change made
to the system. The form is the tentraT instrument in the collection qf
| data for the re1iabi]ity study. It yields information concerning the
reason for the change, the place(s) where the change is made, a descrip-
tion of the change, the time required to design the change, the cause of
the change; the effects of the_change;_the_methSH used to decide that
the change was needed, whether or not an error is éssociated with the
change, and, if an error is involved, information used to c]assify_the

data according to the scheme described previously.

24



The data, once collected, will be used to construct a historical

record of the system development, including the relation of various

events and changes to the system to each other and the errors that oc-

curred, to construct distributions of errors, and to test hypotheses

concerning the effects of different factors on error rates and error

distributions. Some of the error distributions that will be constructed

are:

errors distributed according to project phase (requirements,_specifi-
cations, design, coding, etc.) in which they occur

errors distribufed according to technique used to detect them

errors distributed according to time required to detect and correct
them |

errors disﬁributed according to the type of misunderstanding associated
with them (np misunderstanding, misunderstanding of requirements, speci-
fications, design, programming language, hardware environment, soft-
ware environment)

errors distrjbuted accordihg to modification associated with ;hem {mod-
ification to correct a‘previous error, modifiéation not to correct an
error)

errors distributed according to the named component in which they oc-
curred

errors distributed according to the amount of time they reméined in

the system

Many of the above distributions are obtainable from the screening expert-

- ments. Furthermore, it is expected that the results of the screening ex-

periments will suggest other distributions that will be of interest to

construct.

25



Hypotheses of interest related to the effects of different factors
on error distributions and rates will generally be investigated in con-
Junction with the controlled experiments. The controlled experiments,
consisting of the planned introduction of integrated methodologies for
software development during the course of a series of development pro-
jects,'w111 be used for hypothesis testing. Most of these hypotheses
will be concerned with the effects of using different methodologies on
the error distributions previously described. The hypotheses Wi11 gen-
erally be of the form "The use of methodology X has a signifitéht éf-
fect on the distribution of errors according to Y ", where"“x" fs.a
barticu]ar methodology used in a controlled experiment; éhd Y is.a
description of one of the error distributions previous]y.listed. As
- error distributions are constructed for different methﬁdo1ogies,'théy ;_.;'
~will be compared to distributions obtained during other contro11ed”ex- |
periments. R o

It is not possible to conduct a long term experiment measuring cre-
ative human activities without problems of data collection. AnaIySis
and interpretation apppearing. Some of the expected problems. are des-
cribed in the following. |

The type of investigation described here is quite sensitive to_the_'
effects of confbunding variables. It is extremely imbortant that factors
such as programmer background and experience, app]ication'afea of tﬁé
system being developed, organization of the deve]opment team, etc s must
ejther be spec1f1ca11y controlled or neutra11zed | ' 7;

The data collected must be monitored continually throughout the pro- a
ject for validity and cons1stency because it somet1mes requires subjec-

tive judgments on the part of the people completing the Charge Report forms.

26



3.

It may not be possible to categorize precisely a number of the er-
rors observed, or to associate them with previous changes to the soft-
ware. This can occur if the causes of errors cannot be determined well
enough to provide the necessary information, or cannot be determined at

all, or if the forms are not completed in a timely way.

Complexity
Software complexity can be defined as the difficulty of human com-

prehension of a software system's organization and operation (i.e., the

degree of mental effort required for this comprehension). Since the pro-

grams constitute a significant part of a software system, it is assumed

that a significant component of overall software complexity mdy be found
by isolating program complexity, the difficulty of comprehending the sys-

tem's source code's organization and operation. [This research is based

on the beliefs that software complexity is one of the major barriers

presently precluding the achievement of quaTity software today {(c.f.,
[MILL; 73]), and valid understanding of the nature of software complexity
is fundamentally necessary bhefore the_barrier can be overcome. ]

There is however a real scarcity of knowledge {even raw data) re-

- garding program complexity; what 1ittle 1nformation there presently is
“has been largely subjective and qualitative. An important method in
‘the pursuit of scientific undeystanding has always been the attempt to

~ model or measure the unknown phenomenon. The benefits of developing

~ models are that (1) they may be validated via compariosn with the reality

they_represent, and (2) they often lead to new insights and understanding

“into the nature of the thing studied, its causes, effects, etc. The scope

~of this research has been consciously Timited in order to place the empha-

sis on (a)‘program comp!exity, as one of the significant components of

27



software complexity, and on (b) modeling or measuring, as a first step
toward complete understanding.
Quantitative measurement of program complexity is the primary goal

of this research. It has been refined into two specific subgoals: (1)
objective validation of quantitative measures and (2) useful application
of quantitative measures. This means that the major effort will be de-
voted toward (1) demonstrating that complexity as manifested objectively
is indeed Corré]ated Qith complexity as measured directly from the pro-
gram source code, ahd determining how dependable, accurate, and general-
izable that correlation is, and (2) demonstrating ways in which it can be
beneficially abp]ied in its\own right.towards cdmbating soﬁe of the prob-
:1ems of.SOftware development.

| Quaﬁtftative measures of program complexity c6u1d be used to'monitor
the rea1-t1mé progress of the software deQe]opment process. A regu1dr
series of méasurements taken throughout the 1ife-cycle should Help make
software production more visible, more manageable, more predictable, etc.
Direct measures on the software should be able to serve as advénce (or

at Teast timely) warning of the presence of program comp1ex1ty..bef0re

it is dramatica11y announced later by its undesirab]e_manifestations.
Even a gross measure could be beheficia], since there'current]y is none.
Quantitative'measures of program complexity could detect software system
compdnents ﬁhich are Highiy suscept1b1e to the prdb]ems associated with
exceséive complexity. They could also act.as'indicators of error-locality
or error—prdne?ness. A set of valid quantitative measures of program com-
b?exitwaou1d be an'eifreme1y useful tool for evaluating the quality of a
software system. Besideé acting as acceptance criteria for contracted
software, such a yardstick could help answer othér research questions em-

piricalTy; such as, what main effects do various software developmeht

28



methodologies and technigues. have .on the quality of the product.

Several measures have been proposed to measure program complexity.
The ones which are. being studied for applicability for the Software En-
gineering Laboratory are given below. |

Suliivan [SULL, 73] proposed several quantitative measures of pro-
gram complexity as "the degree of menta1 effort required for comprehen-
sfon" of the program. His basic conception of the problem is that a
count of the number of "active concepts” that are required to understand
the code at a given point in the program is "a reasonable measure of the
local complexity" at that point. He assumes that "the true complexjty
of a program, i.e., the difficulty of understanding it, 1sfobvioq$]y‘a
function of the data graph as well as the control graph, and other factors
- that werassumé-are.1ess.jmportant, such as language syntax."
Suliivan's process (control) complexity measure is motivated by.the
- assumption that one significant set of concepts, clearly reduired in or-
der to understand the program at a given point, is related éntire1y;to
_the control flow graph alone, namely, the paths (their number anq signi-
ficance and interrelationship) by which control may have arrived at that
- point. It is assumed that "paths which have unconditionally Jjoined at
some previous point are no longer relevant to the complexity of the cur-
rent point.” He defines a certain hierarchical decomposition of the con-
-~ trol graph to explain precisely "what‘it means for a part of a scheme fcon-
trol flow graph] to be irrelevant to, or isolated from, some other part."
- His decomposition of a graph P into two subgraphs B and P-B_ is defined
in terms of two "bottleneck" nodes such that all paths into B uncondi-
tionally join at or before the one node, and all paths out of B. unéon-

ditionally join at or before the other node, hence isclating B from. P-B.

29



These decompositions are carriéd out successively until the graph has
been partitioned into subgraphs which further admit only trivial decom-
positions, known as "elementary subschemes."

The elementary subschemes in the decomposed graph provide the basis
for defining his C2 control complexity measure, as follows: the complexity
of a graph is the sum of complexities for each elementary subschemes, the
complexity for an elementary subscheme is the complexity for its (unique)
féfmiﬁal node, and the cOmﬁ1eXitylfbf a node of an eiemehiary subscheme
~is one less than the number of paths from the start of that subscheme to

the particular node, discaunting any paths which repeat the same node

more than x times. Thus he has defined a "parameterized" measure,

c2(x), of fhe complexity of the control structure of a routine, where x

is hormal]y fixed at 2 or 3; this measﬁre is related to the number of

paths that need to'be actively understood and remembered by the programmer.
For Sullivan's resource (data) complexity measure, the basic assump-

~tion is that each data item contributes to overall data complexity since

there are a set of active concepts associated with each variable which.

must be comprehended in order to understand the role of that variable and

how that role is implemented within the routine. This view of each partic-

ular data item's complexity is formalized by defining the derived control

graph proper to that data item in terms of the original control graph as

follows: begin with just the nodes which reference {use or set) the data

item, plus the start and terminal nodes; then add arcs between these nodes

in the derived graph if and only if there exists a path in the original

graph‘which joins the two .nodes without passing through any other node in

the derived Qraph.

| The PD2 measure of complexity for a particular data item, in the con-

text of a particular routine, is then defined as the C2 measure of the

30



derived control graph proper to that data item, with the exception that
any elementary subschemes having only use-references in nodes other than
its start node is assigned the value of zero, so that a "cluster" of use-
references that can be reached only from a common set-reference point do
not add to the complexity. Sullivan notes that this PD2 measure is
sensitive to localization of references, in that data item references
spread throughout several elementary subschemes of the 0rjgina3 control
graph are bound to make the derived graph larger and more complicated
and hence increase its C2 measure. Notice that this measure is not mea-
suring data complexity alone, but actually is sensitive to both control
and data structure, thus it is a more complete measure of program com- |
plexity as a whole. _ _

- One measure to be studied [REIT, 76] is similar to Sullivan's proQ
cess (control) comp1ex1ty measure,_since its fundamental model makes
several of the same assumptions, but employes (a) a different criteria
for the hierarchical decomposition, (b} a different_eva]uation_of elemen-
tary subschemes, and (c) a different formula to combine their individual
eva]uations. This measure grew out of attempts to identify and count nest-
ing Tevels and to assess the degree of "structured-ness" of transfers of
control in non-structured-programming languages (such as FORTRAN) where
neither concept is explicitly defined. It has its theoretical roots in
the notion of "prime program" structures as discussed by Linger and Mills
[LING, 77], a concept strongly related to the theory of structured program-
ming control structures. Informally, a prime program structure is a sin-
gle-entry, single-exit control structure which does not contain other |
prime program substructures of more than one node.

The model is baéed.on the premise that the use of excessive or deep

nesting or large and convoluted control structures increases a program's

31



complexity. The model seeks to identify the underlying organization of
the control flow graph according to its hierarchical decomposition into
nested prime program schemes. In fact, it would be quite interesting,
as é side issue, to have some empirical data on (a) what prime program
schemes actually appear in production FORTRAN code and at what frequencies,
(b) how many GOTO's are written other than to simulate IFTHEN's, IFTHEN- -
ELSE's, WHILEDQ's, etc. and (c) the relative frequencies of DO-loops
versus non-D0-loops (test and branch). The meésure 1s'defined as a re-
cursive formula |

m(H) = (zm(&(1)) * s(H)) + L
fdr evaluating thé éomp]ekity of each composite prime'scheme, m(H) ,
where m{G(i)) s the complexity of each of its subschemes, s(H) is
the complexity of the way they are connectgd together, and L is the ad-
ditional 1eve1 of nesting induced. The primitive schemes, simple actions
and decisions are assigned unit complexity values.

Like Sullivan's data complexity measure, a bropoSed'data complexity
measure is also built up from a companion measure for control structure
6n1y, is really a control-plus-data complexity measure. ‘The same model
as the control structure complexity measure above is extended by realizing
that the cbmponents jdentified by the prime program decohposition corre-
spond éxact1y to levels of functional abstraction, as in the concept of
stepwise refinement. Thus each prime scheme corresponds to a certain func-
tion from one set of data items (the ddmain) to another {the range). |

The idea is to attribute a complexity weighting to the size or sig-
nificance of the function computed by a prime scheme; and to include this
new factor into the recursive formula for computing the oVera]I complexity
of'compqsite-schemes. ‘As a first cut, define thé'weighting be the size

of the_domain plus the size of the range, thus réf1ecting the minimum

32



number of items necessary to characterize the "-ary-ness" of the func-
tion, i.e., how many data items are being manipulated when the prime
scheme is abstracted to a single statement. This new factor is in-
cluded as an additive term, resulting in a formula such as

mH) = F(H) + (¢ m(G(T) % s() +L
where f(H) is this functionality weighting for the amount of data
manipulated by the prime scheme H .

The inter-routine binding complexity measure is based on the premise
that routines represent a certain lowest level of operational partition-
ing of the system, i.e., the system is often described in terms of these
routines, each has usually been identified during the design phase with
some particular subtask and are separately compiled. There ekist various
bindings or interactions between these routines, for example, invocation
| of one by another, parameters passed and returned, and global variables
shared by several. This measure seeks to capture this overall interface
complexity, by counting and weighting these sources of inter-routine
bindings. Each global variab]é can be weighted by the number of routines
that access it (or common blocks by the number of variables in them multi-
plied by the number of routines that declare that block). Each procedure
of function call can be wéighted by the number of parameters passed in
and returned (including the function value). The assumption here is that
the more interactions there are between routines and the more significant
they are, the more "active concepts" at the inter-routine interface level
there are to be comprehended,_and hence the greater this component of
_program complexity.

These measures are not an exhaustive set, by any means {c.f., [HELL,
73], VANE, 70]). The measures presented above are some of the more in-

teresting and most promising ones examined to date. The intent in this

33



research is to investigate as many program complexity measures as pos-
sible. It is expected that several more will be studied during the
course of this research.

This research will depend on bhoth the screening and controlled pro-
jects for data toward achieving the subgoal of objective validation,
and on the controlled projects for data toward the subgoal of useful ap-
plications. The data collected from the reporting forms will be processed
to provide the various objective measures of complexity; these measures
are the ones with which the proposed direct measures of complexity will
be correlated (e.g., reliability, productivity, maintainability, etc.).

The static analyzer, which woul compute the various proposed quéntiQ
tative measures of pfogram complexity, will be built on top of the FORTRAN
Automatic Code Evaluation System (FACES) developed by Ramamoorthy [RAMA,
74]. The FACES system consists of programs (1) the FORTRAN front end
analyzer, which parses FORTRAN syntéx and stores an abstract represéntation
of the program system's source code into a fairly easily manipﬁlated,
linked 1ist data base, and (2) the diagnostic analysis and inquiry rou-.
tines, which operate on‘this internal data base to provide the information
as directed. For this study, the front end will be dsed almost intact,
but additional analysis routihes would have to be written to compute the
proposed measures of program complexity. |

Furthermore, a history file will be kept of successivé versions of
the modules in the software system; it will be updated either weekly or
at every official submission of a routine to the Tibrary. This history
file will provide the capabiTity of not only measurihg the complexity of
the final product software system, but also tracking the'comp1ex1ties of
modules as they undergo development, testing, and refinemeht;. This ‘his-

tory file will also provide the necessary basis for_studying'certain use-

34



ful applications of the quantitative measures of program complexity such
as indicators of errors.

Statistical techniques are to be used in achieving both of the major
subgoals of this research: (a) evidence for objective validation of the
measures of program complexity, and (b} demonstration of useful applica-
tions of these measures. The strategy for objective validation involves
collecting data from a reasdnab]e size sample of wonitored projects,
namely the screenfng experiments, and then analyzing the existence and
degree of correlation between the complexity as directly measured and the
complexity as objectively manifested. As a first cut, a "scatter graph”,
plotting for each project its manifested gomp1exity rating on one axis
and its measured complexity rating on the other axis, gives a visual pic-
ture of the degree of association between the two complexities. Further
- analysis would consist of (a) calculating some nonparametric correlation
coefficients, and (b) applying the corresponding statistical significance
test which determines (at the stated confidence level) whether or not the
data supports the hypothesis that such an association exists in the popu-
Tation from which the sample was drawn.

These same correlation techniques would be used to demonstrate some
of the useful applications of the quantitative measures of program com-
plexity. For example, these proposed measures could be beneficially ap-
plied during software development if it could be shown that they corre-
iate well with error rates on a per routine basis. Here each module
~would contribute one sample point, and each project development would
constitute another replication of the experiment, the correlation coef-
ficient being calculated and tested each time. Other useful applications

could be made and conclusions drawn by employing some simple nonparametric

35



tests within the experimental design of the controlled experiments. For
example, it would be nice to have evidence whether or not certain method-
ologies improve the complexity (measured or manifested) of the systems
developed by means of them. This could be done by using the Mann-Whitney
U test or the Kruskal-Wallis H test {one way analysis of variance) to
determine the significance of differences with and without those method-
o1ogigs [SIEG, 56]. The controlled experiment as currently planned will
be replicated several times to give-large enough sample sizes to apply

these tests effectively.

36



VI. Current Status

The Software Engineering Laboratory was organized in August, 1976, with
the fall of 1976 spent mostly in the designs of the seven reporting forms.

The development of these forms included feedback from programmers and managers
from NASA/GSFC and the offsite contractor. These forms have been reproduced
as Appendix 2.

Beginning in November, 1976, most new software tasks that were assigned
by the System Development Section of NASA/GSFC were given the added responsi-
bility of filling out the forms, and thus entered our set of screening ex-
periments. At the present time, about a dozen projects are currently involved.
These projects are mostly ground support routines to various spacecraft pro-
jects. Appendix 4 describes these further. .

The PDP11 database project was begun in late 1976. As explained in
Section .1V, this project is undergoing testing and should be operational
shortly. The conversion of the collected screening data onto magnetic tape
is now underway.

In Juné of 1977, the first of the controlled experiments will begin.

Two teams (0 and 1) will be assigned tasks to be designed and developed for
delivery to the Systems Development Section. The format of these tasks will
be such that they will satisfy the experimental design 0ut11néd fn Section II.

i.e., A XB. C

o 0 o

i
Y are training sessions. These tasks will be developed on the PDP-11/70 at

where Ai’ B., and Ci’ represent tasks to be developed by team i and X and

NASA/GSFC and will require approximately six months time. One team will con-
sist of in-house NASA/GSFC personnel while the other will consist of contractor

personnel. The tasks will consist of five separate subtasks with two comprising

37 .



project 'A', one project 'B', and two comprising project 'C'.
The five subtasks are as follows:

1. Human Resources Allocation and Management System

FORTRAN STATIC ANALYZER

Namelist Processor

Financial Management System

52 - VC N ]

IUE Control Monitor

(See Appendix 4 for further explanations of these tasks.)

Task A will cﬁnsist of subtasks 1 and 2, Tasklc-wi11 consist of subtasks

4 and 5, and Task B will be a subtask 3 following training sessions X or Y .
Team 1 will be given a training session (Y) consisting of several techniques:
PDL, Structured Programming, Walk-throughs, use of Librarians, Code Reading,
and will also be given a small project B to take

into account the nécessary Tearning curve before Project C is undertaken.
Team O will also be giveh'a training session and a B Project, but will not

be taught the above techniques.

For this first controlled experiment, there is complete cdntro] of the

development process. The A projects enable us to determine the background

of the personnel and the C pfojects enable us to determine the effeéts of
the training sessions. The small B task enables us to'filter out much of
:the learning curve involved in learning new techniques. Due to cost consid-
erations, the duplicate developments must necessarily be kept small; however,
the projects are 1arge.enough to require team interaction among the program-
mers and therefore we believe that they are generalizable to larger pro-
~jects. In addition, the techniques taught in the Y'training session are
those most applicable to team situations.
A second, Tonger range, controlled experiment was begun in March, 1977.

~In this case, several similar large sca]e projects are being carefully mon-

38



itored. These projects can be summarized by the following table:

project Starting i Launch  porsomer  Technigues

1. AEM-A 3/77. 2/78 | 4/78 6 NONE

2. SEA SAT 4/77 2/78 5/78 6 Structured code,

- Librarian, code

reading

3. ISEE-C 8/77 4/78 | 7/78 4 Training session
Y of experiment 1

4. SMM 3/78 - 3/79 6/79 6 Not yet defined

In this case we are performing C-like experiments of controlied task 1.
Due to budgetary restri;tions, it is not possible to dupiicate the develop-
ment of each however, the tasks are highly similar and should give us re-
sults similar to the one strictly monitored controlled task 1.

While we realize that we have less control over this experiment, this
controlled experiment does have the advantage that it is realistic in
terms of NASA/GSFC's cu}kéhfzdéve1bpméht process. By varyihg7the methodology,
we expect to.observe differences in project progress. Appendix 4 outlines
these tasks in greater detail. |

By the summer of'1977 the PDP11 Hatabase will be operational and data
from the screening ekberimentéland'some of the A subtasks of the controlled
exﬁéfihehts should be available. This data wi]] first Be'checked for Va]idity
and then will be processed as outlined in Section V.

The next stop will be to define controlled experiment 3, based upon the
preliminary results of experiments 1 and 2. It is expected that controlled
experiment 3 will begin in early 1978. In this case, the techniques taught
in training sessions X and Y and used in C, may be changed to reflect the
new techniques to be measured. It is expected that as this process continues

over several iterations, quantitative data on various products and develop-

ment processes will result.
. 39



APPENDIX 1

SOFTWARE ENGINEERING LABORATORY PERSONNEL -
{as of May 1, 1977)

University of Maryland, Department of Computer Science

Dr. Victor R. Basili
Co-principal Investigator and Associate Professor

Dr. Marvin V. Zelkowitz
Co-principal Investigator and Associate Professor

Howard J. lLarsen, Undergraduate Programmer

Robert W. Reiter, Graduate Research Assistant (prime area:
complexity experiments)

David L. Weiss (Information Systems staff, Naval Research Laboratory),
(prime area: errors) 4 )

CharTes L. Wolf, Undergraduate Programmer

NASA/Goddard Space Flight Center, Greenbelt, Maryland

Frank E. McGarry

Contract Technical Officer and Head, Systems Deve1opment Section
(code 582.1}

Robert Nelson, Member of Systems Development Section

Keiji Tasaki, Member of Systems Development Section

Walter F. Truszkowski, Member of Spacecraft Contro1 Programmtng Sect10n
(pr1me area: management)

40



APPENDIX 2

REPORTING FORMS

INSTRUCTIONS FOR COMPLETING THE GENERAL
PROJECT SUMMARY -~ FORM 580-1 (2/77)

This form is used to classify the project and will be used in conjunction with the other
reporting forms to measure the estimated versus actual development progress. It should be
filled out by the project manager at the beginning of the project, at each major milestone,
and at the end. Numbers and dates used at the initiation of the project are assumed to be
estimated; intermediate reports should change estimates to actuals (if known) and update
estimates. The final report should accurately describe the system development life cycle.

A.  PROJECT DESCRIPTION
Description. Give an overview of the project.
Inputs, Specifications and requirements (etc.) of project. Give the format of these.
Requirements. How requirements are established and changed.

Products Developed. List all items developed for the project (e.g., operational system,
testing system, simulator, etc.). .

Products Delivered. List all items required to be delivered (e.g., source of the oper-
ational system, object code of the operational system, design documents, etc.}.

B. RESOURCES
Target Computer System. System for which software was developed.:
Development Computer System. System on which software was developed.

Constraints. List any size or time constraints for the finished product. Do you antici-
pate any problems in meeting these constraints?

Useful Items From Similar Projects:
1. List previous projects, which will contribute various aspects to this project.

2. For each project, give the percent of the current project it makes up in each
of the 3 listed aspects.

3. For each of the 3 listed aspects (specification, design, cade) check what level
of modifications are necessary.

C. TIME
Start Date. First date of work, including design and modification of the specifications.
End Date, Delivery date.
Estimated Lifetime. Estimate the opcratioﬁal life of the system.

Mission Date. Scheduled opceration date of the system (write unknown if not known or
undecided vet on any of these dates). Date project must be operational.

Confidence Level. Give the percent probability you think the end date is realistic.
(e.g., 100% means certain delivery on that date, 0% means no chance of delivery.)

41



F.

- COST

Cost. Total amount of money the project costs, including both contract and in-house
costs,

Maximum Available. Maximum amount available, independent of what estimated cost
is.

Confidence Level. Rate percent reliability in cost estimate.

How Determined. At initiation how is it estimated, at completion how is it calculated.

Personnel. Give the number of full time equivalent persons required at inception of the
project, 1/3 of the way into the project, 2/3 of the way into the project, at the com- -
pletion of the project.

" Total Person Months. Give the totai number of months that full time equivalent per-

sonnel (managers, designers, programmers, keypunchers, editors, secretaries, eic.) are
assigned to the project. Do not include all overhead items such as vacation and sick

leave.

Computer Time, Give the total number of hours on all systems normalized to one
machine (e.g., the IBM 360/75) and name the machine.

SIZE

Size of the System. Include the total amount of machine space needed for all instruc-
tions generated on the project plus the space for data, library routines (e.g., FORTRAN
I/O package) and other code already available. Break down size into data space and
instruction space.

Confidence Level. Rate percent reliability in size estimates.

Total Number of Source Statements. Give the number of FORTRAN, ALC, or any
other language instructions generated specifically for this project.

Structure of System. Give overall structure of system. Is it a single load module, is it
an overlay structure, or is it a set of independent programs? For overlay and separate
programs, give the number and average size of each.

Define Your Concept of a Module. - Give the criteria you are using'to divide the soft-
ware into modules,

Estimated Number of Modules. Include only the number of new modules to be written.

Range in Module Size. Give the number of instructions in the minimum, maximum and
average module and the language in which they are written as a reference.

Number of Different I/O Formats Used. Give the number of distinct external data sets
that are required for the system including card reader, printer, graphics device, and
temporary files. .

COMPUTER ACCESS

A librarian is a person who can be used to perform any of the clerical functions associ-

ated with programming, including those given on the chart. Check the appropriate boxes
for those persons who have access to the computer to perform the given functions. Give the

- percentage of time spent by each in batch and interactive access to the computer.

42



G. TECHNIQUES EMPLOYED
For “level,” specify to what level of detail in the finished project the technique is used.
(e.g., subroutine, module, segments of 1000 lines, top level, etc.)
Specifications
Functional ~ Components are described as a set of functions, each component
performing a certain action.

Procedural - Components are specified in some algorithmic manner (e.g., using a
PDL).

English - Components are specified using an English Language prose statement of
the problem.

Formal - Some other formal system is used to specify the components.

Design and Development

Top Down — The implementation of the system one level at a time, with the current
level and expansion of the yet to be defined subroutines at the previous higher level.

Bottom Up ~ The implementation of the system starting with the lowest level rou-
tines and proceeding one level at a time to the higher level routines.

Iterative Enhancement - The implementation of successive implementations, each
producing a usable subset of the final product until the entire system is fully

developed.

Hardest First - The implementation of the most difficuit aspects of the system first.
Other — Describe the strategy used if it is not 2 combination of any of the above.
None Specified - No particular strategy has been specified.

Coding. The final encoding of the implementation in an executable programming
language.

Structured Code With Simulated Constructs - The language does not support struc-
_tured control structures (e.g., FORTRAN) but they are simulated with the existing
structures; please state the structured controi structures you are using {(e.g., WHILE,

CASE, IF).

Structured Control Constructs — The language supports structured control struc-
tures (e.g., a FORTRAN preprocessor) please list structures you are using.

Other Standard - Describe any- other standard you are using.
None Specified - No p;nrtiﬁuiar strategy has been specified.
Validation/Verification: “Testing: execution of the system, via a set of test cases.

Top Down - Stubs or dummy procedures are written to handle the yet to be'imp]e-
mented aspects of the system and testing begins with thu top level routines and
procecds as new levels are added to the system.

’ "‘-;T"Bottom Up - Check out of a module at a time using test drivers and starting at the
bottom level modules first,

a3



Structure Driven ~ Using structure of program to determine test date (e.g., every
statement of program executed at least once).

Specification Driven - Using specifications of program to determine test data (e.g.,
all input/output retationships hold for a set of test data}.

Other - Describe any other strategy you are using.

None Specified ~ No testing strategy has been specified.
Validation/Verification. Inspection: visual examination of the code or design.

Code Reading - Visual inspection of the code or design by other programmers.

Walk Throughs - Formal me'eting sessions for the review of code and design by the
various members of the project, for technical rather than management purposes.

Proofs ~ Formal proofs of the design or code; please specify the techniques used,
e.g., axiomatic, predicate transforms, functional, etc.

None Specified — No inspection techniques have been spet:lﬁed

There is some space given to permit the further explanation of any of the strategzes that
may be used.

H. FORMAL NOTATIONS USED AT VARIOUS LEVELS AND PHASES

Give the phases (e.g., design, implementation, testing, etc.) and levels (subroutine,
module, segments of 1000 lines, top level, etc.) at which any type of formalism (flowchart,
PDL, etc.} will be used in the development of the system.

I AUTOMATED TOOLS USED

Name all automated tools used, including automated versions of the formalisms given
above and compilers for the programming languages used, and at which phase and at what
level they are used. Include any products that may be developed as part of this project
(e.g., simulator).

1.  ORGANIZATION

Describe how the personnel are subdivided with respect to responsibilities into teams
or groups, giving titles, brief job descriptions, the number of people satisfying that tltle and
their names and organizational affiliations if known.

K. STANDARDS

List afl standards used, whether they are required or optional, and the t1t1e of the
document describing the standard.

L. MILESTONES

Give the phase at which management may check on progress of the development of the
system (e.g., specification, design, implementation of version 1, etc.). State also the date at
which it should take place (at completion of the project), how it is to be determined that the
milestone was reached, who will be responsible for reviewing the progress at that point and
what the review procedure will be.” Also give the resources used since the last milestone. For

P



size of system give the current size of the system at that milestone. Each milestone has 2
confidence levels, one for time estimates and one for resource expenditures. For estimated
future milestone, the first confidence level for the probability of reaching the milestone at
~ that date. The second is for the accuracy of the resources used. For past milestones, the

first confidence level is normally 100% (actual date) while the second is an estimate on the
accuracy of the accounting system.

M. DOCUMENTATION

For each time of documentation developed, state the type of documentation, its purpose,
the date it should be completed, its size and list any tools used in its production. (At the
beginning of the project these should be estimates, at the end of the pro;ect they should be

. accurate figures.)

N. PROBLEMS

Give the three most difficuilt problems you expect to encounter managmg this project.
Please be as specific as possible.

‘ 0. QUALITY ASSURANCE

_ To what do you attribute your confidence in the completed system. Be as specific as
possible.

45



o GENERAL PROJECT SUMMARY

PROJECT NAME DATE
A. PROJECT DESCRIPTION
Description
Form of Input
Requiremants
Products Developsd
Products Delivered
B. RESOURCES
Target Corﬁputer Systems Davelopment Computer Systems
Constraints: Execution Time Size
Other
Any Problems in Meeting Constraints?
Useful Items from Similar Projects:
Proi Specification Design Code
olect % | Major | Minor | None | % Major | Minor | None Major | Minor | None

C TIME
StartDate . EndDate___ Estimated Lifetime___ Mission Date
Confidence Lavel :

B, Cost
Cost$ .  Maximum Available$ ... Confidence Level

How Cost Determined

Personnel: lnception .. 1/3Way.______ 2/3Way_____ Completion
Total Person Months

Qther Costs: Computer Time {hrs) Documentation $ .
Other { | J Gther { }

E. SIZE _
Size of System Words, Data Words
Maximum Space Available Words. Confidenca Levef
Total Number of Source Statements: FORTRAN_______.  ALC

Other { }

Instructions

Structure of System (Check One):
—— Single Overlay

—— Overlay Structura (Number of Overlays Avg. Size )

— Independent Programs {(Number of Programs Avg. Size )
Define Your Concept of a Module
Number of Modules _____  Range in Module Size; Min. Max. Avy
Number of Different I/O Formats e

580-1 12/77)




¥.” COMPUTER ACCESS (Check All That Apply. Who Has Access to What.)

Librarian

Programmer

‘Keying in New Source Code

Keying in Update of Source Code

Indusion of Code Into System

Submitting Compilations

Module Testing

Integration Testing

Lkility Runs {Tape Backup, Etc.)

Give Percentages for Types of Access:

Librarian

Programmer

% Batch

% Interactive

TECHNIQUES EMPLOYED (Check All That Apply and Give Level at Which Used.)

G.
Specification: ) Used Level Used - Level
Functional ' Procedural
English Formal
Design:
| Top Down Bottom Up
Iterative Enhance, Hardest First
Other: None Used
'Developmem:
| Top Down Bottom Up
Iterative Enhance. Hardest First
Other: None Used
Coding:
Simulating Construct Structured Code
Other: None
‘Validation/Verification: . Testing .
Top Down {Stubs) Bottom Up {Drivers)
QOther: Specification Driven
Structure Driven None
Validation/Verification: Inspection
Code Reading Walk Through
Proof: None
H. FORMALISMS USED
Used Level Phases
PDL '
HIPO
Flowcharts
Baseline Diag. (Tree Ch.}
HOS o
Functions
Other:
_ | Other: 27

580-1 (2/77) Continuation




1. AUTOMATED TOOLS USED

Name

Phasas in Which Used

Level

J. ORGAN!ZATION

How are the Personnel Orgenized:

Project Personnel:

Title Job Description Number Names and Affiliations (1f Known)
K. STANDARDS
Type Optional Required
Title of Document =
Type Optional Required
Title of Document
Type Optional Required _
Title of Document
Type Optional Required
Titie of Document
- Type Optional Required
Title of Document
Type Optional Required
Title of Document
Type Optionat Required
Title of Document
Type 13 Optional Required
- - Title of Document i

PAA s em b e an




L. MILESTONES

Phase

Size of System

Confidence Level

Estimated Date

Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure :
Resource Expenditures: Cost Porson Months Computer Time hrs.
Size of System Confidence Level
Phase Estimated Date Confidence Level
‘How Determined -
Reviewers
Reporting Procadure
Resource Expenditures: Cost ________ Person Months Computer Time hrs.
Size of System Confidence Level
Phase Estimated Date Confidence Level
How Determined
Reviewers
" Reporting Procedure
Resource Expenditures: Cost ____ .Person Months Computer Time hrs.
Size of System Confidence Level
-Phase .. ‘ Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost __________ Person Months Computer Time hrs.
i Size of System Confidenca Level :
Phase Estimated Date Confidence Level
.How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost Persan Months Computer Time hrs.

Confidence Level

How Determined

Reviewers

Reporting Procedure
Resaurce Expenditures:

Cost

Size of System

Person Months Computer Time

Confidence Level

hrs.

Phase Estimated Date Confidence Level
How Determined
Reviewers
fReporting Procedure
Resource Expenditures: Cost .— Person Months Computer Time hrs.

Size of System’ Confidenca Level
Phase Estimated Date Confidence Level
‘How Determined
Reviewsrs
Reporting Procedure
Resource Expenditures: Cost _________ Person Months Computer Time hrs.

Size of System Confidence Level ___

3

580-1 (2/77) Contlnuation




M DOCUMENTATION

Type Purpose
Estimated Data ___________ Estimated Size Tools Usad
Type Purpose
Estimated Date_______ __ Estimated Size Tools Used
Type Purpase

- Estimated Date . Estimated Size Tools Used
Type - : Purpose
Estimated Date _______. ____ FEstimated Size Tools Used
Type Purpose
Estimated Date ______ ___ Estimated Size Tools Used
'_l'ype Purpose
Estimated Date . Estimated Size _ _— Tools Used
Type Purpose

Estimated Dats _______ Estimated Size Tools Used

N. PROBLEMS

State the three most difficult problems you sxpect to encounter in completing the project. {1 = most difficult)

1

0. QUALITY ASSURANCE

State the thrae most important aspects of the design, development and testing of the system to which you attribute your
confidence in the completed system. {1 = most important)

1.

_PERSON FILLING OUT FORM

1580-1 {2/77) Continuation 0



INSTRUCTIONS FOR COMPLETING THE CHANGE REPORT
FORM 5806-2 (2/77) o

At the current time, there is little known about the types and causes of errors in var-
ious kinds of software. There have been many opinijons expressed concerning the errors made
in software development, and many “‘cures’ have been suggested based on those opinions.
The study for which the change report form will furnish the data is an attempt to do a careful,
detailed investigation of the kinds of software errors that occur, and the reasons for their
occurrence. With your help, we hope to gain enough insight into the design, coding, and
testing of programs so that proposed techniques for reducing the numbers of errors can be
evaluated. Your cooperation and patience in completing the change report form each time
you make a change to a document or program are needed and appreciated.

NUMBER. A unique number per form that will be assigned by the study group.
PROJECT. The name of the development project. '

CURRENT DATE. The date on which an entry is first made on the form, even if the form
is not completed at that time.

NEED FOR CHANGE DETERMINED ~DATE. The date on which it was first realized that
a change would be needed.

REASON. A brief description of the reason a change was needed.

What Modules/Subroutines Were Examined When It Became Evident That a Change
Was Needed. The modulesfsubroutines that had to be looked at to determine where
the change was to be made and what it affected.

CHANGE MADE-DATE. The date on which the change was started.

DESCRIPTION. A brief description of the change. This should not be on the variable name
or bit level, but shouid be sufficiently abstract so that the function of the changed code can
be determined, e.g., “the input buffer was cleared,” rather than “array buff was set to zero.’
A listing of the changed code should be attached so that the implementation of the change

can be looked at.

What Modules/Subroutines Are Changed. The names of all modules/subroutines where
changes have been made.

Time Required to Design Change. The length of time required to design, not implement,
the change. If the change is an error correction, enter only the length of time to demgn
the correction.

Was the Change Made to Correct an Error? | S 3

. . . . etk
No -~ If the change is not being made to correct an error, check this space and
complete Sections A and C.

Yes - If the change is being made to correct an error or bug, check this space and
complete Sections B and C.

51



SECTION A

Cause of Change and Item Affected. Most changes to code or documentation are the
result of a higher level change somewhere else, e.g., a requirements change often requires
a design change, which requires documentation and code changes. The purpose of this
section is to discover what other changes resulted in the change now being made. Check
the box(es) under the “caused by change in”* column corresponding to changes in other

_ items-that resulted in the current change. -Under the “affects” column, check those items
that will have to be changed as a result of this.change. Give the names of and references
to any appropriate documents. If you are uncertain as to the cause or effect, check
“can’t tell” and describe in Section C the reason for the uncertainty.

SECTION B

Number of Run Analysis Form. The identifying number of the run analysis form for
the run during which the error was first noticed, if the error was discovered via a com-
puter run. That run analysis form should contain the number of this change report
form.

Activities Used in Detecting the Error and Its Cause. The purpose of this section is to
discover how it became known that an error existed and how the cause of the error was
determined. A check should be put in the first column for each method used for error
detection (test, debug, etc.). Note that error messages have been divided into 2 cate-
gories: those produced by the support system (e.g., compiler, operating system), and
those designed into the code for the specific purposes of this project or program.
Special debug code is code that is inserted for the express purpose of finding this par-
ticular error, and which will be turned off or removed after this error is corrected. A
check should be put in the second column next to the method by which the error was
first detected. The third column is similar to the first, except that it refers to the meth-
ods used in trying to find the cause of the error. The fourth column refcrs to the activi-
ties that were successful in finding the cause,

Relation to Previous Modification

Yes - If you can determine that the error was the result of some previous change
to the software, whether in the same subroutine or module as the error or not,
check this space and give the number of the change report form completed for the
previous change.

No - If you can determine that this error is unrelated to previous changes, check
this space.

Can’t Tell - If you suspect that this error is related to some previous change, but
can’t be sure, check this space, and explain why you are not sure in Section C.

Time Required to Isolate the Cause of the Error. Check the space that most closely
approximates the time required to isolate the cause of ‘the error. Note that the time
to design the correction has been previously requested,

Cause Not Found - If the cause of the error was never found, check this space.
Workaround Used?

Yes: If a workaround was used because the cause of the error was never
- found, check this space.

52,




No: If the cause was never found and a workaround wasn’t used, check this
space and explain what was done to remedy the error.

Clerical Error. We define clerical errors to be inadvertent spelling errors, misplaced or
omitted delimiters such as decimal points, commas, or parentheses, missing list elements
such as parameters, etc,, where such errors are not the result of misunderstood or in-
correct specifications, documents, or programs.

Aspects of the System Misunderstood or Misinterpreted. Errors that are not clerical can
be viewed as the result of an incorrect or misinterpreted (misunderstood or mistranslated)
aspect of the system. The aspect of the system where the problem occurred could be a
document describing requirements, functional specifications, etc., or it could be some
part of the system design, such as the intended use (result of invoking) a segment of
code, procedure, subroutine, or module, or the structure (position of and representation
of components) of data, or the meaning of data values (e.g., O = False, 1 = True), or some
other aspect of the design. In addition to the above design considerations, it is of par-
ticular interest whether or not an interface is involved.

Other problems could involve understanding the syntax of the programming language,
-the semantics (ways of using and meaning of features) of the programming language, the
hardware environment (CPU, Memory, }/O, Peripherals, etc.), or the software environ-
ment {operating system, compliers, text editors, utility package, etc.}. If you are un-
certain about some of the items, check “can’t tell,”” and give as much information as
possible in Section C.

When Did the Error Enter the System? Check the item that indicates where the error
first appeared, i.e., in requirements definition, in the functional specs, in the design
stage, in the coding and test stage, or at some other point. If you are uncertain as to
when the error first appeared, check the item that indicates the earliest stage at which
you are certain the error appeared and check “can’t tell.” In Section C give any infor-
mation that may be helpful in resolving when the error first appeared.

SECTION C

Additional Information. This section is intended to permit explanation of any items

you feel may be significant in categorizing the error, understanding its cause, how it

was found, and any effects it may have that are not fully covered in previous sections.

Do not hesitate to give a full description of the error or any doubts you may have in

classifying it. The accuracy of our analysis is dependent on the amount and accuracy of
" the data you provide for us. ' :

53



CHANGE REPORT

NUMBER
PROJECT CURRENT DATE
NEED FOR CHANGE DETERMINED DATE
REASON

What modules/subroutines were examined when it became evident that a change was needed?

CHANGE MADE DATE

DESCRIPTICN {Please attach listing)

What subroutines/modules are changed {include version and line numbers}

The time required to design the change was .._._. one hour or less, ___ one hour to one day, — more than one day.

Was the change made to correct an errar: No - answer gquestions in Sections A, C
Yes - answer questions in Sections B, C

SECTION A
What is the change caused by and what does it affect?

Caused By

Change In Affects

Can't Tell

Name(s}/References

Requirements/Specifications
Design ’

Hardware Epvironment

Software Environment

Optimization

Other {Specify):

Other (Specify):

SECTION B

Number of run analysis form for run where error first noticed
What were the activities used in detecting the error and its cause:

Activities
Used for
Detection

-Error First
Detected By

Activities
Tried to
Isolate Cause

Activities
Successful in
Isolating Cause

Test Runs

Code Reading by Programmer

_?ode Reading by Other Person

Reading Documentation (documents:

Proof Technique: {method:

Trace: (type:

Dump

Cross~Reference

Attribute List

Special Debug Code

General

Error Messages
9 Projeet Specific

fnspection of Qutput

Other {Specify):

Other (Specify):

Other (Specify):

580-2 (2/77)

57




Yes (Change Request #: : )

Was this error refated to a previous modification?

No Can't Tell
~ The time used to isolate the cause was____ one hour or less, _____one hour to one day, ____ more than one day.
Cause not found )
Was a workeround used? Yas
‘ No {explain: ]

Was it a clerical error? ____Yas ____ No.
If not a clerical error, which aspects of the system were incorrect or misinterpreted?

i . | ) . Naiaels)

Can't Tell " Incorrect Misinterpreted References

Requirements

Functional Specifications

Other Documents (Specify: )
Intended Use of Segment/Proc/Module

T T T e e e e . e ——— e | ———— e e e e e e — ———_—

Other (Spacify: )
interface :

Syntax
Semantics
Hardware Environment

Software Environment

Other (Specify):

Programming Language

When did the error enter the syst/em? — Requirements —— Functional 8pees  ____ Design
—.. Coding & Test ' _ Other e Can't Tell

SECTION C . o
Please give any information that may be helpful in categorizing the change, undei‘standing its ‘cause, how it was found, and its
ramifications.

Person Filling Out This Form:

APPROVED:
Date; — AN

580-2 (2/77) Continuation



INSTRUCTIONS FOR COMPLETING THE RESOURCE SUMMARY
FORM 580-3 (2/77)

This form keeps track of the project costs on a weekly basis. It should be fxlled out by -

the project manager every week of the project duration.

PROJ ECi‘.' ‘Give project name.

.DATE.‘ List date form turﬁed in.

NAME.: Name of project manager.

WEEK bF:. List date of each successive Friday.

MANPOWER. List all personnel on the project on separate lmes Give the number of hours
each spent that week on the project.

COMPUTER USAGE. List all machines used on the project. For each machine give the
number of runs during each week and the amount of computer time used.

OTHER. List any other charges to the project.

56



PROJECT

RESOURCE SUMMARY

NAME

DATE

WEEK OF:

MANPOWER {HOURS)

COMPUTER USAGE "
{HOURS CHARGED/NUMBER RUNS)

OTHER CHARGES TO PROJECT

T

57

pr

580.2 (2777



INSTRUCTIONS FOR COMPLETING THE COMPONENT STATUS REPORT
FORM 580-4 (2/77)

This form is to be used to accurately keep track of the development of each component
in the system. A Component Summary Report should exist for each component mentioned.
The form is to be turned in at the end of each week. Please fill out either daily or once each
week. If daily, then a given component may be listed several times during the course ofa
week. For each component list the number of hours spent on each of the listed activities.
This form should be filled out by persons working on the project.

PROJECT. Name of project.
PROGRAMMER. Name of programmef.
DATE. Date report turned in. Usually the date of a Friday.

DESIGN
Create. Writing of a component design.
Read. Reading (by peer) of design to look for errors. (e.g., peer review)

Review. Formal meeting of several individuals for purpose of explaining design
(Management Review). Also include time spent in preparing for review. All those
attending review should list components discussed in their own Component Summary

Report for that week.
DEVELOPMENT
Code. Writing executable instructions and desk checking program.
Read. ‘Code reading by peer. Similar to Design Read above.
Review. Management Review of coded components. Similar to Design Review above.

TESTING
Mod. Module testing. Test run with test data on single module.

Integ. Integration testing of several components.

Review. Management review of testing status.

OTHER. Any other aspect related to the project not already covered. List type of activity.

...58



COMPONENT STATUS REPORT

PROJECT DATE
PROGRAMMER

DESIGN DEVELOPMENT TESTING -
COMPONENT o te | Read | Review | Code | Read | Review | Mod | integ | Review | CTHER

1580-4 {2/77)

(4]
P




INSTRUCTIONS FOR COMPLETING THE COMPONENT
SUMMARY - FORM 580-5 (2/77)

This form is used to keep track of the components of a system. A component is a piece
of the system identified by name or common function (e.g., an entry in a tree chart or base-
line diagram for the system at any point in time, or a shared section of data such as a
COMMON block). With the information on this form combined with the information on the
Component Status Report, the structure and status of the system and its devek)pment can

be nionitored.

' This form should be filled out for each component at the time that the component is
defined, at the time it is completed, and at any point in time when a major modification to

the component is made. It should be filled out by the person responsible for the component.

PROJECT. Give project name.
- DATE. Give date form filled out.

NAME OF COMPONENT. Give name (8 characters) by which the component will be
referred to in other forms.

BRIEF DESCRIPTION. State function of component.
TYPE OF SOFTWARE. Check all classifications that seem to apply.

A. SPECIFICATIONS

~ Give how component is specified and any document name that defines form of speci-
fication. Also give the level of detail used in specifying component. See instructions in
General Project Summary for further information on levels.

Relative to the one developing the component, rate the precision of the specifications.
Very precise means that no additional analysis on the problem is needed, precise means that
only easy or trivial ideas have to be developed, and imprecise means that much work still
remains in developing this component and its basic structure.

B. INTERFACES

Give the relative position of this component in the system. Give the number and list
the names of all components that call this component, and are called by this component.
Also, give the names of any components or other items this component shares with other
components (e.g., COMMON blocks, external data).

C. PROGRAMMING LANGUAGES

List languages (or assembly languages) to be used to implement this component. If
more than one, list percentages of each (in lines of source code). If there are any con-
straints on the component (e.g., size, execution time) list them. Also give estimated size
of finished component both in terms of source lines and resulting machine language
(including data areas, but not COMMON blocks). . .

.60



Useful Items From Similar Projects

1. List previous components and projects which contribute various aspects to this
component.

2, For each such component, give the percent of each of the three listed aspects it
. makes up (e.g., a component may be 50% of design but only 25% of code due to
_changed interfaces, etc.).

3. For each of the three listed aspects, check what level of modifications are necessary.

D. COMPLEXITY

Rate your belief in the complexity of the implementation. Also approximate the
number (by %) of assignment type statements (input statements are included), and control
statements (those that alter the flow of control, e.g., IF, CALL, GOTO). The sum of these
two may not be 100% (e.g., CONTINUE, DIMENSION and REAL statements will not be

counted),

E. RESOURCES TO IMPLEMENT

For each of the three listed phases (Design, Code, Test), estimate computer runs, time
needed, man~hours to implement, and estimated completion date. Estimate man-hours as
Technical/Clerical. Technical includes design, programming and testing while clerical includes
keypunching, typing documentation submitting runs, etc. This is independent of whether

-the work is performed by a programmer, librarian or other support personnel.

F. ORIGIN. Check all that apply.
New Function. Specification of an operation not previously present in system.

* Further Elaboration. New component due to more detailed specification of existing
specifications {e.g., top~down design of a new module).

Reorgahization. Restructuring of existing components. Check reason why.

Extraction of Common Function - A function previously duplicated in several
components is centralized in one.

Optimization - A new component is defined in order to optimize some system
resource. Specify which resource (e.g., size of program, execution time, etc.)

B Components Affected. List all components which must be modified because of this
new one. If this is a further elaboration of a previous component, be sure to include

“the old component’s name.
PERSON RESPONSIBLE Include name of person responsible for component.

- H. PERSON FILLING OUT FORM. Give name of person filling out form. This should
be the same name as in G.

61



PROJECT

COMPONENT SUMMARY

DATE

NAME OF COMPONENT

CREATION DATE

BRIEF DESCRIPTION

TYPE OF SOFTWARE (Check All That Apply}

___ Business/Financial
_____ Systems Program
__ Data Base Application

___ String Processing

___ Scientific
___Real-Time System
—__ Command and Control
___ Other:

A. SPECIFICATIONS

Form of Specification Functional ___ {level
English___ {level__) Formal____{level___} Other

____ On-Board Computation

} Procedural ____ (level

_____ Table Handler

__ Mathematical/Numerical
___ Telemetry

__ Attitude Orbit Determin.

Specification Document Reference Number

Precision of Specification Very Precise_____ Precise

B. INTERFACES

Names

imprecise ...

NMumber Components Calied

Number Calling This Component ‘Names

Number Shared Items

Names

C. PROGRAMMING LANGUAGES
Languages Used and Percentages ( _) {

)

Constraints: _Space

Execution Time

Other

Size: Source Instructions Machine Words

Useful Items From Similar Projects

Component | Project Specification Design _ COde.
% | Major | Minor | None | % [ Major | Minor | None | % Major | Minor | None
D. COMPLEXITY
Complexity of Function Easy Moderate Hard
% Assignment Statements _.__% Control Statements
E. RESOURCES TO {MPLEMENT
' Runs Computer Time {min} Man-Hours Est. Comptetion Date
Design i )
Code
Test

F. ORIGIN {Check Al That Apply}
— New Function

—— Reorganization Due to:
— Change in Specifications or Requiremsnts
—— Extraction of Common Function
—_Optimization (How?

Further Elaboration of Existing Component

Components Affected: ‘

G. PERSON RESPONSIBLE FOR COMPONENT

H. PERSON FILLING OUT FORM

.
L

580-5 (2/77)




INSTRUCTIONS FOR COMPLETING THE PROGRAMMER/ANALYST
SURVEY -~ FORM 580-6 (2/77)

The purpose of this form is to classify the background of the personnel on each project.
It should be filled out once at the start of the project by all personnel.

PROJECT. Which proj'éct are you currently assigned to.
DATE. Today’s date.
NAME. Your name.

AGE. Current age.

NEW/REVISED. Check whether this is a new form or an update of a Programmer/Analyst
form filled out earlier. _ , o

PRESENT JOB TITLE. Give current title.
EMPLOYER. Give current employer.

A. EDUCATION
Degrees Fill out educational background
Courses. Fill in number of university and in-house computer science courses.

B. WORK EXPERIENCE. Give years mvolved with computers and percent tlme in each
listed activity

C. SPECIFIC EXPERIENCE

Structured Programming. Writing programs using only a limited set of control struc-
tures (e.g., if-then—else, do-while).

PDL. A Process design language. An algorithmic specification of a program.

HIPO. Hierarchical Input Process Output, A graphical technique describing a program
as a function of its input and output data.

Top Down Development. A technique where high level modules are developed before
the modules that are called by these high level routines.’

Stubs. A top down technique where each undeveloped function is simulated by a short
testing routine.

Stepwise Refinement. A top down technique where each line of code isreplaced by an
expansion of its definition in greater detail.

Chief Programmer A technique where an individual programmer writes top level code
“and major interfaces and delegates responsibility to others to complete it. A librarian
manages all source code and documentation.

63



Operating System. Give system name and amount of experience.
Types of P‘rogramming Experiences. Give level of experience for each type of

~ programming,

PREFERRED METHOD OF ACCESS

Batch. Remote submission of runs by card decks.

“Interactive. Using a terminal to create and immediately test programs.
Hands On. Physically running the computer, as with a minicomputer.
TSOQ. IBM Time Sharing Option. Using terminals to create programs and submission

for execution.

PREFERRED PROGRAMMING LANGUAGES. In which languéges do you prefer to
program (e.g., FORTRAN, ALC)?

PREVIOUS EXPERIENCE. List the names and positions you held on previous projects
which were similar to this current one.

EVALUATION. Give any additional information that you think is relevant.

'64_



S PROGRAMMER/ANALYST SURVEY

PROJECT DATE
NAME AGE ' NEW____ REVISED. _____
PRESENT JOB TITLE EMPLOYER

A. EDUCATION

.Degrees (include date, location, and major)
1.
2,
3 s

Approximately how many college credit computer science courses did you take?

Approximate grade point average in such courses (A = 4,0}

Approximately how many in-housa or training seminars in computer scienca have you attended?

B. WORK EXPERIENCE
Total Number of years involved with computers
' Estimate fraction of total experience spent:

% in individual effort, % in cooperation with others (teams)

% supervising others {describe 2}

If any team experience, describe

€. SPECIFIC EXPERIENCE

For the following four sections, rate each item using the following code: 1 = never used, 2 = used occasionally, 3 = used often,

1. Techniques .
Structured Programming PDL HIPO . pr Down Devélopment Stubs  Stepwise Refinement
Chief Programmer Team_____ Other . Other

2, Prbgramming Languages 7 .
Assembler (360/370)____ Assembler (_______)____ FORTRAN___ COBOL____ PL/1___ SIMPL___ ALGOL..___

SNOBOL4 PASCAL __Other(____}.__ Other{_.___)__ _

3. Operating Systems and Command Languages
System (360/370 0S) ____ System {

|

) System (

4. Types of Programming Experiences

Scientific ____ Table Drivers Systems Programming

String Processing— _ Business Financial

Mathematical/Numerical ___. Deta Base Applications

Tetematry

Resl-Time Systems
Command and Control__. On-Board Computation___ Attitude Orbit Determination . Other {

| J—

SR

Other {

PREFERRED METHOD OF ACCESS: Batch___ Interactive____ TSO (Remote Batch)____ Hands On

PREFERRED PROGRAMMING LANGUAGES

PREVIOUS EXPERIENCE IN RELATEb PROJSECTS

EVALUATION

BL

580-6 (2/77)



INSTRUCTIONS FOR COMPLETING THE COMPUTER PROGRAM
RUN ANALYSIS - FORM 580-7 (2/77)

This form will be used to monitor the activities for which the computer is used in the
course of the project life cycle. An entry should be made every time the computer is used by
the person mltlatmg the run. This form should be turned in weekly, or soonerif it is complete.

PROJ ECT. Write down project name. Use a dlfferent form for each project.

PROGRAMMER. Write down name of individual preparing computer runs. This may not
necessarily be the person running the program (e.g., librarian).

NUMBER. This is the unique number for this form. The run number will be this number
with the run line number (00 to 15) added to it.

DATE. Date form turned in,
JOB ID. Name of run from job submittal card.
RUN DATE. Date run submitted in format month-day-year.

INTERACTIVE. Check if this is an interactive run, and write system used (e.g., TSO) as job
id. Leave this blank if a batch run.

CHARGE TIME. Give the cost of the run (in minutes-seconds) in terms of cpu minutes.

PURPOSE OF RUN. What is the purpose of this run. (e.g., system test, find bug in module
XYZ, clean compile of module ABC, back-up libraries onto tape, etc.)

COMPONENTS OF INTEREST. List alI components important to this run (e.g., components
being tested, compiled, etc.).

CATEGORY OF WORK.
Write N if this is a new function added to a component,
M if it is a modification to the specifications of a component,
C if it is a correction of an error to a component or
O if it is for some other reason.

If this is a test run, write:
Mif this is a test of a single module,
P if is a partial integration test, or
F if it is a full integration test.

Check all of the following boxes, if they apply:
Compilation - some component is being compiled (or assembled)
Load - a set of modules is being loaded by the system loader (link editor)
Execution - a set of modules are being executed
Utility - a utility program is being used {e.g., listing of file, file copy)

" RESULTS. Give results of run. If program terminated with an error, give error message and =
.. component that generated message or component that caused operating system to generate

message,

66



ee/2) (088

T
80
w0
90
50
4]
£0
o
10
*xxxnrEooz=z SSWH |JAACOW W
V|5 ) > .
SegEsHasEs -
{sabessa) Jou3 “B39) E8 &5 22 5283 awie |3
s11ns3y Am W m EL m - m 1S3H3LN} 40 SLNINOIWNOD NN 40 350d¥Nd 35HVHD m 11vd NNY ar'or
“lm = -2 . ’
= = [a ] . R =
’ (7] =z
3iva HINWYHDO U
HIGNNN 123roud

SISATYNY NNY WYHDOU4 HILNWOD

&7

o




APPENDIX 3
DATABASE FORMAT

The conversion of the data on the forms into the database is controlled
by a program running on a PDP-11. This program is table driven where the
table describes the keypunched format of the paper forms. The table is used
to specify how the verify and edit routines handle the incoming data. The
following is a brief description of these table entries. A forthcoming
technical report “The Software Engineering Laboratory: Database Description”
will describe these in greater detail, and will give the translation of the
reporting forms (appendix 2) into these entries.

As mentioned previously in Section IV, the raw data will be stored as
a file under UNIX. Each file wi11 contain a common set of keypunched fokms,
each stored as a set of records. The program will read in the first recofd
and the first table entry for that particular form.

| A given form will be described via a set of such table entries. The .
table entries will describe the contents of those records, what conversions
to perform on the data, and where to place the output. The following dis-
cussion describes the table entries in greater detail.

Each record of data making up one form is coded with a letter or digit.
This character is used to determine where in the set of tables to continue
- processing. -

There are five different table entries - four of the entries describe
internal control for the program (e. g. specifying how many times-a given

field may be repeatéd) while the fifth describés the format of the input

.68



data. Each table entry is a fixed seven word entry in the PDP-11, but all
- seven words may not be used in all cases.

When the program is run, the table describing the form and the name of
the output file is read. Thus one program suffices for all forms. The pro-
gram reads the UNIX file containiﬁg the raw data, validates it and produces
three outputs: (1) an INGRES file for correct data, (2) an error file con-
taining records in error and (3) a listing of the data pointing out all
errors. 'Options on the program exist to supress some of these outputs.

Each seven word entry has the following format:

. Word 1 - TYPE (8 bits)
- "~ CHAR (8 bits)
Word 2 - INTA
Word 3 ~.INTB
Word 4 - INTC
Word 5 ~ INTD
'_Wokd's - INTE
Word 7 - INTF

The appropriate type of record (1 to 5) is determined by the TYPE field
of wordlle The 5 types are as follows: | | .. '
.UIZEé_l - Data Format Entriee. These describe data from.the-forms.

. CHAR - error level, with fo]]bwing Qa1ues:'

E - field on form must be exactly as stated in validity
code or else form will be rejected.

1 - field may be blank. If nonblank, it must be correct.

2 - field is'a1ways_acceptab1e whether blank, incorrect
or correct. C : e S

‘_Fof invalid fields, '****' is printed in output listing for E errors

and '+ is printed for 2 errors.

69



INTA

INTB
INTC

INTD
INTE,

Number of characters in input record for field.

Format code - type of data in field (Component name, date, text,
number, etc.)

Type conversion of field. (move as is, convert to integer, con-
vert date to internal format, etc.)

Character position of converted field in output record

INTF - Used with specific format codes.

Type 2 - While loop. Controls arbitrary repitions of certain fields.

CHAR - Control character

A1l table entries until the EXIT (type 4) record are processed.
If the next record of data is df type CHAR, then the loop is
reprocessed. This is used to handle arbitrary numbers of cer-
tain data items, such as the number of milestones reported on

fhe General Project Summary.

Type 3 - Repeat Loop. Controls a fixed repition of certain fields.

INTA - repeat count.

This is similar to the While loop except that INTA specifies
the number of times to repeat. It is used where a fixed
number of fields must appear, such as Language Experiences :

in the programmer analyst survey.

Type 4 - EXIT. End repeat and while loops. This specifies the end of

repeated information.
"Y' - output information

'N' - no output of information

If N is spec1f1ed no data is output at this time and information is
output at the end of the form.

70



If Y is specified, data is output. For example, each tine in the
Resource Summary is controlled by a while loop. Even though one
1ine may be incorrect. Other correct 1ines may be entered into
the database. o o

Type 5 - Stop processing; end of form.

71



APPENDIX 4
NASA SOFTWARE

NASA Envirohment

The Software Enginéering Laboratory has_beeh created to function
within the constraints and service of one segment of the NASA/GSFC. com-
putationa1 facility. This facility, which is under the control of fhe
Miséion and Data Operations Directorate (Code 500), consists of two.pri-
mary hardware.systems:_ | |

1.) A series of S5/360's
| 2.) PDP-11/70

$/360 Environment

The S/360 is the prime development and operations machine for ail.
work in the Mission Support Computing and Analysis Division (Code 580).
Although NASA/GSFC has nihe IBM 360's, only two hand]e most of a1l§the :'
work related to.the Laboratory. The first is a $/360 model 95 running un-
der 0S and complimented with Asynchronous Support Processor (ASP) and the
standard IBM Time Sharing Option (TS0). The second is a S/360 model 75
running under 0S and supporting TSO0.

The workhorse for this user community is the model 95, but most of o
the software in question can make use of the 75 with essentially ho modi-~ .
fications. .Although the 95 has 5 million bytes of memory available, special
requirements and daily operational support activities reduce the available:ﬁ :
“memory to about 2 million bytes to the general user. This machine has B
near]y‘1000.registered users contending for this available storage.

Three TSO regions support the numerous terminal activities for the
360. Each of these require 270K of main memory to service both editihg type

operations as well as foreground jobs executing under TSO. Graphics work

72



is also supported via IBM 2250's, 2260's and a series of Anagraph 6600 de-
vices. -

Both the 95 and 75 are primarily batch oriented. While the 75 is card
deck oriented, the 95 receives the bulk of its work'via'remote submittal.
The remote jobs are transmitted by the user by way of various remote entry
| terminals such as the IBM 2780, IBM 1050 or Anagraph 6600.

There are various devices available by which users may store software

Tibraries. Disk and magnetic tape are avaiTabIé to stbre source code,
Toad modules, and data in general. No drum space is'avéfiable to the general
user on the 5/360 énd the available on-1ine disk Space is Very 11mited.

The primary 1anguége used by the'software'community'is FORTRAN wjth
some small usage of Assembler 1énguage and other 1ang@ages. No_partitular
language standards are rigorously imposed at the center.

During deve1bpment of software systems users caﬁ exbect turnxarohnd
time to vary from one or two hours for small, half miﬁhte jobs, to one day
for medium jdbs (3 to 5 minutes, less than 600K), to several days for longer
-running and larger size jobs. In order to support the testing of inter-
active graphics wbrk, users are normally required'to schedule timé.at the
-_5/360 model 75. The time must be scheduled one week in advance, and nor-
mally is only available at night and on weekends. This is to minimize_the
: 1mpact on daily operational support requ1red on that mach1ne For most of
*_the tasks involved in the Laboratory which require graph1cs development,
.'the programming team would normally schedule an average of 2 three. hour

sessions per week for a period of three months for a_I_year'deVElopment‘

effort.

73



PDP-11/70 Environment

This machine is directly under the control of the Systems Deve1opﬁent
and_Ana]ysis Branch (Code 582) and is a more accessible machine thdn_the
S/360. Naturally, there are greater restrictions on type of software de-
velopment supported due to the limited memory and periphefa1 équipment.
The 11/70 contains 128K 16 bit words with 2 nine track tape drives, no card'.'
readgr,_g RKO5 disk drives, one RPO4 (88 megabyte) disk, 1 Versatec é1e¢tro¥t”
static prihtef and 4 V50 DEC CRTs. - |

There is no machine operator, which necessitates”each progrémmer be-
coming familiar‘enough with the machine to operate it. Each programmer or
feam-of programmers must schedule time on the machine for téstfng and vali-
dating soffware. This time is normally made available ih 2 or 3 hour blocks
during the day. | | | |

' Again, the primary language is FORTRAN with some minor app1ication
of assembler language. _

Although the 11/70 has 128K words of memory, the word éize-limits the
addressab]e space fo 32K forcing programmers to break larger programs into |
executable 'tasks' occupying Tess than 32K of memory. Ample direct\access
storage is pfOVided to requesting tasks to store source libraries, 1oaa ”
modules and related data.
|  Due to the unavailability of a Card Reader, all source code must‘be_ C

entered via CRT or by magnetic tape generated on some other'machine.'_ "

Software Development

The software devéloped by the Systems Development Section of NASA is
usually ground support software used to control spacecraft operations.

_ This usually consists of attitude orbit determinations, telemetry decom-

L



mutation and other control functions. The software that is produced gen-
erally takes from six months to two years to produce, is written by three
to six programmers most of whom are working on several such projects simu}-
taneously, and consists of six man-months to ten man-years of effort.
Projects are supervised by NASA/GSFC employees {of Section 582.1) and the
personnel are either NASA personnel or outside contractors. Resource_e;f
timates are in new code for the project since most projects use some

routines written for earlier projects.

Screening Experiments

The following pages 1ist the'set‘of screening experiments that have -
been.started to date. These projects are not hnpawjih£ in any way, but’

-are required to fill out the various reporting forms.

75



Screening Task #]

Title: PAS Attitude Determination System

Objective: The Pancramic Attitude Sensor (PAS) Attitude system is a soft-
ware s;stem created to support both the ISEE-A and the IUE satellites. The
software's main purpose is to read telemetered information from the space-
craft, then from pertinent sensor date - determine the current attitude
(right asceﬁsion and dec!inatfon) to some specified accuracy.

The software is to run interactively to support real time requirements
as well as to support voluminous editing of telemetry information during. the
actual attitude determination process. The software must support the mission
initially at launch then continue through the lifetime of the satellite
{(from 1 to 3 years) During the reorientation proceés (turning the vehicle
into the final desired attitude), which takes place several hours after
launch, the software must perform in a real-time mode displaying the data
during the maneuver so that analysts may determine if the maneuver is pro-
ceeding as scheduled or whether there may be some difficulty (e.g., the
spin axis is being readjusted in the wrong direction).

The computed attitudes during the lifetime of the mission are trans-
mitted to experimenters around the world along with pertinent experimental
information from the satellite. Experimenters must know not only where
the satellite was, but which way it was pointed when certain scientific
measurements were made.

The system is somewhat I/0 bound with the voluminous amounts of Tele-

metry data being read and massaged.

76



Environment: Target Computer - S/360
Development Computer - $/360
Language - FORTRAN
Level of Effort - 9 Man Years
Program Size - 450 Modules
80000 Lines of Code
(30% reusable from other projects) .

Methodology: Some walk-throughs
Some Code reading
Librarian Used
Top Down (Somewhat)
Strict Design requirements

PERTINENT INFORMATION: Information was made available by way of the
following forms: '

General Project Summary

Component Summary (Approximately 400%)
Component Status

Change Reports (Approximately 150)
Resource Summary - '

Run Analysis (Approximately 500)

Th P Wby —

*Before and after code completion

There were the standard Laboratory forms which were generally filled
out faithfully. There are some shortcoming in the change report forms due
to early misinterpretations and unavailability of forms early in the pro-

Aject.

77



Screening Task #2

Title: ISEE-B Attitude Determination System

Objective: The International Sun-Earth Explorer-B (ISEE-B) Attitude
Determination System processes Earth and Sun Attitude data received from
the spacecraft and computes definitive attitude and spin rate for the
three-year lifetime of the mission. |

Environment: Target Computer - S/360
Development - S/360
Language - FORTRAN
Level of Effort - 6 1/4 years
Program Size - 350 modules
12,000 tines of code

Methodology: Functional Specifications
' Top down design, development and test1ng by subsystem
Some iterative enhancement ,
Code reading
Librarian used

PERTINENT INFORMATION: Information is being collected througn the use of
the following forms:

‘General Project Summary
Component Summary
Component Status

Change Reports

Resource Summary

gl = Wy —

78



Screening Task #3

Title: Goddard Mission Analysis System (GMAS)

Objective: GMAS is designed to perform general mission analysis support
for both pre-flight and in-flight operations for near-earth as well as in-
terplanetary missions. The system consists of four major entities which
are:

Executive

Library of utility load modules

Dynamic arrays
Automatic sequence

IS0 N —

The parsing of the system in the manner supports 2 major requirements

of the system:

1. Dynamic configuration and reconfiguration of the executing soft-
ware to suit a stated problem by way of user input. :

2. Support of the ability to add or changé‘tbmputationaT load modules
into the system without perturbing any other part of the GMAS
system.

Such problems as launch window studies, 1ifetime predictions, shadow-
ing computations, monte carlo studies and various trajectory targeting
problems are typical for this system.

It is a highly computational driven system with no extensive I/0
problems. It has interactive graphics requirements which are supported by
way of the Graphics Executive Software System (GESS).

Environment: Target Computer - S/360
: ~ Development Computer - S/360
Language - FORTRAN
- Level of Effort - 10 Man Years

Program Size - 400 Modules
45000 Lines of Code (ggétgﬁgiab1e from other

79



Methodology: Walk Throughs

Code Reading

Librarian
PERTINENT INFORMATION: Data was made available for this project only
through a modified version of the change report form. Since this project
was well under way before the Software Engineering Lab was created, no
additional requirements were placed on this task.

The modified version of the change report form was used from the

beginning of the project and has 1nf0rhat10n fecorded which will only be

applicable to the investigation into software errors - which is one of the

primary areas of concern in the Systems Engineering project.

80



Screening Task #4

Title: Averaging Orbit Propagator

Objective: This program is designed to service the GMAS pkogram (Task #3).
It is a completely separate, independent 16ad module which is connected to
'GMAS by two small assembly Tanguage utility routines.

The propagator is a highly computational piece of software designed
to advance a vehicle state'(poéition and ve1o¢1ty) over some period of
time in an extremely rapid fashion. As input, the'program'wou1d receive
some initial state and be asked to advance this set of elements to some
later {(or earlier) point of time, thén provide this updated state and time
to the requesting module.

Environment: Target Computer - $/360 |

Development Computer - S/360

Language - FORTRAN

Level of Effort - 6 Man Months

Program Size - 60 modules

' 7000 Lines of Code (20% reusable)
Methodo]ogy: Walk Throughs o
: Code Reading

Libraries _
PERTINENT INFORMATION: Data was made available by way of’thé:fo110wing forms:
General Project Summary |
Component Summary
Component Status
Change Reports

Resource Summary
Run Analysis

OV W N —

81



Screening Task #5

Title: General Parameter Program (GPARM)

~ Objective: This program is designed to service the GMAS program (Task #3).
Like task #4, it is also a completely independent Toad module which could
certainly be used as a separate program from GMAS.

The primary purpose of the program is to convert some standard set
of input e]emeﬁts:(position and ye]ocity) to a variety of additional para-
meters in various coordinate systems and then to transmit the information
"to an on-line printer. The program is a computational one with a limited
amount of I/0.

Environment: Target Computer - S/360

Development Computer - S/360

Language - FORTRAN

Leve]l of Effort - 5 Man Months

Program Size - 20 modules

2500 Lines of Code

Methodology: Walk Throughs

Code Reading

Librarian
PERTINENT INFORMATION: Data was made available by way of the following
forms: \' -
General Project Summary
Component Summary
Component Status
Change Reports

Resource Summary
Run Analysis

[op e UL SR \b R

82



