
 1

An Approach to Improving Parametric
Estimation Models in the Case of Violation of
Assumptions Based upon Risk Analysis

Salvatore Alessandro Sarcia1,3
Victor Robert Basili1,2
Giovanni Cantone3

Department of Computer Science1
University of Maryland
College Park, MD 20742, USA

Fraunhofer Center for Experimental Software Engineering2
College Park, MD, 20742 MD, USA

DISP
Università di Roma Tor Vergata3
via del Politecnico, 1
00133 Rome, Italy

December 2008

Technical Report CS-TR-4928
 UMIACS-TR-2008-20

2 1996

An Approach to Improving Parametric
Estimation Models in the Case of Violation of

Assumptions Based upon Risk Analysis
Salvatore Alessandro Sarcia1,3, Victor Robert Basili1,2

and Giovanni Cantone3

1Dept. of Computer Science, University of Maryland, A.V. Williams Bldg. 115, College Park 20742, MD, USA
2Fraunhofer Center for Experimental Software Engineering Maryland, College Park, Maryland, 20742

{basili, sarcia}@cs.umd.edu
3DISP, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Rome, Italy

{cantone, sarcia }@disp.uniroma2.it

Abstract— In this work, we show the mathematical reasons why parametric models fall short of providing correct estimates and define an
approach that overcomes the causes of these shortfalls. The approach aims at improving parametric estimation models when any regression
model assumption is violated for the data being analyzed. Violations can be that, the errors are x-correlated, the model is not linear, the sam-
ple is heteroscedastic, or the error probability distribution is not Gaussian. If data violates the regression assumptions and we do not deal with
the consequences of these violations, we cannot improve the model and estimates will be incorrect forever. The novelty of this work is that we
define and use a feed-forward multi-layer neural network for discrimination problems to calculate prediction intervals (i.e. evaluate uncer-
tainty), make estimates, and detect improvement needs. The primary difference from traditional methodologies is that the proposed approach
can deal with scope error, model error, and assumption error at the same time. The approach can be applied for prediction, inference, and
model improvement over any situation and context without making specific assumptions. An important benefit of the approach is that, it can
be completely automated as a stand-alone estimation methodology or used for supporting experts and organizations together with other es-
timation techniques (e.g., human judgment, parametric models). Unlike other methodologies, the proposed approach focuses on the model
improvement by integrating the estimation activity into a wider process that we call the Estimation Improvement Process as an instantiation of
the Quality Improvement Paradigm. This approach aids mature organizations in learning from their experience and improving their processes
over time with respect to managing their estimation activites. To provide an exposition of the approach, we use an old NASA COCOMO data
set to (1) build an evolvable neural network model and (2) show how a parametric model, e.g, a regression model, can be improved and
evolved with the new project data.

Index Terms— Multi-layer feed-forward neural networks, non-linear regression, curvilinear component analysis, Bayesian
learning, prediction intervals for neural networks, risk analysis and management, learning organizations, software cost
prediction, integrated software engineering environment, quality improvement paradigm, estimation improvement paradigm,
bayesian discrimination function, TAME system

—————————— ——————————

1 INTRODUCTION

HIS research supports learning organizations
[BASILI92B] in achieving their business goals and
gaining competitive advantage. These organizations

need to manage projects effectively and deliver products
on time, on budget, and with all the functions and fea-
tures required. To this end, one of the most important
keystones for their success is to be able to estimate cor-
rectly the variables of interest of the project, task, and
module (e.g., effort, fault proneness, and defect slippage).
For instance, a software organization may need to quan-
tify the cost of developing a software system in order to
bid on the contract. So, the success (gaining the contract
or delivering the sub-system as required) would depend
on the capability to get the most accurate software cost

estimate. Consequently, getting accurate estimates is a
strategic goal for these organizations.

Estimation accuracy is not only about yielding esti-
mates as close to the actual value as possible, but also
estimating the variability of the estimates. In this work,
we refer to the improvement issue in a twofold way, (1)
improving the correctness of the estimates (i.e. shrinking
the prediction error) and (2) improving the way the
spread of the prediction error is calculated (i.e. improving
the inference about the predicted variable). The latter is
also referred to as estimating the estimation model (EM)
uncertainty (e.g., quantifying the risk) or calculating pre-
diction intervals (PIs) of estimates (e.g., what is the vari-
ability of the next predicted value?).

T

 3

Once an organization has invested in an estimation
model and learnt to work with it, it is hard for them to
switch models. However, they need to improve their es-
timation capability over time, and thus their model. We
use the uncertainty arising from the estimation model to
evaluate, select, and improve the model that organiza-
tions use. A key point is that, the accuracy calculated by
some summary statistics over the estimation error (as is
usually done) is not sufficient to evaluate and select the
estimation model. In this work, we present an approach
for dealing with estimation models. We improve the
model itself over time and correct the estimates by coping
with of the types of error that affect estimation models.

Kitchenham et al. [KITCHENHAM97] refer to several
sources of error, i.e. errors found in the measurements
(Measurement error), produced by unsuitable mathe-
matical models (model error), wrongly assumed input
values (assumption error), or inadequacy of the projects
chosen for building such estimates (scope error). Errors
can be represented by (stochastic) variables that we can
study and even try to predict, but we cannot avoid. For
this reason, in dealing with these issues, we have realized
that improving estimation models over time is not
enough for supporting those software organizations.
They also need to measure the impact of the error on the
stated software goals when using the estimation model in
their own environment. In other words, software organi-
zations need to both improve their estimation models
over time and analyze the risk for planning suitable miti-
gation strategies.

Researchers and practitioners prefer violating assump-
tions (e.g. homoscedasticity, model linearity, and normal-
ity of the distributions) and ignoring error sources, rather
than dealing with the consequences of such violations
and errors. To continue violating assumptions and ignor-
ing errors pretending that everything is fine “for the sake
of simplicity” is not a good way of managing learning
organizations and improving estimation models. Con-
versely, as we propose in this work, investigating empiri-
cally consequences of those violations can improve both
estimation and inference of parametric models. For this
reasons, even though we refer to parametric estimation
models, the proposed improvement strategy is mainly
based on non-linear models, non-parametric and Bayes-
ian statistics.

Organizations should be able to integrate the estima-
tion improvement into their general improvement process
(e.g., QIP [BASILI92B]). By contrary, over the last three
decades, scientists and practitioners have been trying to
support software organizations in finding the best estima-
tion model instead of trying to improve those models that
organizations have been using. The result of this huge
effort is that currently software engineering practitioners
neither have the best estimation model nor appropriate
improvement techniques for those models. In other
words, as argued in [SHEPPERD07A], [MYRTVEI05],
this thirty-year research effort has been practically disap-
pointing. The impossibility to find the best model hints

that comparative studies make sense only within a spe-
cific context. If we change that context, the results of
comparative analyses are no longer valid. This is the rea-
son why, we focus on improving estimation models over
time exploiting the past experience of the organization
and do not care about finding the best model.

We have organized the work in some parts. First, we
define the estimation improvement process that we will
refer to in the work. Secondly, we present linear and non-
linear estimation models, known improvement strategies,
and techniques for evaluating PIs (i.e. uncertainty and
risk) for both linear and non-linear models. Thirdly, we
define an error taxonomy showing errors that we really
need to worry about and their consequences. Subse-
quently, we present the problem, i.e. we answer the ques-
tion why currently used parametric estimation models
fall short of providing valid and reliable results when
regression assumptions are violated. We proceed by de-
fining the mathematical solution and its application to
software engineering problems (the proposed approach).
Finally, we show how the approach works in a real case
(i.e. COCOMO NASA data set). Of course, we leave out
evaluation and comparison between the proposed ap-
proach and the existing ones because the aim of this work
is to define the methodology as a whole, not to evaluate
it. We finish by discussing benefits and drawbacks of the
proposed approach.

2 PARAMETRIC ESTIMATION MODELS
The estimation techniques we refer to are based upon
parametric models that receive inputs and provide an
output (the estimate), see Fig. 1, where we estimate,
through the model EM, a dependent variable (y) based on
a number of independent variables (x).

The accuracy is checked by analyzing the estimation
error, i.e. the deviation between the estimated output
(when we feed the model with actual inputs) and the ac-
tual output.

Fig. 1. A Parametric estimation model.

Even though we refer to functional and parametric esti-
mation models, we may think of the EM as a system,
which produces estimates based on input values. For in-
stance, human-judgment approaches fall in this category.
That is, the experts is the EM, using their expertise and
local data as inputs x, to provide an estimates y.

In this work, we use some terms with specific mean-
ings and so we clarify those meanings here to avoid mis-
understandings.

4

An Estimate/Estimation is any prediction of the quantity
of interest that can be greater or lower than the value it is
predicting. An Estimation model is any system able to pro-
vide estimates on the quantity of interest, e.g. COCOMO,
regression models, machine learning, and human-based
judgment. An Evaluation model is any system able to pro-
vide a decision about whether the performance of the
estimation model is acceptable or not.

We refer to a variable as a (1) characteristic when we
want to emphasize its role in the context (2) feature when
we want emphasize its role in a neural network, (3) factor
when we want to emphasize its role in regression models.

3 ESTIMATION IMPROVEMENT PROCESS
In this section, we provide an overview of the estimation
improvement process (EIP) to give a context for the evo-
lution of EM over time. We will define EIP in more details
in Section 6.3. The EIP can be considered as a specializa-
tion of the Quality Improvement Paradigm (QIP)
[BASILI92B], [BASILI92] for estimation processes (Fig. 2).
The novelty of the EIP is that, it exploits experience pack-
ages based on specific kinds of neural networks, which
can provide estimation model uncertainty for the organi-
zation without making any specific assumptions. Once
such neural networks have been built using the organiza-
tion’s data, the Experience Factory (EF) can provide a pro-
ject with automated support tools, which simplify the
reuse and exploitation of experience. We call such a neu-
ral network-based package an Automated Experience
Package (AEP), a tool for supporting project organiza-
tions in estimations. AEPs together with the strategy de-
fined in Section 6.1 can (1) provide estimates throughout
the development process, (2) make estimation uncertainty
analyses, (3) drive the risk mitigation strategy, and (4)
detect estimation model improvement needs without con-
tinuous human interaction. The EIP is a tailored version
of the QIP with additional specifications aimed at sup-
porting a project organization in making estimates, an
activity usually included in the project management plan
at the project organization level.

Fig. 2. Experience Factory implementing the Estimation Improve-
ment Process.

The EIP is composed of six steps [BASILI92B]:

1. Characterize the current project and its environment
with respect to models and variables, e.g., what is the
current model for cost estimation?

2. Set Goals for successful project performance and im-
provement, e.g., what the acceptable estimation error?

3. Choose the Process for achieving the stated goals of this
project, e.g., what added activities are needed to use
and evolve the AEP?

4. Execute the Process for building the products, collecting
data, and perform activities specific to the estimation
process: (4.A.) Estimate uncertainty and mitigate risks,
i.e. based on the products of the AEP, state the project
estimate that minimizes the estimation risk (e.g. a fail-
ure) and (4.B.) Manage risks by controlling and evaluat-
ing risks by monitoring the project and checking
whether it meets its goals.

5. Analyze the data to evaluate the current practices, de-
termine problems, record findings, and make recom-
mendations for future project improvements. For the
estimation process, we need to (5.A.) Analyze data
about the project performance, and (5.B) Improve the
estimation model for online support of the project or-
ganization.

6. Package the experience by building an improved ver-
sion of the AEP and save it in an experience base to be
reused on future estimation of projects.
This way of managing experience allows the EF to

check automatically whether the project organization is
complying with the organization lessons learned and the
project organization to reuse automatically the organiza-
tion experience to mitigate the risk. The project organiza-
tion can exploit automated support tools, i.e. the AEP, for
managing estimates before, during, and after the project
execution (e.g. shrinking the effort spent for the project
management).

Once the EM has been built, we can consider two dif-
ferent kinds of estimates (Fig. 3), the estimate obtained
feeding the model with estimated inputs (time T) and the
estimate obtained feeding the model with actual inputs
(time T+2).

Fig. 3. Different kinds of estimates (Prediction and Evaluation).

We will use time T to represent the start of the project,

 5

time T+1 to represent the end of the project when actual
inputs can be known, and time T+2 to represent the post
project accuracy evaluation. Note that, Fig. 3 shows some
activities already reported in Fig. 2. Estimate at time T
(Prediction) refers to the estimation where the input val-
ues (Iest) are estimated and the output, est

estO = EM(Iest) is
calculated based upon those estimated inputs. Since we
do not know the actual values of the input, Iact at time T,
we cannot check the accuracy of the EM from these esti-
mates est

estO (e.g., in cost estimation models, actual size is
different from estimated size),

At time T +1, we know both Iact and Oact. Thus, at time
T+2 we can calculate act

estO = EM(Iact), the output estimated
by actual inputs, and we know Iact, the actual output. So to
evaluate the accuracy we can compare act

estO to Oact (hori-
zontal dashed double-arrow line in Fig. 3). If the estima-
tion model was perfect, the estimated values (act

estO)
should be equal to the actual values (Oact). It almost never
happens, hence we have to deal with prediction errors
and think about how improving the considered estima-
tion models.

3.1 Improving estimation models
Mathematically, the EM in Fig. 1 is a regression function
fR such that y = fR(x,β) + ε, where R stands for regression,
x represents a set of independent variables, y is the de-
pendent variable and β is the set of parameters of fR. The
component ε is the aleatory (unknown) part of the model
representing our uncertainty about the relationship be-
tween independent and dependent variables. Function fR
cannot be formulated because we cannot calculate pa-
rameters β, as we do not know every point of the popula-
tion. But, we can estimate β by finding a set of estimators
b such that they minimize an error function (e.g., least
squares). To estimate b, we consider the relationship Oact

= fR(Iact,b), where Oact represent the actual values of y, Iact
are the actual values of x, and b are parameters being es-
timated. Because of ε, fR provides Oest = fR(Iact,b), not Oact.
Then, the difference e = Oact − Oest is a vector of errors
representing ε (called residuals, with e ≠ ε). The most im-
portant part in modeling is to find the best estimates for
β. This activity is called parameter estimation, fitting, or
calibration. For calculating b, there exist some strategies,
which are based on selecting b so that the function best
fits the observations (Oact). One way this can be reached is
by minimizing the sum of squared residuals, e.g., the least
squares (LS) function. From a practical point of view, the
minimum of the sum of squares can be found by setting
the gradient to zero, where the derivative is made with
respect to each parameter. Therefore, minimizing the cost
function means solving an equation system of partial de-
rivatives set to zero. If the system equations are com-
posed of a linear combination of the parameters sought,
the EM is linear in the parameters, and we have a closed
solution. If the equation system is composed of non-linear
equations of the parameters sought, the EM is non-linear
in the parameters and the solution can be found itera-
tively.

3.1.1 Regression assumptions
To have a closed solution, when applying LS an assump-
tion is required. In particular, fR has to look like the fol-
lowing function, y = β0+ β1x1+ … + βQxQ (or any polyno-
mial quadratic, cubic etc.), where each monomial is a lin-
ear combination of the parameter sought [RAO73],
[WEISBERG85]. Note that, since the characteristic ex-
pressing the relationship between inputs and output is
called the model shape, the equation for y has a linear
shape. For example, a second-degree polynomial is linear
in the parameters and has a quadratic shape. The LS itera-
tive method does not require that the system of equations
of partial derivatives is linear in the parameters. This is
the reason why, this method is applied with estimation
models that are non-linear in the parameters. The com-
plexity of a model is another characteristic expressing the
number of parameters composing the model. The more
parameters, the more complex the model.

If we want to get the best linear unbiased estimators
(BLUE) of β (Gauss-Markov theorem [PEDHAZUR97])
and use the model for inference, LS requires some as-
sumptions, reported below. We will call these assump-
tions “regression assumptions” meaning that if they do
not hold the parameter calculation may be affected by
error and b would be biased. The regression assumptions
are:
(1) Errors ε are not x correlated
(2) The variance of the errors is constant (homoscedastic-

ity), cov(ε) = σ2I
(3) Errors ε are not auto-correlated
(4) The probability density of the error is a Gaussian, ε ∼

NID(0, σ2I), i.e. there are no outliers, skewed/kurtotic
distributions, and measurement error.

It is worth noting that the LS method does not actually
require that the probability distribution of the errors is a
Gaussian. This assumption is required for making infer-
ence (e.g., deriving the confidence and prediction inter-
vals for the model parameters and the variables, see Sec-
tion 3.2). When dealing with real cases some of those as-
sumptions may be violated and the estimators b may be
biased. The core of this work addresses strategies for dealing
with estimation models when regression assumptions are vio-
lated. Conversely, if regression assumptions hold, LS es-
timators b have minimum variance and represent a Maxi-
mum Likelihood Estimation (bMLE) to the minimization prob-
lem stated above [PEDHAZUR97]. This means that, the
parameters of fR correspond to the observed data (e.g.,
y(1)…(N)) having the highest probability of arising. Eqn. (1)
formalizes this situation.

)b,x,...,x|y,...,y(pmaxargb)N()1()N()1(

bMLE = . (1)

Where, p(.|..) denotes a conditional probability function,
which is approximated by pb(y|x,b) having the mean
µb(y|x,b). Thus if the regression assumptions hold, LS
and MLE provide the same parameters bMLE (see Markov-
Gauss theorem [MCQUARRIE98]), therefore µb(y|x,b) =
fR(y|x,b).

6

The main problem with this approach is that if these
assumptions do not hold, e.g., the probability distribution
pb(y|x,b) is not Gaussian, the LS method does not yield
bMLE any more.

In the literature, however, we can find many examples
where these assumptions are violated and the closed LS
technique is applied anyway. Another practical problem
with using LS concerns the shape of the model. As stated
above, very often, to simplify the parameter calculation
and have a closed solution for calculating parameters b,
researchers and practitioners assume they know the best
shape between inputs and output, e.g., “[…] we assume
that the multi-regression function has linear or (log-
linear) shape […]”, when the shape is not known at all.
For a practical discussion on this approach see [JØRGEN-
SEN04A], and [JØRGENSEN03]. Then, the resulting re-
gression function will no longer be correct (i.e., it is bi-
ased). So, predictions and inferences drawn from this
flawed model will be inaccurate (i.e., spread may be over-
estimated or underestimated and estimates biased).

3.1.2 Dealing with the consequences of violations
The reasons why parameters of a regression function may
be biased, its estimates inaccurate, and the inference
drawn from it incorrect are the following [MCQUAR-
RIE98]:
 Variable model error (VrblME): The model is missing

some relevant variables; hence, it is not able to ex-
plain the output.

 Redundancy model error (RdndME): The model in-
cludes too many variables that negatively affect the
correctness of the model parameters

 Flexibility model error (FlexME): The model is not flexi-
ble enough to represent the relationship between in-
puts and output. For instance, this error can happen
when we choose models that are linear in the pa-
rameters, e.g. ordinary least squares (OLS)

 Violation model error (VltnME): The model parameters
and inferences may be biased because of the violation
of one or more regression assumptions (see “regres-
sion assumptions” above).

We use the words “model error” meaning that the error is
about the incorrect estimation of the model parameters,
i.e. the error is about the model.

An estimation model can be used for prediction and in-
ference. When using the model for prediction, we are in-
terested in having estimates as accurate as possible. When
using the model for inference, we are interested in evalu-
ating the prediction intervals on the dependent variable
as well as evaluating the confidence intervals on the
model parameters b. A prediction interval is a range
where the next estimate will probably fall within a chosen
confidence level (e.g., 95%) and it is directly related to the
bias and spread of the prediction error (Section 3.2). In
this work, we refer to using estimation models both for
prediction and inference on the independent variable.
Therefore, based on data previously observed, we aim at
improving the prediction capability of models over time
and evaluating correctly the related prediction intervals.

Improving the prediction capability refers to estimating
the best model parameters. Correctness of prediction in-
tervals is about finding a way of reducing the error
brought about by violations of assumptions on which the
model has been built, e.g. regression assumptions and
linear complexity.

To improve parametric estimation models in the sense
stated above (i.e. increasing the correctness of the model
parameters and estimating the right prediction intervals
on the dependent variable of the model), improvements
can be made for each bullet in the list above. In the cur-
rent section, we mainly refer to improving prediction ac-
curacy, while, in Section 3.2, we show more deeply some
techniques for evaluating prediction intervals.

There is not way to deal with VrblME. We must find
the right variables for the model to be correct. Finding
good variable candidates can be done by looking at pre-
vious research, asking experts, or inferring missing vari-
ables based on a context analysis. For instance, the ap-
proach proposed in Section 6.1 shows a way of detecting
what the model is missing and the case study discussed
in Section 7 illustrates a way of exploiting data coming
from previous research [PROMISE].

There are some techniques for dealing with RdndME.
The most popular is called stepwise regression, forward
or backward [MCQUARRIE98]. Of all the possible mod-
els, each having different numbers of variables, stepwise
regression chooses the one having the most significant
correlation, i.e., choosing the model having the highest
adjusted R-squared. The problem is that the variables
removed might be significant for other situations, e.g.,
future projects. Thus, since we do not know which vari-
ables are least significant, we should take into account all
models that can be built using all possible combinations
of variables (i.e., use an exhaustive procedure). For in-
stance, if we have Q variables, there will be 2Q different
models, because each variable can be included or not (di-
chotomous decision). However, this procedure is usually
too expensive to be executed in real cases. Instead of con-
sidering individual variables, one can take sets of multi-
ple variables, so that the number of different models that
need to be considered would be smaller. Although apply-
ing stepwise regression can improve the model parsi-
mony and its accuracy, it requires one more assumption.
To apply stepwise regression multicollinearity should not
affect the model. This is a statistical effect where two or
more variables are highly correlated, i.e. one or more
variables are redundant, and they can be obtained as a
(linear) combination of other variables included in the
model. Stepwise regression is requested when we are in-
terested in knowing which variables actually influence
the independent variables (e.g., for inference purposes of
the independent variables). If we use the model for pre-
diction or inference on the dependent variable, other
techniques of feature reduction can be applied.

Feature reduction techniques are another way to deal
with RdndME as well; they find an equivalent configura-
tion composed of less input variables than the initial set.
Principal Component Analysis (PCA) is one such technique;
it finds independent linear components, which can be

 7

used to express the original variables [JOLLIFE86], [FEN-
TON93]. Curvilinear Component Analysis (CCA) is another
technique that involves finding both linear and non-linear
independent components [BISHOP05A, pp. 310-319]. Be-
cause CCA is able to also perform PCA, we will mainly
focus on CCA. The difference between stepwise regres-
sion and CCA is that the former removes irrelevant vari-
ables so the resulting variables are a subset of the initial
set; it also assumes non-multicollinearity. CCA removes
redundancy by turning the initial configuration into a
more parsimonious one where the resulting variables
may not correspond to the initial set and it does not as-
sume non-multicollinearity. These techniques are ex-
plained in more detail in Section 6.

To deal with FlexME, i.e., finding the right complexity,
the procedure is to (1) consider different families of func-
tions, (2) compare them to each other, and (3) select the
best, i.e., the one yielding the least generalization error
(i.e., the expected estimation error). For instance, one may
consider polynomials with different complexity and for
each of them calculate the generalization error, hence,
using the generalization error for selecting the best
model. The problem is that, we cannot calculate the gen-
eralization error because it requires knowing every point
of the population. We can only estimate it. Vapnik proves
that leave-one-out cross-validation (LOOCV) provides an
unbiased estimate of the generalization error [VAP-
NIK95]. This procedure is explained in Section 6.1. Let N
be the cardinality of the data set. LOOCV starts with con-
sidering a linear-in-the-parameter model and it goes on
by increasing the complexity, i.e. it considers non-linear-
in-the-parameter models having an increasing flexibility,
until a satisfactory condition is met. For each considered
family of functions having a different complexity (i.e., a
different number of parameters), LOOCV builds N mod-
els by removing a data point from the data set. Each of
the N models is trained with N−1 data points and the
model error is calculated on the data point left out. The
generalization error estimator is calculated as the average
of the N errors coming from each individual model
trained with N-1 points. Usually, the error is the square
root of the mean squared error (i.e.

))e()N/1((SQRT 2
h

)h(
h∑ −⋅ , where the h-th residual)h(

he − is
calculated on the h-th observation left out, with h = 1 to
N). Because of the LOOCV cost, sometimes k-fold cross-
validation (KFCV) is preferred. However, it does not pro-
vide an unbiased estimation of the generalization error.
KFCV consists of taking out k data points instead of only
one and running the same procedure as LOOCV. For
more details on KFCV see [DREYFUS05]. Note that, com-
paring only polynomial families with different complex-
ity is not enough because polynomials are not indefinitely
flexible. If we used only polynomials, we may select the
model having a minimum error relative to the model, but
we may not be sure that it would be the smallest error
overall (i.e. among all the possible models). As explained
above, to avoid the complexity error, we have to increase
flexibility of the non-linear-in-the-parameter functions
until the generalization error decreases. We stop increas-
ing the number of parameters, when the generalization

error increases or keeps the same (i.e., the satisfactory
condition) [BARRON93]. In other words, the model hav-
ing the best complexity is the most parsimonious one be-
ing flexible enough to explain any relationship between
inputs and output. To have models with arbitrary flexibil-
ity, we can consider non-linear-in-the-parameter models
that are a generalization of usual regression models.

When the size of the sample N goes to infinity, tradi-
tional least squares procedures applied to linear-in-the-
parameter models such as polynomials provide the “true”
parameters β of the regression function (i.e., they are not
estimates of β). Conversely, non-linear-in-the-parameter
models cannot provide the true parameters of the regres-
sion function because there is no closed solution to the
least squares problem for such models (i.e., there is an
iterative solution). However, as long as N is finite, linear-
in-the-parameter models are not able to provide the true
value of the regression function as non-linear-in-the-
parameter models. Then, since a non-linear-in-the-
parameter model can be made indefinitely flexible for a
fixed number of input variables and a linear one does not,
the former is more flexible and parsimonious than the
latter. In fact, operatively we cannot consider models hav-
ing an infinitive number of variables, but we can increase
the number of parameters of non-linear-in-the-parameter
models. Fixing the number of variables and increasing the
number of parameters of the model is the essence of the
parsimony [BARRON93]. Therefore, in real cases where
we do not have an infinitive number of variables and ob-
servations, non-linear-in-the-parameter models can pro-
vide better estimates than linear ones (Section 3.6).

We mainly refer to Multi-Layer Feed-Forward Neural
Networks (MLFFNN) trained with Backpropagation
[BISHOP95A], [RUMELHART86], which are non-linear-
in-the-parameter models and they theoretically have an
infinitive flexibility (Section 3.6). MLFFNN are called ar-
bitrary approximators (or universal approximators) not
because they provide arbitrary outcomes. The “arbitrary”
aspect is only about their unlimited flexibility. Applying
LOOCV and feature selection and/or reduction to
MLFFNN allows us to find the best non-linear model
without complexity limitations. This is a suitable way of
dealing with the flexibility problem. Therefore, if we want
to avoid the flexibility model error, the only way is to use
arbitrarily flexible models. Note that, Backpropagation
does not provide a closed solution to the LS minimization
problem for calculating model parameters. Backpropaga-
tion is an iterative method that requires some optimiza-
tion technique to make the training process faster. For
instance, Levenberg-Marquardt is an optimization tech-
nique, which is 60-80 times faster than Backpropagation
without any optimization [HAGAN94]. Using MLFFNN
has further benefits than usual regression models. In Sec-
tion 3.6 and 3.7, we will explain it in more detail. Using
the LS error function with MLFFNN requires similar re-
gression assumptions to linear regression, but it removes
the limitation about model flexibility and that the model
variables may be affected by error (i.e., there will be out-
liers or skewed probability distributions). Bishop shows
that, although the sum-of-squares error function derived

8

from the principle of maximum likelihood, Eqn. (1), does
not require that the distribution of the dependent variable
is Gaussian, estimates provided by a model trained by the
sum-of-squares and a global variance parameter (i.e., the
variance is assumed to be constant) are the same as the
ones provided by a model having a dependent variable
with a Gaussian distribution and the same x-dependent
mean and average variance [BISHOP95A pp. 201-206].
Therefore, if we cannot make any assumption on normal-
ity of variables and errors, we should choose a different
error function with respect to least squares as we explain
later in this section.

Note that, as we will explain in Section 3.6, a MLFFNN
provides a regression function conditioned to the obser-
vations, i.e. it is exclusively built on the observed data.
This means that, where this data is not available (i.e.,
across specific intervals), the prediction capabilities of the
model decrease. If the observed data is “regularly” dis-
tributed, a MLFFNN is able to provide correct estimates
with a fewer observations than linear models (i.e., usual
polynomials). In other words, non-linear-in-the-
parameter models can provide higher accuracy than lin-
ear-in-the-parameter models with the same number of
observations [DREYFUS05]. Moreover, the MLFFNN pre-
diction capability improves as the number of observations
grows. Therefore, they are models that are consistent with
learning organizations aiming at improving their estima-
tion capability over time [BASILI92B].

When regression assumptions do not hold, we should
be aware of a number of consequences. The consequences
may affect both the prediction capability of the model and
the inference drawn from it, i.e. either bias or spread of
the estimation model may be incorrect and/or inefficient,
see Section 3.2 for more details. Therefore, if the model is
biased, estimates may be incorrect (biased) and prediction
intervals underestimated or overestimated (inefficient).
To improve the estimation capability of the model, we
can use non-linear-in-the-parameter models together with
LOOCV and feature reduction (e.g., CCA) as explained
above and in Section 3.6. When trying to improve models
used for inference (e.g., estimating the expected value and
spread of the error), the problem is more complicated. It
is important noting that, when estimating the model pa-
rameters through an iterative procedure such as Back-
propagation, we should consider further uncertainty be-
cause of it. Conversely, prediction intervals would be un-
derestimated.

With respect to the regression assumptions reported
above, if (1) errors ε are x-correlated, the expected value
of the error should be calculated by a regression analysis
where the independent variables represent the error and
the independent variables are the same x-variables of the
estimation model. Obviously, we do not know ε. There-
fore, the best we can do is to use the residuals e instead of
ε. It is very important noting that, when using a non-
linear-in-the-parameter model along with LOOCV and
feature reduction such as CCA, the resulting model is
able to provide the expected value of the dependent vari-
able even if there is no x-correlation. This happens be-
cause of the intercept, which is called bias in non-linear-

in-the-parameter models (Section 3.6). Therefore, as we
have already mentioned, if we use such an x-regression
analysis we get correct results even if there is no correla-
tion between the x-variables and the error, parsimony a
part (Section 3.6). Therefore, we should apply non-linear-
in-the-parameter models for estimating the x-dependent
expected value of the errors (i.e., the model bias). This
second regression analysis should be based on as few
assumptions as possible. For instance, we should start
with removing the normality assumption, the homosce-
dasticity assumption, and use non-linear-in-the-
parameter models. Note that, the considerations on im-
proving estimation models apply also to the regression
analysis between x-variables and errors.

If (2) the model is heteroscedastic, the expected error is
not offended, but the spread may be inefficient (i.e., type I
or type II errors may occur). We mean that, spread should
not be considered constant as it usually is, but it should
be a function of the independent variables, i.e., σ2(x).
Since we cannot know σ2(x), we may estimate it, i.e. we
may calibrate a non-linear-in-the-parameter model r(x,u)
where r would be a function of variables x and u the pa-
rameter estimators defining the function r calibrated on
the observations [NIX94]. Therefore, instead of consider-
ing a constant variance parameter, we should use an x-
dependent non-linear function yielding a different vari-
ance value according to the x-values. In particular, Nix et
al. use just one network with two outputs, one for the
regression function, and one for the variance [NIX94].
This technique acts as a form of weighted regression that
aims at weighting in favor of low-noise regions. Note
that, weighted regression is also available for linear-in-
the-parameter models [WHITE80]. The problem is that
weighted regression can eventually reduce the impact of
heteroscedasticity, but it is not able to remove it com-
pletely. This means that, we need further improvement
techniques when the sample is heteroscedastic rather than
applying only linear or non-linear weighted regression.

In literature, there exist further methods to deal with
this problem. The most known method is called bootstrap
[EFRON93, pp. 313-315]. It is based on a resampling pro-
cedure. The method provides an x-dependent prediction
interval, which behaves better than the delta method pre-
viously applied. Bootstrap can be applied both with non-
linear and linear-in-the-parameter models and it applies
to parametric and non-parametric distributions [MOJIR-
SHEIBANI96]. The problem with using the bootstrap
method is the cost of resampling to get suitable prediction
intervals. An example of the bootstrap application is pro-
vided in [ANGELIS00] where the authors show an appli-
cation of bootstrap to software cost estimation by analo-
gies.

A completely different approach for inferring the
spread of the dependent variable is provided by MacKey.
He uses the Bayesian framework for evaluating predic-
tion intervals of non-linear-in-the-parameter models
[MACKEY91]. This framework estimates the variance of
the dependent variable by exploiting posterior probability
distributions instead of a priori distribution as is usually
done (see Bayesian theorem in Section 3.7). Instead of

 9

considering only a single value for a model parameter, as
in the maximum likelihood estimate, Eqn. (1), Bayesian
inference expresses the variability of the dependent vari-
able in terms of posterior probability distributions and
integrates the interesting subset of the distributions
[MACKEY91], [HUSMEIER04, pp. 18-20]. The primary
importance of the Bayesian framework is the fact that the
uncertainty of the dependent variable depends not only
on the most probable model (i.e., the one having parame-
ters bMLE), but also on the probability distributions of
models that can be built with the sample. However, even
though the MacKey’s solution is theoretically correct, it
has some practical complications. The problem is evaluat-
ing the integral that sums the overall uncertainty of every
model. In order to handle the integral, we have to make
further assumptions, such as the normality of the predic-
tion error distribution and the prior weight distribution.
Moreover, MacKey considers the sample variance to be
constant, even though it may be x-dependent. Bishop et
al. [BISHOP95B] extend MacKey’s analysis by consider-
ing an x-dependent variance of the error. For a complete
explanation of these techniques, see [HUSMEIER04] and
[BISHOP95A, Chapter 11]. In our analysis, where we
would like to make as few assumptions as possible, and
exploit methodologies that are easy to apply and figure
out, MacKey’s solution cannot be used as is. In Section
6.1, we will define an empirical approach based on Bayes-
ian analysis for evaluating the variance of the dependent
variable without making any specific assumption about
the underlying probability distributions. Moreover, it is
important to note that, since errors ε (i.e. the aleatory part
of the estimation model) are unknown, we have to use the
residuals e = (Actual – Estimated) to investigate whether
the homoscedasticity holds or not. The problem is that, in
software engineering we know that the residuals grow as
project size increases, (e.g., software cost estimation).
Then a relative measure of the residuals RE = (Actual –
Estimated)/Actual, i.e. a measure weighted by the actual
value, should provide better results both for linear and
non-linear models. In Section 3.2, we present some hints
about the right way of choosing an error measure.

If (3) errors are auto-correlated, the parameters b are
unbiased but the spread may be unreliable (type I or type
II errors may occur). This kind of error can be removed by
considering two different approaches, using Autoregres-
sive Conditional Heteroscedasticity (ARCH) models
[ENGLE82] or the Two-Stage Regression Procedure
(TSRP) [GREENE97]. We do not deal with this kind of
improvement because software engineering data is not
usually time-series correlated as occurs with financial
data.
If we run an auto-correlation statistical test (e.g. Durbin-
Watson) and find time-series auto-correlations, we can
infer that the auto-correlation is determined by chance
and so we do nothing. Conversely, if there is an auto-
correlation effect, we can remove it by applying ARCH or
TSRP. If there is a non-time-series auto-correlation we can
remove the auto-correlated observations from the data set
used for calibrating the estimation model.

If (4) errors are not normally distributed with ε ∼

NID(0, σ2I), b may be unbiased, but E(ε) may be different
from zero and the percentiles of neither t-student nor z
distributions may be good representatives of the popula-
tion. Therefore, better spread measures are calculated by
non-parametric statistics (Section 3.2).

Actually, when the normality assumptions does not
hold, instead of calculating the x-dependent mean we
may calculate the x-dependent median, which would bet-
ter represent the expected value of the dependent variable
y = fR(x,b). The x-dependent median can be obtained by
minimizing a different error function from LS. This kind
of approach is based on robust statistics [HUBER81], [MI-
YAZAKI94]. These techniques try to reduce the influence
of outliers on the model parameter calculation. When
using MLFFNNs, it is possible to calculate a (conditional)
median instead of a (conditional) mean by minimizing the
Minkovski-R error with R = 1, Eqn. (2).

∑ −=
N

)N(try)y(E
 . (2)

Where y is the estimate and tr is the actual value over N
observations. Minimizing the error function (2) with re-
spect to y gives Eqn. (3).

∑ =−
N

)N(0)try(sign
 . (3)

The expected error is satisfied when y is the median of the
points {trn} [BISHOP95A, p. 210].

To deal with the measurement error affecting the vari-
ables, there is little that we can do. The only option is to
avoid the assumption of the normality of the probability
distributions and apply a robust regression as explained
above.

TABLE 1

IMPROVING INFERENCE OF LINEAR AND NON-LINEAR MODELS

(1) fe is a non-linear regression function treated with LOOCV and CCA, e =
residuals, x = independent variables of the model. (2) Variables x are the same
as the EM. (3) Autocorrelation does not usually affect software engineering
variables. If does, use ARCH models or TSRP.

Table 1 shows the regression assumption violations

(left side) and the corresponding improvement to the bias
and spread of the model (right side).

3.2 Risk, uncertainty, and accuracy indicators

10

So far, we have seen that, to improve estimation models
we have to use models that are non-linear in the parame-
ters because they can be made indefinitely flexible. When
using non-linear-in-the-parameter models for inference
(e.g., evaluating variance of the dependent variable), the
problem is more complicated than using linear models
because of their non-linearity, i.e. for each function consti-
tuting the model there is a higher number of parameters
than for linear models where there is only one parameter.

In this section, we delve into the details of the problem
of making an inference when regression assumptions are
violated. Practically, we have to evaluate the variance of
the dependent variable, when using linear and non-
linear-in-the-parameter models. Therefore, we are inter-
ested in analyzing the relationships existing between the
estimated spread (i.e. a mathematical quantity) and the
risk (i.e. a software engineering quantity). We will use
software cost estimation models as our primary example
for exposition, because of the large amount of associated
research. Slightly different measures might be considered
for other estimation models, but the main ones are re-
ported in this section. For a complete explanation, see
[MYRTVEIT05], [KEMERER87].

3.2.1 Risk and uncertainty
We define risk in applying an estimation model as the
uncertainty measure of getting a wrong estimate (i.e. the
estimate falls out of the stated prediction interval). For
evaluating whether an estimate is wrong, we can look at
its accuracy. In fact, an estimate is accurate when it is cor-
rect and valid. Estimation correctness refers to the capa-
bility of being as close to the actual value as possible and
estimation validity refers to the capability of being stable
over a number of trials. To quantify the uncertainty, we
need to study the deviation between the actual and esti-
mated value in a significant number of trials. This devia-
tion is called error and the observation set over the trials
is called the error sample. Mathematically, there exist
many equivalent ways of estimating the uncertainty in
applying an estimation model. To this end, let us consider
the definition of error measure.

3.2.2 Error measures and accuracy
There exist many different measures of error. Some are
reported below. We can define i-th measure of an abso-
lute error as follows:

est

i
act

ii OOAE −= . (4)

Where estO stands for act
estO , i.e. an estimate obtained us-

ing actual inputs, and actO stands for its actual value.
Then, DAE = {AE1, AE2, …, AEN} is a sample of errors and
N is the sample size. As stated above, we prefer to deal
with a relative error (RE) [BOEHM81], Eqn. (5), because
in software estimation, the absolute error grows as the
size of the project increases (i.e., the variance is not con-
stant), and a weighted measure should be preferred. The
relative error on i-th data point is:

act
i

est
i

act
i

i

O
OORE −

=
 . (5)

Then, DRE = {RE1, RE2, …, REN} is a sample of errors and
N is the sample size. Note that, the RE’s variability inter-
val is]-∞;1] because the estimated output (Oest) varies in
[0; +∞[, where]a;.b] is a left-open interval and [a; b[is a
right- open interval. The problem is that, a relative meas-
ure cannot avoid bias and hetheroscedasticity of an esti-
mation model. Moreover, RE may be correlated with
other context factors [STENSRUD02], [JØRGENSEN04A]
therefore its expected value would be better expressed by
a regression function on those factors. Actually, the prob-
lem with the heteroscedasticity has never been solved. In
fact, one of the most violated assumptions when applying
LS is to consider the error distribution homoscedastic,
while it is not [JØRGENSEN03].

Another used measure is the Balanced RE (BRE) de-
fined by Miyazaki et al. [MIYAZAKI94], Eqn. (6):

}{ est
i

act
i

est
i

act
i

i

O,OMIN
OOBRE −

=
 . (6)

Then, DBRE = {BRE1, BRE2, …, BREN} is a sample of errors
and N is the sample size. Miyazaki et al. argue that BRE
may have properties that lead to better evaluations for
some data sets. Unfortunately, it does not happen for
every sample [JØRGENSEN04A]. BRE is slightly different
from RE because it is not limited on the right side. Both
RE and BRE can distinguish between underestimates and
overestimates therefore they can both be used for the
purposes of the approach presented here.

Once we define the error measure, we can evaluate the
accuracy and consequently risk and uncertainty. This task
consists of calculating some statistics over the error sam-
ple such as mean and standard deviation [JØRGEN-
SEN03]. For instance, the error mean is a bias measure
and the error standard deviation is a spread measure.
This happens when the considered error measure is able
to distinguish between overestimate and underestimate.
This is not always the case. Conte et al. [CONTE86] pro-
posed an error measure based on MREi = abs(REi). Then,
DMRE ={MRE1, MRE2, …, MREN} is a sample of errors and
N is the sample size of a test set. Based on MRE, they
proposed two statistics, MMRE and PRED(H). MMRE is
the mean of DMRE, i.e., MMRE = Mean (DMRE) = Mean
(MREi) for i = 1 to N and PRED(H) is the percentage of
estimates within a given error H. For instance, PRED(25)
= 80% means that 80% of the estimates fall into an error
of 0.25. Kitchenham et al. [KITCHENHAM01] showed
that neither MMRE nor PRED(H) can be used for com-
parison because MRE is not able to separate bias and
spread. Therefore, the MMRE is not a bias measure and
its standard deviation is not a spread measure. In particu-
lar, those statistics measure spread and kurtosis of the
random variable Z = Estimated/Actual, respectively.
However, MMRE may be considered as a goodness-of-fit
measure of a model.

 11

3.2.3 Uncertainty measure for a univariate case
To quantify the uncertainty then, we need an error meas-
ure that allows separating bias and spread such as AE, RE
or BRE (note that, we use AE, RE, and BRE instead of AEi,
REi and BREi to simplify the notation). As explained
above, we will mainly consider RE and BRE because, in
software cost estimation, AE grows as the project size
increases. If we know the population probability distribu-
tion from which the sample has been sampled (e.g., nor-
mal distribution), we may use the mean and standard
deviation as a bias and spread measure, respectively
[JØRGENSEN03]. To calculate an estimate prediction in-
terval (i.e., quantifying the uncertainty of an estimation
model), the strategy consists of considering N measures
of error (RE or BRE) and calculating an interval where the
error of the next estimate will fall with 90% (or 95%) con-
fidence. We call this interval (two-tail) error prediction in-
terval, i.e., [µDOWN; µUP], see Eqn. (7). Based on the error
prediction interval, we can apply Eqns (9), (10) or (11), see
below, and calculate the estimate prediction interval, for RE,
BRE and AE, respectively. We use [1N

DOWN,estO + ; 1N
UP,estO +] to

point out an estimate prediction interval. See Section 3.6
for more details [JØRGENSEN03]. Note that, (7) is a 90%
confidence interval, which corresponds to the 95th percen-
tile of the Student’s distribution with (N—1) degrees of
freedom, i.e., t0.95(N—1).

],[1
N
1S)1N(tX UPDOWN95.0 µµ=+⋅−±

 . (7)

Where, X and S are the sample mean and standard de-
viation of the error distribution (e.g., RE), respectively.
This happens because the t-Student’s distribution quan-
tile that we have to consider is obtained by the formula 1 -
α/2 = 1 - 0.1/2 = 1 - 0.05 = 0.95, where α is the required
confidence level.

Note that, the prediction interval is wider than the con-
fidence interval for the mean of the error population, Exn.
(8).

N
1S)1N(tX 95.0 ⋅−±

 . (8)

In fact, it is narrower than the prediction interval because
the error of the next estimate, X(N+1), is variable, while the
mean is constant [MCQUARRIE98]. Once we get the error
prediction interval, i.e. Eqn. (7), we can calculate the esti-
mate (e.g., the effort) prediction interval as explained
above. If we consider RE as an error measure, we have to
apply Exn. (9).

RE1
O 1N

est
−

+

 . (9)

Because of the sign ± in Eqn. (7), RE in Exn. (9) gets two
values, as well, i.e. RE = {µDOWN, µUP}. Then, the estimate
prediction interval proposed by Jørgensen et al. is
[)1/(O);1/(O UP

1N
estDOWN

1N
est µ−µ− ++]. Considering BRE, we

have to apply Exn. (10) [JØRGENSEN03].

BRE1
O 1N

est
−

+
, if BRE ≤ 0

 (10)

)BRE1(O 1N
est +⋅+ , otherwise.

Where BRE = {µDOWN, µUP} calculated through Eqn. (7)
over DBRE. Exn. (10) provides two values as shown above.
For completeness, we reported the formula for AE as
well, i.e. Exn. (11).

AEO 1N
est ++ . (11)

Exn. (11) provides two values, as well.

For simplicity of notation, we use [µDOWN; µUP] to de-
note an error prediction interval and [1N

DOWN,estO + ; 1N
UP,estO +]

to denote the corresponding estimate prediction interval.
As a summary, the prediction interval technique for
quantifying the uncertainty that we have just presented
[JØRGENSEN03] is based on (1) selecting a relative error
measure that can separate spread and bias, (2) gathering
the estimation errors, (3) calculating a prediction interval
of this error sample, and (4) obtaining the corresponding
estimate prediction interval. This technique can be ap-
plied even if the probability distribution of the errors is
not known and Eqn. (7) cannot be used for calculating the
error prediction interval.

It is important noting that, so far we have considered
two kinds of uncertainty measures. One based on an error
prediction interval [µDOWN; µUP] and the other based on an
estimate prediction interval [1N

DOWN,estO + ; 1N
UP,estO +]. They are

strictly correlated because each can be obtained from the
other. However, the estimate prediction interval, i.e.,
[1N

DOWN,estO + ; 1N
UP,estO +], may be misleading when dealing

with relative error measures such as RE or BRE and it
does not allow figuring out the real improvement that an
estimation model needs. We show this situation through
an easy example.

To this end, assume that the next estimate is 1N
estO + =

45 Person-Months (PM) and the error prediction interval
provided by Eqn. (7) is [µDOWN= - 0.4; µUP = -0.1]. The mag-
nitude of this interval is |-0.4 – (-0.1)| = 0.3 PM. Apply-
ing Exn. (9), we can calculate the effort prediction interval

1N
DOWN,estO + = 45 / (1-(-0.4)) = 45/1.4 = 32.1 PM and 1N

UP,estO +
= 45 / (1-(-0.1)) = 45/1.1 = 40.9 PM. Therefore, the effort
prediction interval is [32.1; 40.9]. The magnitude of this
interval is |40.9 – 32.1| = 8.8 PM. Consider now the error
prediction interval [µDOWN= - 0.1; µUP = 0.2] and the same
estimate as before, i.e. 1N

estO + = 45 PM. The magnitude of
this interval is |-0.1 – 0.2| = 0.3 PM, the same as before.
Applying Exn. (9), we can calculate the effort prediction
interval 1N

DOWN,estO + = 45 / (1-(-0.1)) = 45/1.1 = 40.9 PM
and 1N

UP,estO + = 45 / (1-(0.2)) = 45/0.8 = 56.3 PM. Therefore,
the effort prediction interval is [40.9; 56.3]. The magnitude
of this interval is |56.3 – 40.9| = 15.4 PM. Although the
two error intervals had the same magnitude (i.e., 0.3) and
the estimate was the same, they generated two different
magnitude of estimate prediction intervals (i.e., 8.8 and

12

15.4). For this reason, when focusing on performance of
the EM for improvement purposes, we have to consider
error prediction intervals [µDOWN; µUP]. When focusing on
the prediction activity, we use the estimate (effort) predic-
tion interval [1N

DOWN,estO + ; 1N
UP,estO +].

Fig. 4.Median and Interquartile range as non-parametric measures.

It is important noting that, to apply Eqn. (7), we made
some parametric assumptions on the error distribution,
i.e., we assumed that, it has been sampled from a normal
distribution (with unknown variance), where its bias and
spread are well represented by the sample mean (X) and
sample standard deviation (S), respectively. The para-
metric assumptions support also the idea that mean and
standard deviation are constant with respect to other con-
text variables, i.e. the variation of other context variables
(e.g., size, complexity) do not affect bias and spread of the
error.

Consider now a more realistic situation, where we do
not know the population from which the error sample has
been sampled, e.g., there are few observations and/or the
probability distribution is not Gaussian. This means that,
if parametric assumptions do not hold (i.e., there is a sig-
nificant number of outliers, the distribution is heavily
skewed and/or multimodal), better measures of bias and
spread are the median and the interquartile range (IQR),
respectively (Fig. 4).

Fig. 5. Empirical Distribution Function (IQR).

The median is able to split up observations into two
sets having the same number of elements. The IQR is
based on considering the most probable range where the
next error estimate will fall (Fig. 5) by taking out the out-
liers. The IQR can be derived by the empirical distribu-
tion (Fig. 5). Both the median and the IQR are less sensi-
tive to outliers. In fact, the IQR provides a range corre-

sponding to 50% of the observations (between the first
and third quartile) of the empirical distribution. It would
be a 50% prediction interval of the empirical distribution.
Note that, IQR is used to build the box-and-whisker plot,
which is a non-parametric tool.

Fig. 6. Empirical Distribution Function (90% confidence).

 IQR takes into account only 50% of the frequency,
omitting the frequency in the upper and lower tails (first
and forth quartile), to avoid that the resulting error range
is affected by outliers, which are usually in the end-tails
of the distribution. We take the 50% frequency (IQR)
rather than a wider extent (e.g., 90% or 95%) to avoid out-
liers that can affect the calculation of the error prediction
interval.

Some researches use a 90% or 95% error prediction in-
terval instead of using the IQR [JØRGENSEN03] to calcu-
late a non-parametric prediction interval, when outliers
are not assumed to heavily affect the model. For instance,
to calculate a 90% prediction interval, one can consider
the 5th and 95th percentile of the error empirical distribu-
tion, in the y-axis in Fig. 6, and select the corresponding
error value in the x-axis. A 90% prediction interval is
wider than an IQR prediction interval; hence, is more
likely to include the actual error. But, apart from outliers,
the problem with considering a wider confidence is the
utility of the resulting interval of error. If the error predic-
tion interval is too wide, project managers may not use it
in real estimation tasks. Utility is further explained below
in this section. Choosing IQR, 90% or 95% prediction in-
tervals, depends on the problem that we are dealing with
and the assumptions made. If we know that, there are
many outliers, it is better to consider the IQR. If the dis-
tribution has fewer outliers, a 90% (or 95%) prediction
interval would be better. Since the magnitude of the con-
fidence level (e.g., 50%, 90%, 95%) and risk are in inverse
proportion, i.e., the confidence level grows as the risk
decreases and vice versa, an organization aiming at earn-
ing a contract should decrease the confidence by increas-
ing the risk. Choosing a lower confidence level, the error
prediction interval would get smaller and more useful
(i.e., narrower). The decision to fix this threshold should
be made at the highest management level of the organiza-
tion based on the organization strategy [KITCHEN-
HAM97]. The rate to which an organization earns con-
tracts should be tracked for prospective evaluation
[BASILI92B] and encapsulated into an experience package
in the experience base of the organization [BASILI92B].

 13

3.2.4 Uncertainty measure for a multivariate case
So far, we have dealt with quantifying the uncertainty
and risk for a univariate case through a prediction inter-
val-based approach taking into account the relative errors
between estimates and actual values. Consider now a
multivariate distribution where a variable (y) depends on
other variables (x1, …, xQ). We now deal with risk and
uncertainty when using a linear-in-the-parameter estima-
tion model as explained in Section 3.1 (e.g., polynomial
models). The problem is to find the x-dependent mean of
y and quantify its variance (uncertainty). If the regression
model relies upon regression assumptions (Section 3.1),
the prediction interval is readily available, Exn. (12)
[RAO73], [WEISBERG85].

'x)XX('x1S)1QN(t)'y(1TT
2/1

−
α− +⋅−−± . (12)

Where:
- y’ = fR(x’,b) = b0+ b1x’1+ … + bQx’Q = bx’ is the ex-

pected value (mean) of the dependent variable (y)
when the independent variables get a specific value
x’ = (x’1, …, x’Q)T, i.e., (x1 = x’1 …, xQ = x’Q)

- t1-α/2(N-Q-1) is a two tail t-value (Student’s percentile)
with N-Q-1 degrees of freedom

- X is the observation matrix of independent variables
where the first column is composed of only 1s

- N is the number of observations
- Q is the number of the independent variables

- MSE
1QN
Y)HI(YS =

−−
−

=
T

 is an unbiased

estimator of the standard deviation of the population (σ)
[RAO73], [WEISBERG85]

- Y is the observation vector of the dependent variable
- I is the identity matrix
- H = X(X T X) -1X T Y
 MSE stands for Mean Squared Error.

The insight provided by Exn. (12) is that it calculates a
two tailed (1-α)% confidence prediction interval of y’=
βX’ when the model is fed with the vector x’. The Exn.
(12) calculation is the same as Eqn. (7) for a multi-linear
regression function (i.e., a multivariate sample) under the
regression assumptions reported in Section 3.1. This ex-
pression is quite similar to the prediction interval ap-
proach for a univariate case [JØRGENSEN03]. Both ap-
proaches use the variability of the error to calculate the
estimate prediction interval. In particular, the variance of
y per y = y’ is assumed constant and the same as the vari-
ance of the residuals.

Once we calculate the error prediction interval, we can
calculate the effort prediction interval through Exn. (9),
(10), or (11). Those formulas can also be considered as a
sort of correction used to make the estimates unbiased
[KITCHENHAM97]. For instance, with respect to Exn. (9),
if the error bias was zero (i.e., RE = 0), then Exn. (9) would
be 1N

est
1N

est O)01/(O ++ =− , i.e. the estimate would not
be corrected at all. Similar considerations can be made for
Eqns. (10) and (11).

To calculate a two-tail (1-α)% confidence interval for
the mean there is Exn. (13) [RAO73], [WEISBERG85].

'x)XX('xS)1QN(t)'y(1TT
2/1

−
α− ⋅−−± (13)

where, the symbols have the same meaning as the ones
reported for Exn. (12). Note that, Exn. (13) provides a nar-
rower interval than Exn. (12) because the mean is con-
stant, while the next estimate is variable.

If the error prediction interval is too wide, it may de-
pend not only on the error variance, but also on the effec-
tiveness of the method of calculating the prediction inter-
val. For instance, the Chebyshev’s inequality method and
the non-parametric ones, usually (Section 3.5) lead to
intervals that are too wide, apart from the actual variance
in the data. We need an effective method for estimating
error prediction intervals as narrow as possible.

In Section 3.1, however, we showed that, to improve
the correctness of the model we should use non-linear-in-
the-parameter models because of their arbitrary flexibil-
ity. Therefore, to exploit the improvement coming from
non-linear-in-the-parameter models, we need to calculate
prediction intervals for those models, as well. If paramet-
ric assumptions hold, formulas for calculating prediction
intervals are rightly available. For non-linear models, a
slightly different formula can be applied [HUSMEIER04].
The formula for calculating PIs of MLFFNNs is

))x(g)JJ()x(g1(S)1KN(t)'y(1TT
2/1

−
α− +⋅−−± , where

y’ = fR(x’,b) is the expected value (mean) of the dependent
variable (y) when the independent variables get the next
value x’ = (x’1 … x’Q)T. t1-α/2(N-K-1) is a two tail t-value
(Student’s percentile) with N-K-1 degrees of freedom. N
is the number of observations, K is the number of pa-
rameters (note that K > Q).

MSE
1QN
Y)HI(YS =

−−
−

=
T

 is an unbiased esti-

mator of the standard deviation of the population (σ). Y is
the observation vector of the dependent variable. g(x) is a
vector whose i-th element is the partial derivative
∂fR(x’,b)/∂bi evaluated at its true value. J is a matrix
whose ij-th element is the partial derivative ∂fR(xi,b)/∂bj.
Matrix J can be calculated iteratively through the training
procedure (i.e. Backpropagation) [BISHOP95A]. How-
ever, calculating prediction intervals for MLFFNNs when
regression assumptions do not hold is still an open prob-
lem.

3.2.5 Model evaluation trough uncertainty
To illustrate the utility concept of an error prediction in-
terval, we use an easy example picked from a different
environment than software engineering. The environment
is a package delivery service. Assume that, a truck is moving
from Seattle (WA, USA) to Boston (MA, USA) to deliver
some packages. To know the actual position of the truck,
the receiver, in Boston, uses a locator system, which
automatically provides two points on the planned route
where the truck is moving at a specific time. For instance,

14

the locator system is able to provide [PointA, PointB,
TimeA-B], which means that the truck may be in any point
between PointA and PointB on the planned route at time
TimeA-B. For instance, assume that the locator system pro-
vides [Minneapolis (MN, USA), Albany (NY, USA),
6:30am EST]. Although this piece of information is correct
(i.e., the truck is actually between Minneapolis and Al-
bany), it is useless because the receiver cannot know with
a suitable approximation how far the truck is from the
destination point. Since there are about 1,200 miles be-
tween Minneapolis and Albany and every point in the
interval is equally probable, the information provided
cannot be used for inferring the actual position with a
suitable approximation. This situation is very close to the
prediction interval situation here.

If the methodology for calculating prediction intervals
provides too wide an interval, we may no longer use it as
a reliable reference to quantify the actual limits between
which the actual error will fall. This means that, quantify-
ing risk and uncertainty through an error prediction in-
terval is always possible, but the interval is useful for
prediction only if its magnitude lies within specific
thresholds.

Fig. 7. Acceptability of error prediction intervals.

To explain the acceptability concept, we will use Fig. 7
to identify the spread and bias in relative error measures.
From a mathematical point of view, the acceptability of a
measure is affected by spread and bias in the error predic-
tion interval. This information is very important to figure
out whether and how to improve an estimation model
and quantify its uncertainty. An error prediction interval
is unbiased, if it includes zero ([a] and [b]). It is biased
otherwise ([c] and [d]). A prediction interval is useful if it
is within stated thresholds ([a] and [c]). It is useless oth-
erwise ([b] and [d]). A prediction interval is acceptable if
it is useful and unbiased at the same time ([a]). It is unac-
ceptable otherwise ([b], [c], and [d]). Based on Fig. 7, we
can infer whether the estimation model is prone to over-
estimate or underestimate. For instance, an estimation
model overestimates when its prediction interval broaden
towards negative values of the error (Fig. 7, [b]). If the
prediction interval broadens towards positive values (Fig.
7, [d]), then the estimation model underestimates.

Therefore, an EM yielding an acceptable error predic-

tion interval does not need any improvement. Con-
versely, an unacceptable interval requires some im-
provement. Thus, the meaning of an acceptable error pre-
diction interval is not that, it cannot be improved, but it
means that, based on the organization’s goals and strat-
egy, the improvement is not requested. Note that, we use
the world “useless” not to say that we cannot take advan-
tage of this piece of information for improvement (i.e., the
fact that the error prediction interval is too wide). Actu-
ally, too wide an interval represents an unacceptable
anomaly in the model and it needs to be improved, e.g.,
we are missing some values, variables or some measure-
ment error occurred. This consideration is based upon the
fact that, a model is a limited representation of reality
hence can be always improved. For this reason, first we
have to figure out whether the model yields acceptable
estimates or not. If the model is assumed to provide unac-
ceptable estimates, we may improve it only if we know
the causes of its unacceptability. Fig. 7 can show these
improvement needs. When dealing with biased intervals,
the model is incorrect, e.g., it is missing some important
variables or it is not flexible enough (i.e., not able to fit the
data), and a different model should be used.

3.2.6 Similarity analysis and scope error
To get the estimate prediction interval from the error pre-
diction interval, we apply one of the Eqns (9), (10), or (11)
depending on the error measure that we choose. Apply-
ing Eqns (9), (10), or (11) means correcting, on the aver-
age, the estimate from its bias, i.e., making the estimate
unbiased. In this case, to improve the estimates, we
mainly have to worry about situations [b] and [d] in Fig. 7
(i.e. too wide an error spread). However, if we aim at im-
proving the estimation model itself, e.g., making the error
prediction interval acceptable (unbiased and useful), we
have to deal with every situation in Fig. 7, i.e., shrinking
the error prediction intervals and removing the error bias.

Recognizing bias is quite easy (i.e., checking whether
the error interval includes zero or not), while fixing the
utility is more complicated. The utility (i.e., the threshold
in Fig. 7) is a subjective characteristic that varies from
organization to organization based on the required reli-
ability, characteristics of the market (competition), and
strategies pursued from the organization’s goals. Utility
thresholds should not vary with the size of the estimate
when dealing with relative error measures, i.e., the sever-
ity of an error should be the same for any projects being
estimated when considering relative errors. We will see
that this is not always true. The analysis in Fig. 7 is the
basis of the strategy that we will define in Section 6.1 for
evaluating the risk and improving EMs over time. It is
worth noting that, Fig. 7 is incomplete because it does not
deal with the risky situation described by Kitchenham et
al. [KITCHENHAM97] called scope error. It may happen
when the EM is requested to provide estimates on data
never observed before, i.e. the EM has not been calibrated
on data close to the project data being estimated. This
situation should be considered from project managers as
a severe (risky) one because, if we never dealt with the
similar projects as the ones being estimated, the predic-

 15

tive capabilities of the EM may be unpredictable. To this
end Kitchenham et al. [KITCHENHAM97] propose ap-
plying the portfolio concept (Section 5), where the organi-
zation deals only with specific segments of the market,
e.g., medium size software systems for banking environ-
ment.

From a theoretical point of view, applying the portfolio
concept deals with scope error because the projects being
estimated are similar to the past projects, so the expected
accuracy of the estimation model in estimating the new
projects would be known. However, the portfolio strategy
is based on the assumptions that (1) the organization has
sufficient information to execute the grouping task and
build the portfolio and (2) that there are a sufficient num-
ber of past projects in the portfolio. Modern organizations
may have to deal with projects having different character-
istics from their experience. Our approach allows an or-
ganization to take advantage of every piece of informa-
tion on past projects for prediction and improvement.
Organizations need to group past data into sets of similar
projects. We call this grouping as similarity analysis, i.e.
quantifying the degree of similarity between the project
being estimated and the past data used for calibrating the
considered estimation model. Note that, Jørgensen et al.
[JØRGENSEN03] use the name “similarity analysis” in a
slightly different way. They group the past observations
(i.e., projects) having the same expected degree of estima-
tion uncertainty as “similar” the project being estimated.
Then, they assume to be able to do that. The similarity
that we are referring to is more properly about grouping
observations that are of similar type (i.e., they have
close/same values for the same variables) and conse-
quently getting the expected uncertainty from each
group. We explain this concept through an example
(Table 2).

TABLE 2
SIMILARITY ANALYSIS – PAST OBSERVATIONS (ACT)

In Table 2, there are two project sets having their own
error prediction interval (Error PI). In Table 3, there are
three estimated projects, i.e. they are described by esti-
mated values. We are interested in knowing, for each pro-
ject, the prediction interval where the error will fall. If our
estimates are correct (e.g., estimates for KLOC, Cplx, and
Effort), P1 can be classified as belonging to set A, there-
fore the expected error prediction interval would be the
same as [-0.30; 0.20]. Project P2 has some characteristic
close to set A (i.e., KSLOC = 20) and some characteristic
close to set B (i.e., Cplx = ‘Low’). How much is “close”?
This uncertainty situation on project P2 is workable.

TABLE 3
SIMILARITY ANALYSIS – PROJECT BEING ESTIMATED (EST)

For instance, we can consider an error prediction interval
as the union of the A and B prediction. The union of two
distinct ordered sets is wider than each individual set. As
a result, the estimation uncertainty of the estimate of pro-
ject P2 grows.

Consider project P3. This represents a different situa-
tion from the previous ones. We do not have any charac-
teristic similar to set A and B even though we may argue
that KLOC = 40 is in between KLOCs of set A and B, and
Cplx = “Very High” is closer to “High” than “Low”.
Then, estimating project P3 with the considered EM is
additionally risky. That is, this situation is in addition to
the ones in Fig. 7 and refers to a possible scope error.

Therefore, if we used the EM for estimating P3 we may
have some unpredictable spread error. From a practical
point of view, project managers would have to recognize
whether a scope error could happen or not and conse-
quently evaluate risk and uncertainty for situations simi-
lar to the ones in Fig. 7. To this end, the estimate of project
P3 should be considered as more risky than the estimate
of project P2 even though we may not quantify the error
prediction interval for P3. Note that, the scope error does
not affect the EM parameters. It is about using the EM
improperly. The scope error is a risky situation because
we do not know the error prediction interval for similar
projects even though we may state some rough limits (not
very accurate); therefore, the risky situation arises from
the fact that, we use an EM without knowing its actual
risk. Recognizing the scope error is not so easy when
dealing with a number of variables. As an example, con-
sider the situation where instead of having only one vari-
able as in Table 2 (i.e., Cplx) in addition to Effort and
KSLOC, we had 15 variables, as the COCOMO model,
and for each of them, there were, for instance, five values.
Then, there would be 515 = 30,517,578,125 different sub-
sets to be considered in addition to the ratio scale vari-
ables. Note that, many of those subsets may have the
same uncertainty, so the number of distinct uncertainty
intervals may be much less than 515. However, the huge
number of elements shows that recognizing whether or
not a scope error occurs, project managers need evalua-
tion systems, which are able to provide a similarity meas-
ure automatically; otherwise they will not be able to fig-
ure out the real prediction risk.

3.2.7 Assumption error and risk exposure
So far, we have defined mathematically the risk in apply-
ing an estimation model fR(x,b) given x = x’ as the ex-
pected variability (i.e., prediction interval) of fR(x=x’,b).
Note that, x’ is an estimated input as shown in Fig. 3 (time

16

T). This kind of uncertainty is all about the correctness of
b (i.e., the estimated parameters of β). It is worth noting
that we have another uncertainty source: the correctness
of the assumed inputs fed into the EM. This kind of un-
certainty, called Assumption error [KITCHENHAM97],
comes from wrongly assumed inputs. That is, the as-
sumption error is one that we get when we assume we
know the project characteristics (i.e., the estimation model
inputs), when the actual values are different. The estima-
tion model provides some error, not because of the
model, but the inputs. For this reason, before observing
the actual values of the project being estimated, we can
only get a conditional uncertainty, i.e., if we observed x’
(i.e., the actual inputs were x’), then the error prediction
interval would be [µDOWN; µUP] and, applying Eqns (9),
(10), or (11), the estimation prediction interval would be
[1N

DOWN,estO + ; 1N
UP,estO +]. This kind of conditional uncertainty

is a sort of what-if analysis. What would be the estimate
prediction interval if the input values were x’? Therefore,
similar to the scope error, the assumption error does not
affect the estimation model parameters. It is about the
uncertainty in providing the right values to the estimation
model.

We can now define risk exposure (Re) as a combination
of impact (Im) and probability (Pr), i.e. Re = Im x Pr,
[BOEHM81], where Im is the expected estimate error and
Pr is the probability that Im happens. The impact is the
deviation between the chosen estimate and the expected
endpoints of the estimate prediction interval (horizontal
rectangles no. 1, 2, 3 in Fig. 8).

Fig. 8. Risk exposure brought about by the assumption error.

As an example, assume that there are three possible
input sets (γ’, η’, and ϕ’) where each set is a vector of val-
ues. Then we can choose each of those sets as an input set
of the EM with different probability, e.g. x = γ’ with prob-
ability Pr(γ’) = 45%, x = η’ with probability Pr(η’) = 35%,
and x = ϕ’ with probability Pr(ϕ’) = 20%, where γ’, η’, and
ϕ’ are vectors of estimated input values (Fig. 8). If we are
not able to state the probability for each individual set
(e.g., we do not have enough a priori information), we
have to assign an equal probability to each individual set,
e.g., 1/3 = 0.3333 33.33%.

If we feed the three input sets into fR(x, b), we obtain
estimates)'(Oy 1N

,est' γ= +
γ = fR(γ’, b),)'(Oy 1N

,est' η= +
η = fR(η’,

b), and)'(Oy 1N
,est' ϕ= +

ϕ = fR(ϕ’, b), respectively. For each
input set, we can calculate the error prediction interval
[µDOWN;µUP] and the effort prediction interval
[1N

DOWN,estO + ; 1N
UP,estO +] (i.e., intervals 1, 2, and 3 in Fig. 8).

Assume now that we choose)'(O 1N
,est γ+ as the “ultimate”

estimate for the project because it is the most likely esti-
mated value with the probability of 45%. Based on this
choice (i.e., x’ = γ’), what would be the expected risk (i.e.,
what would be the expected estimate error because of the
chosen value)'(O 1N

,est γ+)? To what extent is the error that
we get when assuming)'(O 1N

,est γ+ as the final estimate of
the project? At first look, for overestimates, the expected
risk (i.e., an impact) would seem)'(O)'(O 1N

DOWN,est
1N

est γ−γ ++
= (A+B) and, for underestimates,)'(O)'(O 1N

estUP
1N
,est γ−γ ++ =

(A’+B’). Actually, this calculation is incorrect because we
did not consider the uncertainty arising from the assump-
tion error.

As Fig. 8 shows, we should take (A+B+C) as the ex-
pected impact (Im) for overestimates and (A’+B’+C’) as
the expected impact for underestimates, i.e. the uncer-
tainty is wider than the one considered initially. As an
example, to calculate the risk exposure (Re), if we chose

)'(O 1N
est γ+ as a project estimate (Fig. 8), then the risk expo-

sure for an underestimate would be, A*0.33 + B*0.27 +
C*0.12 and, for an overestimate, would be A’*0.33 +
B’*0.22 + C’*0.07. Based on the distribution in Fig. 8, we
may apply different strategies for choosing the “ultimate”
estimate of the project. For instance, if we chose the value
corresponding to the median (Fig. 8), we may have a bet-
ter central tendency than)'(O 1N

est γ+ . Or, since an underes-
timate is usually considered more risky than an overesti-
mate [MCCONNELL06], – because the former may lead
to losing money, while the latter may lead to not gaining
money – another strategy for an organization trying to
minimize the risk of losing money (i.e., of underestimate)
may choose the endpoint “Up” as the “ultimate” estimate
of the project (i.e.,)'(O UP

1N
est ϕ+).

3.2.8 Risk mitigation strategy
Generally, the Re is expressed by an ordinal scale [HI-
GUERA96]. This scale can be odd (e.g., “low”, “nominal”,
and “high”) or even (e.g., “very low”, “low”, “high”, and
“very high”). We prefer using an even ordinal scale be-
cause knowing that an estimation model provides a
“nominal” risk exposure is useless and even confusing. In
other words, we prefer to avoid the risk exposure may
concentrating on the median value causing further uncer-
tainty.

Apart from the scope error that we cannot quantify in
terms of the error prediction interval (even though we
may roughly estimate it), the procedure that we propose
for estimating risk and uncertainty when assumption er-
ror occurs is:
1. Calculate the error prediction interval [µDOWN; µUP] for

each input set
2. Calculate the estimate prediction interval

[1N
DOWN,estO + ; 1N

UP,estO +] for each input set
3. State probabilities for each input set or assign equal

 17

probability (if we do not have enough a priori infor-
mation to assign different probabilities)

4. Build the diagram in Fig. 8
5. State a risk minimization policy
6. Based on the stated policy in step (5), choose the “ul-

timate” estimate of the project.
This procedure can be applied independently from the
methodology that we choose for calculating estimate pre-
diction intervals. Therefore, for instance, it can be used
along with the Jørgensen’s prediction interval methodol-
ogy [JØRGENSEN03], Bootstrap methods [ANGELIS00],
Regression methods [JØRGENSEN04A], and the one that
we propose in this work.

3.3 Measurement and improvement paradigms
In this research, we mainly deal with building evaluation
models (e.g., evaluation formulas, algorithms, and crite-
ria) based on the GQM approach [BASILI94A], [LIND-
VALL05] in the context of learning organizations
[BASILI92B]. However, our proposal is general enough
for any evaluation and measurement environment such
as Practical Software Measurement [MCGARRY02] and
Goal-Driven Measurement [PARK96].

GQM is an approach for building, tailoring, and select-
ing models and metrics for addressing specific goals for
any software project in an organization (e.g., stating goals
on software processes, products, and quality properties).
Goals can be defined for any object, for a variety of rea-
sons, with respect to these quality attributes, from various
points of view, relative to any environment. For instance,
a typical GQM template is the study object, the purpose, the
quality focus, the point of view, and the context. Based on
top-down flows and starting from such a goal, we can
generate Questions, which in turn generate Metrics. It is
also possible to have intermediate goals (sub-goals)
[LINDVALL05], which help better understand the meas-
urement problem and control its complexity. Based on
questions such as “Is the performance of the object (e.g., proc-
ess, methodology, estimation model etc.) better?” we build
evaluation models where the current performance can be
effectively compared to the past ones. In order to do so, a
baseline is built (e.g., based on the history and experimen-
tal data).

3.4 Error Taxonomy Summary
As we have already illustrated, parametric estimation
models can be affected by specific errors. In this section,
we only summarize them for better comprehension (Fig.
9).

When applying an estimation model, we have different
kinds of uncertain and risk (see Section 3.4):
(1) Model error affects the correctness of the model pa-

rameters. It can be inherent to (a) missing variables,
(b) redundant variables, (c) unsuitable model com-
plexity, (d) heteroscedasticity, (e) spurious relation-
ships, (f) measurement error, or (g) an iterative cali-
bration procedure. The model parameters thus calcu-
lated would be biased. It expresses our uncertainty
on the model.

(2) Scope error does not affect the correctness of the
model parameters. It has to be supported by auto-
matic software tools that perform a similarity analy-
sis between the project being estimated and the past
projects used for calibrating the estimation model. It
expresses our uncertainty on the unsuitability of us-
ing the model for predicting quantities that are out of
the model scope.

(3) Assumption error does not affect the correctness of the
model parameters. It requires knowing (or being able
to estimate) the probability that the estimation model
inputs are correct. For this kind of error, we can de-
fine a risk exposure, i.e. Re = Im x Pr, where Im is an
interval as shown in Fig. 8 and refers to underesti-
mates and overestimates, separately. It expresses our
uncertainty about the model inputs.

Fig. 9. Error taxonomy.

3.5 Related Work on Prediction Intervals

In the literature, there exist many ways of calculating
an effort prediction interval. Angelis and Stamelios [AN-
GELIS00] calculate prediction intervals of regression
model and resampling (bootstrap) analogy-based models.
Jørgensen et al. [JØRGENSEN03] calculate the prediction
interval through the empirical distribution as explained
above. Moreover, Jørgensen [JØRGENSEN04A] uses a
regression model to predict the most likely estimation
accuracy, directly. There also exist human-based judg-
ment methods [JØRGENSEN03], where the effort predic-
tion interval is derived by error distributions coming
from human judgment. Another approach is provided in
[CHULANI99], where the uncertainty is evaluated by a
Bayesian analysis related to the project schedule. Simi-
larly, to the latter, Fenton [FENTON99] and Pendharkar
et al. [PENDHARKAR05] use Bayesian network for
evaluating the estimation uncertainty. Further informa-
tion on the uncertainty evaluation can be found in
[MYRTVEIT99].

A prediction interval (PI) consists of a minimum, a
maximum value, and a confidence level [BAIN92]. For
instance, we may find the upper and lower limits of an
estimate such that 90% of observations will fall within the
interval (lower and upper bounds). Such an interval can

18

help manage and describe uncertainty [JØRGENSEN03].
In Section 3.2, we have already shown the way to calcu-
late prediction intervals both using t-Student’s percentiles
and the empirical distribution. There is another paramet-
ric approach, which does not assume that the accuracy is
normally distributed. This approach uses the Cheby-
shev’s inequality, which works for any distribution. Che-
byshev’s inequality is based on the following equation:

{ }
2k

11SkXySkXPr −≥⋅+<<⋅− (14)

Where X is the sample mean value, S is the sample stan-
dard deviation, and k is a constant ≥ 0. For instance, if k =
2 standard deviations, then the probability that the actual
value is within interval [X -2S, X +2S] is at least 75%
(= 22/11−) [JØRGENSEN03]. This kind of analysis, some-
times, cannot be performed in real cases because it pro-
vides too large bounds [BAIN92]. Such a technique may
be improved if we could assume that the probability dis-
tribution was symmetric [JØRGENSEN03]. Another
method for parametric and non-parametric distributions
is based on the minimum and maximum limits of the
sample. So, if we have N similar projects, then PI =
[min(sample), max(sample), (n–1)/(n+1)], where the term
“(n –1)/(n+1)” is the confidence level of PI [VARDE-
MAN92].

3.6 Artificial Neural Networks for regression prob-
lems
In this section we refer to feed-forward multi-layer artifi-
cial neural networks with supervised training (e.g., Back-
propagation [RUMELHART86]), optimization techniques
(e.g., Levenberg-Marquardt [HAGAN94], regularization
by weight decay [DREYFUS05], early stopping [DREY-
FUS05]) and feature selection [STOPPIGLIA03], [KO-
HAVI97], [AHA96], [BRIAND92], [KIRSOPP02A],
[JOHN94] (e.g., principal component analysis
[JOLLIFE96], [NEUMANN02], curvilinear component
analysis [RUMELHART86], [BISHOP95A], leave-one-out
[DREYFUS05], and cross-validation [STONE74]). Multi-
layer feed-forward artificial neural networks are also
called (multi-layer) perceptrons.

In this research, we consider perceptrons with only
one hidden layer. This is not a limitation because it is pos-
sible to prove that the capability of such a network is the
same as those with more than one hidden layer [DREY-
FUS05, pp. 13].

For instance, let us consider the following 3-D space
equation (15):

)tanh()tanh(),(876543210 YcXcccYcXccccYXg ++⋅+++⋅+=

(15)
Where, X and Y are the independent variables, {c0 … c8}
is a set of 9 parameters of g(X, Y) and tanh is the hyper-
bolic tangent function. Compare Eqn. (15) with Eqn. (16),
also a 3-D space equation.

25423210),(YcXYcXcYcXccYXg +++++= (16)

Both are mathematical models that can be used to ap-
proximate a generic function g(X, Y) from a number of
available observations. We can use either function to cal-
culate the regression function [BISHOP95A, pp.201-203]
and based on the available observations, we would esti-
mate parameter values that minimize the cost function.

Equation (15) is a multi-layer feed-forward artificial
neural network perceptron (Fig. 10) and Eqn. (16) is a
polynomial function. Note that, Eqn. (16) can be trans-
formed into a linear function, Exn. (17).

55443322110 XcXcXcXcXcc +++++ (17)

When X = X1, Y = X2, X2 = X3, X*Y=X4, and Y2 = X5. Both

Eqn. (15) and Eqn. (16) can be used as model regression
functions. Let us consider their similarities and differ-
ences more closely.

Fig. 10. Graphical representation of Eqn. (15), a multi-layer feed-
forward artificial neural network with two input units, one hidden layer
of sigmoid functions (tanh), and a bias unit. The output is calculated
by multiplying the input units by the corresponding weights (parame-
ters). Note that, the bias term is equivalent to an intercept in a tradi-
tional regression model [BISHOP95A].

The first similarity between (15) and (16) is that they
are the summation of several functions. In particular, Eqn.
(15) sums 3 functions and Eqn. (16) sums 6 functions. But,
they use different kinds of functions; the functions in Eqn.
(15) are not linear with respect to their parameters, while
Eqn. (16) is composed of functions that are linear with
respect to their parameters [DREYFUS05, pp. 13]. The
Eqn. (16) sums functions that have a fixed shape, while
Eqn. (15) combines functions that have shapes adjustable
through a number of parameters (e.g., c2, c3, c4). This
characteristic, for Eqn. (15), allows us to get more degrees
of freedom using a smaller number of functions rather
than a smaller number of parameters. It has been proven
that, if the model is non-linear with respect to its parame-
ters, it is more parsimonious [BARRON93, cap. 1], [DREY-
FUS95, pp. 13-14]. This means that, in order to approxi-
mate a function, if we use a model that is nonlinear with
respect its parameters, we need a smaller number of
measurements to get the same accuracy or we can get
better results using the same number of measurements.

Moreover, it can be shown that the number of required
parameters to perform an approximation with a given
accuracy varies exponentially with the number of vari-
ables for models that are linear with respect to their pa-
rameters, while it increases linearly for models, which are

 19

nonlinear with respect to their parameters [BARRON93,
cap. 1], [DREYFUS05, pp. 13-14]. These two properties of
parsimony explain why nonlinear-to-their-parameter
models should be preferred to linear-to-their-parameter
models, if we need to get better accuracy. Instances of
linear-to-their-parameter models are all kinds of Polyno-
mial Functions, Radial Basis Function with fixed centers
and widths, and Wavelet Networks, while nonlinear-to-
the-parameter models are multi-layer feed-forward per-
ceptrons and radial basis functions with no fixed centers
and widths [DREYFUS05].

Parsimony apart, the main difference is that a regres-
sion function calculated by neural networks is actually a
regression function conditioned to the observed sample.
Operatively, this means that we can perform accurate
predictions within intervals where observations are avail-
able. If observations are not available, generalization ca-
pabilities decrease. Conversely, artificial neural networks
do not need to make assumptions on model linearity (or
log-linearity) and deterministic input variables as ex-
plained in Sections 3.1 and 3.2. As a result, neural net-
works provide better results than linear methods where
sampled data is available (cited parsimony). Therefore,
neural networks are particularly useful in dealing with
problems when we do not know a priori the relationship
between Inputs and the Output.

Another difference is the way they calculate parame-
ters. For models that are linear with respect their parame-
ters (e.g., polynomial functions), the ordinary least
squares methods can be used, even though the resulting
models are not parsimonious [DREYFUS05, p. 30]. For
models that are nonlinear with respect their parameters
(e.g., multi-layer artificial neural networks) there is no
closed solution and an iterative method has to be applied
(Section 3.1). The most used technique is Backpropagation
[RUMELHART86]. It is an iterative method based on cal-
culating gradients. The gradient of the cost function is
calculated for each step and is used to update the parame-
ters found in the previous step. The algorithm stops when
satisfactory conditions have been met [BISHOP95A].

Consider Eqn. (16). If we need to increase the fit to the
observations, we normally increase the number of poly-
nomial terms (its degree). The corresponding increase for
Eqn. (15) is to add hidden units (e.g., 3, 4, or more). In
both cases, we are increasing the complexity of the model,
but in non-linear-in-the-parameter models, we keep con-
stant the number of adding functions (parsimony).

For further explanations about Backpropagation and
optimization, see the books and papers of Bishop
[BISHOP95A], Dreyfus et al. [DREYFUS05], and Guyon et
al. [GUYON05]. The latter also describes coding issues
with common programming languages. The literature
reports on many applications of neural networks used for
predicting software cost [KHOSHGOFTAAR97], [SRINI-
VASAN95], [WITTIG94], [FINNIE97], [SAMSON97],
[MAIR00], [MYRTVEIT04], [JØRGENSEN95].

3.7 Bayesian classification through neural networks
Neural networks can use the Bayesian theorem for classi-
fication problems.

Fig. 11. Neural network for discrimination problems. The network has
just one input variable (feature) along with a bias variable.

This problem is slightly different from the regression
problem. A Neural network for discrimination problems
looks like the one shown in Fig. 11. In particular, the net-
work has just one input variable and one bias unit. The
output is a real number in [0;1]. We can use the logistic
function to get such a [0;1] interval [RUMELHART86].
The number of hidden units represents the complexity of
the network (Section 3.6). Consider the following analogy.
Based upon prior experimental evidence, we hypothesize
that healthy people (e.g., those with lower disease inci-
dence) keep the ratio between their weight and height
within a specific threshold (unknown). The classification
problem is to figure out whether people never treated
before belong to the healthy people’s class or not (e.g.
they will develop some diseases or risk developing some
diseases). Let the X-axis in Fig. 12 represent the ratio be-
tween weight and height, i.e., Xi = Weighti/Heighti
(where Xi represents i-th person). Class A is represented
by 1 and class B by 0, i.e. Pr(y=1|X) = Pr(A|X) = 1 –
Pr(y=0|X), where y is the classification function in Fig. 12.
Triangles in Fig. 12 are some observations of X for non-
healthy people, and circles are some observations of X for
non-healthy people.

The problem is then classifying whether new observa-
tions belong to class A or class B. Star and cross points
represent two new observations in Fig. 12. In order to
deal with this classification problem, we use the neural
network in Fig. 11, where the input variable takes values
from the X-axis and the output represents the decision
made (e.g., i-th person belongs to class A). For instance, if
the output is within [0.5;1], we classify the person as be-
longing to class A. If the output is within [0;0.5[, we clas-
sify the person as not belonging to class A (i.e. belongs to
class B).

Fig. 12. A Discrimination problem. The X-axis represents the ratio of

20

a person’s weight and height. The output refers to the network in Fig.
11.

Note that, this problem is a two-class discrimination
problem since if i-th person does not belong to class A, we
can infer that he/she belongs to class B. We ask our neu-
ral network to separate class A from class B and provide a
reasonable classification (similarity analysis). Note that,
the neural network classifies new items based on previ-
ous observations. This problem is simple as it deals with
only one input variable and does not require the use of an
artificial neural network. The classification problem is
about performing a similarity analysis between the peo-
ple’s characteristics never observed before and the ones
that we observed for building the network. This analysis
has to take into account the sampling data as well.

The classification paradigm that we use is the Bayesian
approach since it is able to combine both aspects (a priori
belief and sampling data information). The Bayesian ap-
proach is quite different from the classical one (frequen-
tist). The former considers both “a priori” belief (what we
believe about the object, healthy/non-healthy) and the
sampling data information, while the latter is exclusively
based on the sampling data information.

Going back to the proposed example, if there are sec-
ondary factors that affect the classification decision, such
as gender, age, diet, and whether they are a smoker, the
problem becomes more complex because five features
(input variables) affect the result simultaneously. Mathe-
matically, the classification problem shown above is
equivalent to considering a random variable Γ, which is a
function of a vector of features X (input variables). Such a
random variable is equal to 1 when the input (called pat-
tern) belongs to A and 0 when the input belongs to B
[DREYFUS05]. The literature reports many applications of
neural networks used for discrimination problems and
risk assessment in software engineering such as the one
that we have reported above [KHOSHGOFTAAR95],
[LANUBILE97], [BINGUS96], [KARUNANITHI92],
[KHOSHGOFTAAR94].

The most meaningful question is then “what does this
index (network’s output) represent?” We show the proof
of the following result [DREYFUS05], [BISHOP95A]: the
regression function of the random variable Γ is the poste-
rior probability of class A.

The regression function y (x) of variable Γ is the ex-
pected value of Γ given x, therefore y(x) = E(Γ| x). More-
over,

E(Γ| x) = Pr(Γ =1| x) × 1 + Pr(Γ = 0) × 0 = Pr(Γ =1| x)
(18)

which proves the result [DREYFUS05]. In Section 3.6 we
showed that, based on Backpropagation algorithm, neural
networks could estimate non-linear regression functions
from observed samples. Then, if we apply such an algo-
rithm to our network for classification, we can estimate
the regression function of Γ and consequently get poste-
rior probabilities. This is a very important result because
the interpretation of the mathematical result is that, we
can use neural networks to estimate the probability that,

given a new input, it belongs to class A (probability of A
given x).

When applying linear and non-linear models to classi-
fication problems (e.g. logistic regression), we may be
interested in evaluating prediction intervals as well. For-
mulas to evaluate prediction intervals can be derived
from the same asymptotic theory shown in Section 3.2
[HUSMEIER04], [HWANG97].

However, it is important noting that, in classification
problems where there is a binary decision to make (0 or
1), instead of minimizing a sum-of-squares function, we
can consider a cross-entropy error function, which is
more appropriate for classification. It happens because
the cross-entropy error function is based on a Binomial
error distribution, which is more suitable for classification
than a Gaussian distribution on which a sum-of-squares
error function is based [BISHOP95A].

3.8 Bayes’ Theorem
The posterior probability is the one that Bayes’ theorem
defines. In particular, Eqn. (19) is the formula of such a
theorem.

B)Pr(B)|(xpA)Pr(A)|(xp
A)Pr(A)|(xp

x)|Pr(A
XX

X
+

=
 (19)

where Pr(A|x) is the posterior probability that an ob-
served x belongs to A, i.e., given a particular project, the
probability that it belongs to A; Pr(A) represents the prior
probability of class A, i.e. the percent of prior observa-
tions that belong to A; pX(x|A) represents the prior prob-
ability that any x belongs to A knowing A, i.e., the likeli-
hood that when we observe any project (x), it belongs to
A. Similar definitions hold for B. Note that Pr(B|x) = 1 –
Pr(A|x) hence we can directly get the complementary
probability. Calculating Pr(A|x) or Pr(B|x) depends on
the problem that we are dealing with. Our focus is on
“unwanted events” (risk and uncertainty) since we calcu-
late Pr(A|x), where, concerning the example considered
above, A represents the non-healthy people’s class.

Based on the Bayesian theorem and Eqn. (18), the dot-
ted sigmoidal line in Fig. 12 is actually a posterior prob-
ability density that any point expressed by X belongs to
class A (y=1).

Theoretically, Bayes’ theorem is a very important re-
sult, but it is difficult to apply in real cases [AITKEN95,
pp 36-41]. The problem is that, we could, somehow, esti-
mate P(A) and P(B) (e.g., based on prior information), but
we could not estimate pX(x|A) and pX(x|B), we need to
know such conditional probabilities for applying the
Bayesian theorem.

Based on Eqn. (18) and (19), these considerations ex-
plain the reason why neural networks are so important
for Bayesian classification. Neural networks (or any bi-
nomial model such as a logistic regression model) are able
to estimate empirically the posterior probability even if
we do not know conditional probabilities pX(x|A) and
pX(x|B). So, mathematically, we can use a neural network
to estimate the conditional probability density; that is,
given the features of a new item, we can know it belongs

 21

to class A without knowing the inverse conditional prob-
abilities pX(x|A) and pX(x|B). Therefore, we can use
multi-layer feed-forward neural networks for estimating
posterior probability density functions and using them
for discrimination.

Let us go back to the classification example above and
consider the following questions: “what is the probability
that i-th person is non-healthy, given features Xi? In other
words, what is the risk that i-th person is non-healthy
knowing his/her features? If we consider “non-healthy”
as an event, what is the probability of the (unwanted)
event “non-healthy” given i-th person’s features?

Based on the posterior probability density function in
Fig. 12, we can deal with the inverse problem. The ques-
tion to answer would be what is the X range that corre-
sponds to a 95% of posterior probability? In other words,
we aim at using neural networks for empirically (i.e.
based on observations) building posterior probability
density functions and exploiting them to infer informa-
tion about the population. Mathematically we have

PrΘ|X = x(L<Θ<U) = 1 – α . (20)

Where PrΘ|X = x expresses the probability of Θ conditioned
to the observed values of X = x, L is the lower bound, and
U is the upper bound of the credible interval, where a
credible interval is the homologous of the confidence in-
terval for the Bayesian approach. Θ is the unknown pa-
rameter of the population, 1 – α is the confidence that the
real value of the parameter Θ will fall between L and U.
From a practical point of view, to get a 95% (credible)
interval empirically (Fig. 12), we can fix a posterior prob-
ability of 0.05 and 0.95 on the vertical axis (ANN output)
and select the corresponding values (i.e. L and U) on the
X-axis.

As we have explained in Section 3.1, the Bayesian ap-
proach considers the uncertainty caused by the model
parameter calculations. MacKey [MACKEY91] estimated
the uncertainty by integrating it over many models built
by simulation techniques. The problem with the
MacKey’s approach is the difficulty of calculating the in-
tegral of each piece of uncertainty. Because of the ap-
proximation in evaluating it and the normality assump-
tions on the models, we believe that the MacKey’s ap-
proach is not appropriate for software engineering practi-
tioners. Later in the paper, we will present an empirical
procedure without making any specific assumptions. We
will simplify the calculation of the endpoints L and U by
applying an empirical approach like Jørgensen’s empiri-
cal approach for calculating prediction intervals [JØR-
GENSEN03] and avoiding as many assumptions as possi-
ble.

4 THE PROBLEM
The aim of this paper is to define a way to improve para-
metric estimation models with respect to their prediction
and uncertainty (inference). The main problem of concern
in this work is that, if we continue to violate assumptions
on which the model is based, pretending that everything

is fine, we will have neither accurate estimates nor suit-
able model improvements. Therefore, we argue that to
improve our modeling capability we have to recognize
violations and deal with their consequences (e.g. making
corrections to the bias and spread of the model). First, we
have to evaluate the uncertainty. Once we know the ex-
pected error (spread), we can decide what we should do
to improve our modeling capability.

We have seen that for improving the prediction capa-
bility of linear models, we can use non-linear models be-
cause of their parsimony and indefinite flexibility over
linear models [DREYFUS05, Chapter 1]. Further, we have
seen that, for improving inference (e.g., estimating PIs) of
both linear and non-linear models, when regression as-
sumptions are violated, there are a number of actions we
can take (Section 3.1, Table 1). Since we aim at improving
estimation and inference at the same time, we focus on
non-linear models (i.e., multi-layer feed-forward neural
networks).

Fig. 13. Errors are x correlated, with increasing variance, biased, and
with outliers. The solid line is the expected relative error (x-
dependent median) and the region bounded by dashed lines is the
associated 95% error prediction interval.

Therefore, the mathematical problem we deal with is
to estimate PIs of linear (polynomials) and non-linear
(MLFFNN) models when regression assumptions are vio-
lated (Section 3.1). Although we illustrate the problem in
two-dimensional space, the considerations made below
can be applied, without loss of generality, to an N-
dimensional space, where the error variance depends on
the independent variables of the model, i.e. x = x1, …, xQ.

Even though we can apply improvements to a linear
and non-linear estimation model when regression as-
sumptions are violated, as shown in Table 1, we may
have a situation like the one in Fig. 13. We use a relative
(i.e. weighted) measure of the error (Section 3.2), i.e. RE =
e/Actual = (Actual − Estimated)/ Actual, instead of the
residuals (i.e., e) to avoid the error increasing as x values
grow. RE is well known and applied in software cost es-
timation though other error measures can be used (e.g.
BRE) as explained in Section 3.2. The error in calculating
PIs by formulas based on t-Student’s or z percentiles is
that, in software engineering we can almost never assume
that the error distribution is a Gaussian with fixed pa-
rameters (0, σ2I). Consequently, we may have type I or II
errors.

As an example, assuming the situation in Fig. 13,
where for x = 0.8 KSLOC the variance of the RE is ex-
pected to be greater than the average variance of the
sample (σ2). Therefore, if we estimated the spread by the

22

average variance we would underestimate the real uncer-
tainty. In Fig. 13, when x = 0.8, the expected bias is not
zero. It should be calculated by the non-linear regression
function in Fig. 13 (solid line).

Therefore, the improvement problem that we deal with
is the evaluation of the uncertainty of the estimation
model assuming violations have occurred, and identify-
ing suitable improvements to the modeling capability.

5 LITERATURE REVIEW
There has been work in estimating uncertainty, compar-
ing estimation models, using measurement to improve
and artificial neural networks related to our work and we
discuss them here.

5.1. Uncertainty
Estimation uncertainty has received little attention in the
literature [SHEPPERD07A]. It has been dealt with in two
different ways: focusing on risk as an unwanted event
and on variability when calculating the estimate. Pend-
harkar criticizes traditional effort estimation techniques
“for not providing appropriate causal relationships for
predicting software development effort” [PEND-
HARKAR05], Fenton argues that traditional models do
not “provide support for risk assessment and reduction,
inability to combine empirical evidence and expert judg-
ment, inability to handle incomplete information” [FEN-
TON00]. Fenton proposes a Bayesian network approach
in order to encapsulate casual influences on the depend-
ent variable (e.g., what we are estimating) [FENTON99],
[FENTON00]. There exist some studies applying this type
of approach, e.g. Moses et al. [MOSES00] propose a
Bayesian network for improving estimations in small
software companies. Chulani and Boehm [CHULANI99]
use the Bayesian theorem to combine prior expert judg-
ment and historical data. Pendharkar et al. [PEND-
HARKAR05] perform a comparison among non-
parametric methodologies such as Bayesian networks,
neural networks, and regression tree models.

On the other hand, there exist approaches dealing with
the problem in a slightly different way. For instance, Jør-
gensen [JØRGENSEN03], [JØRGENSEN04A], [JØRGEN-
SEN04B] manages uncertainty considering Prediction
Intervals (see Section 3.5). He describes models whose
purpose is to explain the accuracy and bias variation of
estimates (human-centric) through a regression analysis.
Kitchenham and Linkman [KITCHEHNAM97] adopt an
organizational perspective based on the portfolio concept.

Känsälä [KÄNSÄLÄ97] defines a tool for risk man-
agement and applies it to software cost estimation. Re-
cently, Ohsugi et al. [OHSUGI07] have tested empirically
the hypothesis that “using more analogues produces a
more reliable cost estimate”. This analogy-based ap-
proach provides meaning to support decision making in
project management because knowing the estimation reli-
ability (uncertainty or risk) increase the confidence in
make decision about project scheduling and budgeting.

To deal with uncertainty, our approach tries to take
advantage of both of these methodologies (Bayesian

analysis and Prediction Intervals).

5.2. Comparison of estimation models
The state of the art, in this specific field, is mainly oc-

cupied by software cost evaluation models. The research
activity is huge. Shepperd [SHEPPERD07A] and Jørgen-
sen and Shepperd [JØRGENSEN07] analyzed such a pro-
duction by systematic review [KITCHENHAM04] from
320 journal and 333 conference articles since 1990. Other
researches are by Stensrud et al. [STENSRUD02], Foss et
al. [FOSS03], and Myrtveit et al. [Myrtveit05]. The focus,
here, is on model comparison in order to find which is
best. They substantially agree on the statement that
MMRE is not always a good indicator for model compari-
son. Realistic improvements, in this field, should be based
on such statement.

Actually, we could choose universally recognized
measures for model comparison (e.g., Mean Square Error,
Root Mean Square Error, and χ2 test [BUSEMEYER00]).
We also could adopt the Kitchenham et al.’s proposal
[KITCHENHAM01] that considers the distribution z =
estimate/actual. In such a research, authors argue that
MMRE and PRED(N) are, respectively, measures of the
spread and the kurtosis of z, therefore they cannot be
used for model comparison. They suggest using boxplots
of the z values or the residuals, which give better assess-
ment of prediction quality than summary statistics. Al-
though slightly related to accuracy indicators, further
work can be found in Briand et al.’s work [BRIAND99],
[BRIAND00]. They apply MMRE, MdMRE (the Median
Magnitude of Relative Error) and PRED(25) with cross-
validation [STONE74] to many different estimation tech-
niques (e.g., ordinary least squares regression, stepwise
ANOVA, CART, and analogies [MYRTVEIT05]). They
find that, the performances of the modeling techniques
are not significantly different (with the exception of the
analogy-based models, which seem to be less accurate)
[BRIAND99].

5.3 Measurement approaches
Basically, there exist few approaches for measurement
that software organizations really use [Wohlin00]. They
are Goal-Question-Metric (GQM) [BASILI84],
[BASILI94A], [BASILI95], [CANTONE00], [GENERO05],
[LINDVALL05], [SOLINGEN99] Goal-Driven Measure-
ment [PARK96], and Practical Software Measurement
[MCGARRY02]. Indeed, the latter partially deals with
improvement issues, while the second one builds on the
same rationale of the former, but adopts a different proc-
ess to figure out what measuring. For these reasons, we
are mainly focusing on GQM approach, Quality Im-
provement Paradigm (QIP), and Experience Factory (EF)
[BASILI92B]. Another more general approach that is
worth to quote is the Balanced Scorecard Method [KAP-
LAN92], [KAPLAN96A], and [KAPLAN96B]. This tech-
nique relies on some key concepts of previous manage-
ment ideas such as Total Quality Management [FEI-
GENBAUM56], including customer-defined quality, con-
tinuous improvement, employee empowerment, and
measurement-based management and feedback. Based on

 23

metrics and indicators, balanced scorecard analyzes per-
formances of the organization for improvement over
time. This is not specific for software organizations, but it
may be also used in that context [BROCK03].

5.4 Artificial neural networks
In addressing the third topic, it is important to note that
Artificial Neural Network (ANN) research is mainly
based on findings concerning mathematical modeling
techniques. The research activity is huge in this field, as
well. Interested readers can find main valuable contribu-
tions in [BISHOP95A] (e.g., pattern recognition), in
[DREYFUS05] (e.g., non-linear multi-regression analysis),
and in [GUYON05] (e.g., implementation techniques).

Machine Learning (ML) techniques such as cited artifi-
cial neural networks, rule induction, genetic algorithms
and case-based reasoning have been applied in a wide
variety of research fields such as image processing, pat-
tern recognition and classification, econometrics, and bi-
ology. In this paper, we deal with ANN applied to Soft-
ware Engineering problems. ANN has substantially been
used in two different ways in this field. For pattern classi-
fication (e.g., testing, fault proneness, software risk as-
sessment) [KHOSHGOFTAAR95], [LANUBILE97], [BIN-
GUS96], [KARUNANITHI92], and [SARCIA07], where
the output is a real number falling within interval [0; 1].
For non-linear regression (e.g., software cost estimation)
[KHOSHGOFTAAR97], [SRINIVASAN95], [SHP11],
[WITTIG94], [SAMSON97], and [SRINIVASAN95], fault
prediction [KHOSHGOFTAAR94] where the output can
be any real number. Some comparative researches [JØR-
GENSEN95], [BRIAND99], [BRIAND99], and [SHEP-
PERD97B] show opposite results with respect to perform-
ances. Sometimes, researchers, mainly coming from statis-
tical environment, found out worse results [MYRT-
VEIT04], [KITCHENHAM01] than ordinary techniques
(e.g., log-linear regression [GULEZIAN91], [JEFFERY90],
[MEZIES05]).

Current ANN research focuses on improving model
assessment and feature selection techniques, [AHA96],
[BRIAND92], [KIRSOPP02A], [JOHN94], which are sup-
posed to provide improvements to ML performances
(e.g., v-fold cross-validation [STONE74], feature subset
selection [KOHAVI97], [CHEN05], principal [JOLLIFE86],
[NEUMANN02] and curvilinear component analysis
[RUMELHART86], [BISHOP95A], leave-one-out [DREY-
FUS05], virtual leave-one-out [STOPPOGLIA03]).

6 THE SOLUTION
Before defining the complete framework for improving
models in the software engineering field, we present the
mathematical solution to the problem presented in Sec-
tion 4.

6.1 The mathematical solution
The approach that we propose is an alternative to the
non-parametric bootstrap method [EFRON93] and the
Bayesian approach [MACKEY91]. It is an extension of the
Jørgensen’s approach for calculating empirical PIs for

both regression-based models [JØRGENSEN04A] and
human judgment [JØRGENSEN03]. Although the pro-
posed methodology may be bootstrapped or included in a
Markov Chain Monte Carlo simulation framework, we
consider neither resampling procedures nor simulation
approaches because their computational cost does not
agree with our goal of proposing a practical approach
that can be used in real situations with an affordable cost.

The proposed strategy of estimating PIs is based on
removing as many regression assumptions as possible
and considering the error sample in Fig. 13 (i.e. relative
error, RE). Since we do not assume that the distribution is
a Gaussian and the sample is homoscedastic, we consider
the distribution asymmetric, affected by outliers, and
with variable spread. Moreover, we assume RE to be x-
correlated.

The solution is composed of six steps. (1) We calculate
the non-linear robust regression function of y (= RE) with
respect to x (= KSLOC), i.e. solid line in Fig. 13. Such a
kind of regression function provides an x-dependent me-
dian, minimizing the Minkowski R-distance (R = 1). It is
called robust regression because it is less sensitive to out-
liers and asymmetric distributions.

(2) To deal with the heteroscedasticity issue, we esti-
mate the x-dependent variance empirically. The strategy
is based on turning the problem into a two-class discrimi-
nation problem. In particular, we use the x-dependent
median calculated above for splitting the sample into two
classes (Fig. 13); class A (upper) and class B (lower). We
use observed elements of classes A and B as representa-
tives of the unobserved data points of each class.

(3) Then, we train a Multi-layer Feed-Forward Neural
Network for Discrimination (MLFFNND) so that its out-
put provides a classification decision, i.e. a new data
point is classified as belonging to A or B according to its
similarity to the data used for training. Therefore, our “a
priori” information (i.e. “our belief” as explained in Sec-
tion 3.7) tells us how far a point is above or below the x-
dependent median (binomial choice). Note that, in the
example of Section 3.7, we assumed that our “a priori”
information concerned people‘s healthiness, while here
our belief is whether an unobserved point is above or be-
low the x-dependent median.

Fig. 14. Posterior probability density obtained by fixing KSLOC and
letting RE vary. Dotted and dashed lines represent posterior prob-

24

ability functions with an increasing variance.

We call this MLFFNND a Bayesian Discrimination
Function (BDF) because its output can be interpreted as
the posterior probability that any input belongs to class A
[BISHOP95A], [DREYFUS05] (Section 3.7). As shown ear-
lier, any input is classified as belonging to class A, if the
BDF output is between [0.5, 1], e.g. 0.85. It is classified as
belonging to class B otherwise, i.e. the BDF output is in
[0,0.5[, e.g. 0.25, where [.,.] is a closed interval and [.,.[is a
right-open interval.

Actually, we are not interested in classifying our new
observations as shown in Section 3.7. Our aim is to use
the BDF for inference (the inverse problem). Making in-
ference by the BDF in Fig. 14 means selecting the interval
(MeDOWN, MeUP) on the x-axis corresponding to the two
fixed confidence limits (e.g. [0.025, 0.975]). Note that, the
BDF performs a similarity analysis between the character-
istics of the project being estimated and the observed pro-
jects upon which we built the BDF. Therefore, we use the
BDF capabilities to deal with the scope error presented in
Section 3.2.

The defined BDF in Fig. 14 is expressed by the follow-
ing relationship, fBDF(x1 = RE, x2=KSLOC) = [0,1], i.e. y =
fBDF(x1, x2) = Pr(y=1|x1, x2), where [0, 1] points out any
real number in [0,1] (e.g. the posterior probability), x1 and
x2 represent the sample information, and y=1 represents
class A (y=0 represents class B). Assume that, the BDF
yields fBDF(P1) = 0.85 and fBDF(P2) = 0.25. Then, project P1 is
classified as belonging to class A, because fBDF(P1) ≥ 0.5
and project P2 is classified as belonging to class B because
fBDF(P2) < 0.5.

Assume now that instead of fixing both values x1 = RE
and x2=KSLOC, we fix only x2 (= constant c), and let x1
vary. Then, BDF turns into)x(y)x(f)x|1y(Pr 11cx|2x 21

=== = .
Note that, in case of an N-dimensional space (with N > 1),
we fix all variables except x1 (the relative error RE), i.e.

)x(y)x(f)x..x|1y(Pr 11cx,...,cx|N2x 1NN121
===

−== where the vari-
ables (x2 … xN) are the same as the independent variables
of the estimation model.

(4) Once we build the posterior probability density
(solid line in Fig. 14), we can obtain a Bayesian PI by fix-
ing a 95% confidence level, i.e. (0.025, 0.975), and picking
the corresponding values of RE on the x-axis, i.e. (Me-
DOWN, MeUP). This interval represents the expected range
where the next RE will fall. The posterior probability den-
sity in Fig. 14 has an important characteristic. Its slope
gets steeper as the variance decreases; it gets flatter as the
variance increases [HUSMEIER04]. Therefore, the increas-
ing variance in Fig. 13 has a geometric representation in
the model of Fig. 14. The increasing variance in Fig. 13
corresponds to a flatter slope of the sigmoid curves in Fig.
14, e.g. variance corresponding to the dotted line is lower
than the variance corresponding to the dashed line.
Therefore, the proposed strategy based on the BDF is able
to evaluate the variance (calculating the RE range) from
the slope of the posterior probability density function
empirically. This approach is quite different from estimat-
ing the variance by resampling procedures such as the

bootstrap. See [HUSMEIER04, pp 20-24] for additional
explanations.

(5) To calculate the estimation PI (e.g. the effort) for the
RE range, i.e. (MeDOWN, MeUP), we first consider the for-
mula RE = (Actual − Estimated)/Actual and then, we de-
duce Actual = Estimated/(1 − RE). In Section 3.2 we used
different symbols to indicate prediction intervals (i.e.
[µDOWN, µUP]). That is because, previously we used the
mean (µ), while we use the median (Me) now.

As shown by Jørgensen et al. [JØRGENSEN03], the PI
is)]Me1/(O),Me1/(O[UP

1N
estDOWN

1N
est −− ++ , where

)b,'x(fO R
1N

est =+ , e.g. fR(x’ = 0.7,b), see Section 3.2. For
instance, assuming that the RE interval obtained from Fig.
14 is [-0.9, 0.1] and Estimated effort = 3 person months,
the PI is [3/(1-(-0.9)), 3/(1-0.1)] =[1.6, 3.4] person months.

Although the proposed prediction interval shown in
Fig. 14, i.e. (MeDOWN, MeUP), has been derived empirically
without making any specific assumptions, it actually
represents an underestimate of the actual uncertainty.
That is because the BDF was derived from the principle of
maximum likelihood estimate (MLE) that considers only
the most probable parameter set. We should consider the
uncertainty over the unknown parameters of the BDF, as
well. To correct this underestimation, MacKey proposes
to apply the Bayesian framework to classification prob-
lems. As we have already explained above, in our view
his approach is too computationally cumbersome and
based on too many approximations and assumptions (e.g.
normality). Another approach to correct the underestima-
tion can be to apply Markov Chain Monte Carlo (MCMC)
simulation, which avoids the Gaussian approximations
[GILKS96], but is also computationally expensive and its
reliability depends on the simulation assumptions.

(6) To avoid the problem of a too high computational
cost without any promise of getting better results, we pre-
fer estimating this additional uncertainty through the
generalization error provided by cross-validation (leave-
one-out or K-fold). This procedure is more convenient
because the cross-validation procedure has to be per-
formed anyway when selecting the classification model
and it has a comparable computational cost with respect
to the bootstrap or MCMC procedures. Therefore, the
proposed procedure would be more convenient from a
practical point of view avoiding any specific assumptions.

Fig. 15. Posterior probability density (solid line) obtained by fixing
KSLOC and letting RE vary with supplementary uncertainty due to

 25

the error in calculating the model parameters.

Since the (standardized) leave-one-out cross-validation
score (CVS) is calculated by the SQRT(MSE), which is an
unbiased estimator of the generalization error of the BDF
[VAPNIK95], we use this quantity as a correction factor.
Instead of using LOOCV, we may apply K-fold CV, as
well. However, its score would not be an unbiased esti-
mator of the generalization error even though it would be
more realistic than the score obtained by leaving out only
one data point [DREYFUS05]. We sum and subtract CVS
to the posterior probability density function (solid line in
Fig. 14), obtaining the further two dashed lines in Fig. 15.
In particular, the upper dashed line is

)MSE(SQRT)x(f 1cx| 2
+= and the lower dashed line is

)MSE(SQRT)x(f 1cx| 2
−= . The band included within the two

dashed lines represents the overall (standardized) uncer-
tainty due to the variation in the BDF parameters. The
upper and lower shifts determine an increase to the mag-
nitude of the prediction interval (MeDOWN, MeUP) due to
the supplementary uncertainty.

The final prediction interval can be derived by fixing
the 95% confidence as above, i.e. (0.025, 0.975), and select-
ing the corresponding values of RE on the x-axis. In par-
ticular, MeDOWN is calculated by the crossing point be-
tween the 0.025-horizontal line and the upper dashed
line. The MeUP is calculated by the crossing point between
the 0.975-horizontal line and the lower dashed line.

The procedure presented here can be applied at times
T and T+2 (See Fig. 3). If we apply the PI calculation at
time T, when only estimated values are available, we can
address model error, scope error, and assumption error. If
we apply the proposed PI calculation approach at time
T+2 when actual values are also available, we can work
on improving the estimation model.

6.2 Benefits of applying the mathematical solution

The approach proposed in this work can be used to
evaluate and improve the performance of any estimation
methodology/model, e.g., regression functions, machines
learning, human-based judgement, COCOMO, SLIM,
bayesian networks, and function point analysis. Here we
focus on methodologies based on parametric estimation
models (e.g. regression functions and machine learning)
because they not only provide a rational and repeatable
improvement process but also provide the opportunity of
showing how we can improve the models in terms of
missing variables, model complexity, and scope exten-
sion.

There are some important implications coming from
the solution presented in Section 6.1. Generally, when
using an estimation model for prediction and inference,
we can apply improvement techniques as reported in
Table 1 and evaluate the model in terms of its relative
error. Because of the unmanaged violations of parametric
models, model evaluation is not reliable, limiting our abil-
ity to improve the estimation model and making para-
metric models unattractive for prediction in reality.

The approach presented in Section 6.1 overcomes these
issues. It not only extends our ability to make improve-

ments, as described in Table 1, by dealing with the conse-
quences of violations, it also manages the improvement
process by building experience packages, i.e. the Bayesian
Discrimination Function (BDF). This package makes it
faster and easier to control, reuse, retrieve, and dissemi-
nate organizational experience than using simple dia-
grams and statistics as is usually done. This way of pack-
aging, deploying and exploiting experiences within a
learning organization enhances the decision making proc-
ess in terms of competitiveness, business goal achieve-
ment, and organization-wide common procedures (e.g.,
project control, easy-to-use tools, standardized proce-
dures over a number of projects, tracing improvements,
and making predictions on the estimation model uncer-
tainty).

Besides the benefits discussed in Section 6.1, the nov-
elty of this approach is that we can automate the evalua-
tion and prediction tool (i.e. the BDF) based on neural
networks to improve estimation models. In particular, the
BDF can execute the similarity analysis to solve the prob-
lem posed in Table 3 (Section 3.2). We encapsulate the
estimation model capability in terms of relative error in
the BDF so that the BDF becomes a sort of an intelligent
agent supporting the estimation model improvement
process, what we called Automated Experience Package
(AEP), in Fig. 2. It provides the expected relative error of
the estimation model according to the characteristics of
the project being estimated. For instance, sending queries
to the BDF, we can answer questions such as what would
be the uncertainty (and so the risk) in estimating project P
when using the estimation model? Which is the estimate
that minimizes the risk of getting an estimation failure?
How can we improve the estimation model (what is miss-
ing)? What is required for improving the estimation
model? What is the organization’s experience with re-
spect to project P? Can the organization’s experience help
us deal with projects that differ partially from the projects
estimated so far? In this section, we show how to build
and use the BDF for prediction and improvement.

We summarize benefits of the proposed methodology
over previous approaches. (1) We embody the estimation
model error into a discrimination neural network, which
can provide error prediction intervals according to a simi-
larity analysis without making any specific assumptions.
(2) The BDF can be used as an automatic evaluation and
prediction tool. Therefore, the BDF is faster and easier to
apply than traditional methods that provide the predic-
tion interval but do not provide the way of improving the
model. (3) The proposed strategy allows us to offload the
complexity of developing the prediction models to ex-
perts (e.g. the experience factory). Note that, the BDF can
be also used as a support tool for experts in making pro-
ject predictions and inference (e.g. in case of expert-based
predictions [JØRGENSEN03]). (4) The BDF capability of
predicting the estimation model error is fully known at
time T (Fig. 3). Therefore, the BDF can be used for inves-
tigating whether the organization’s experience (i.e., its
prediction capability) in estimating specific kinds of pro-
jects (or variables) is sufficient, e.g. before bidding on a
contract, we may analyze the strength and weakness of

26

the organization in predicting the proposed software sys-
tem cost and then decide whether to bid or not. (5) The
BDF allows simplification of the implementation of Im-
provement-Oriented Software Environments such as
TAME systems [BASILI88] by adopting standardized
packages of experience. (6) The proposed approach uses
parametric models to overcome the limitations posed by
regression violations. As we explained in Section 3.2
through Fig. 7 and Fig. 8, the proposed approach turns
the usual parametric estimation process into an analysis
aiming at choosing an estimate that minimizes the risk of
an estimation failure (e.g. underestimate).

In Section 6.1, we built the Bayesian Discrimination
Function (BDF) by considering a hypothetical data set of
projects, where each project was described by two sets of
variables (and related data). The first set of variables was
composed of the same set as the estimation model (i.e.
variables X). The second set was composed of the relative
error. RE values were obtained by feeding the X-values
into the estimation model and calculating the RE = (Ac-
tual – Estimated)/Actual for each data point. We built a
data set where each data point was described by the pro-
ject characteristics and the relative error of the estimation
model (X, RE). We considered the variables X as inde-
pendent variables and the relative error RE as a depend-
ent variable. For more details on using an x-dependent
variance, see [BISHOP95A, pp. 211-212]. Then, based on
the X-dependent median of the relative error (solid line in
Fig. 13), we split the data set into two subsets (binary
choice). Consequently, we associated with class A each
data point having a relative error equal to or greater than
the X-dependent median (on that point). We associated
with class B each data point having a relative error less
than the X-dependent median (on that point) (Fig. 14).
Then, we trained the BDF in Fig. 14 and Fig. 15 to map
classes A and B to one and zero, respectively. Based on
the BDF thus calibrated, we inferred the expected relative
error range by feeding the values of the project being es-
timated into the BDF. We answered the following ques-
tion, what is the expected error range with a 95% (or 90%)
of confidence (i.e. credibility) for the considered project
(i.e. given the X values) avoiding any specific assump-
tion? In other words, we performed a similarity analysis
in the sense of Section 3.2 (Table 2 and Table 3) to infer
the expected error range of the project being estimated,
given the characteristics and related errors of the projects
used for building the BDF (the history).

The similarity analysis performed by the BDF has an
important consequence. In Section 3.2, we argued that
Fig. 7 was incomplete because of the inability of the usual
approaches to deal with scope error. Now, we argue that
the solution proposed in Section 6.1 (Fig. 14 and Fig. 15)
can be applied to deal with the scope error as well. To do
so, we have to evaluate the prediction interval in Fig. 7 by
the BDF (as explained in Section 6.1). Of course, the simi-
larity analysis that we propose has some limitations.
Nevertheless, we take advantage of such limitations for
assessing whether or not the BDF is reliable. For instance,
when we try to estimate prediction intervals on projects
characterized by values never observed before, we may

get a scope error in addition to model and assumption
errors. Therefore, the prediction interval obtained from
the BDF may be inaccurate (where the accuracy of the
BDF prediction interval is defined as its capability to in-
clude the relative error of the estimation model [JØR-
GENSEN03]).

We can execute a scope error analysis (i.e. the similar-
ity analysis illustrated so far) using both estimated data
(prediction) and actual data (control) as inputs to the
BDF. Executing the BDF reliability analysis with actual
data (step 5.B in Fig. 2), we can improve the estimation
model in terms of model scope. The improvement comes
about by building a new version of the estimation model
and adding the data points on which the scope error oc-
curred to the training set of the estimation model. There-
fore, this kind of improvement involves extending the
estimation model scope. If we added data points on
which no scope error occurred to the training set of the
estimation model, the improvement might be only about
shortening the magnitude of the error prediction interval,
but no scope extension would be made.

Executing the BDF reliability analysis with estimated
data (step 4.A in Fig. 2), we cannot improve the model
because the relative error is just estimated. The only thing
that we can do is to mitigate the risk by choosing a suit-
able estimate according the organization risk policy.

6.3 An Estimation Improvement Process overview
Our approach is modular insofar as each suggested tech-
nique can be eventually improved, integrated, or even
replaced by better tools based on new findings. What we
want to keep fixed is the improvement strategy part of
this approach (Fig. 16).

We use software cost estimation (i.e. effort prediction)
to explain and demonstrate the procedure. In particular,
we use the COCOMO-NASA data set [PROMISE] because
of its huge popularity in the research community. As a
public data set, it provides a common ground for experi-
mental replication and discussion. We are not suggesting
the use of the COCOMO-I model for improving estima-
tion performance, but use it to show how the limitations
of parametric models can be overcome.

6.3.1 The Estimation Improvement Process
The Estimation Improvement Process (EIP) that we refer
to is a specialization of the six steps of the QIP (Fig. 16).
We need to initialize the loop by building an initial BDF0,
which is stored in the Experience Base (EB). Then, for
each new project, we perform an iteration of the EIP to
evolve the BDF (Fig. 17).

Iteration 1 of the EIP uses BDF0 and provides the BDF1
for the next iteration. Analogously, t-th iteration receives
the BDFt–1 and provides the BDFt. The process in Fig. 17
can be considered as a state machine describing the evo-
lutionary improvement of the estimation model, where
the number of the states evolves over time and the next
state depends only on the last state.

 27

Fig. 16. Estimation Improvement Process as a speciallization of the
Quality Improvement Paradigm (QIP).

Since the first iteration in Fig. 17 can take place if and
only if the BDF0 is available, we start first by explaining
step 6 (Package) in Fig. 2 and Fig. 16.

Fig. 17. Estimation Improvement Process Iterations

In particular, we focus on the stage “Build (AEP)” be-
cause the remaining stages have a few differences with
respect to the QIP [BASILI92B].

Fig. 18. The 9-step procedure for building the Bayesian Discrimina-
tion Function (BDF) summarizes the “Build (AEP)” of step 6. (Pack-
age) in Fig. 2 and Fig. 16.

The “Build (AEP)” stage is presented in Fig. 18, show-
ing the procedure for building an Automated Experience
Package (AEP) for estimation model improvement that
we called Bayesian Discrimination Function (BDF). The
BDFs can be built and packaged by the experience fac-
tory, where such expertise should reside. This eliminates
any overhead to the project manager and provides spe-
cific focused knowledge to the project.

In particular, a project organization:
- characterizes the context,
- sets goals,
- chooses a process,
- evaluates uncertainty,
- mitigates risks,
- makes predictions on its specific project environment,
- controls the project,
- evaluates risks, and
- takes measurements.
The EF:
- analyzes data, lessons learned, and feedbacks coming

from the project organizations,
- improves the estimation model, and
- packages the experience by building a new version of

the estimation model and the BDF,
- stores experience into the EB.

As we have illustrated in Section 6.1, the proposed ap-
proach is able to deal with the scope error, as well. Based
on the considerations in Section 3.2 (Fig. 7), however,
evaluating the error prediction interval in the case of
scope and model error is not enough. We have to deal
with the assumption error, as well. This means that, we
have to apply the risk exposure analysis (Fig. 8) reported
in Sections 3.2.7 and 3.2.8.

Step 4.A in Fig. 16 is summarized in Fig. 19. In particu-
lar, because of the assumption error (Fig. 8) we have to
consider a variety of possible estimation model inputs,
represented by overlapping rectangles to show multiple
sets of inputs, error PIs, and estimate PIs.

Fig. 19. Evaluate uncertainty and mitigate risks (estimated data).

Based on the mathematical solution explained in Sec-
tion 6.1, once we get the estimate prediction interval from
the BDF as shown in Fig. 19, we can apply the mitigation
strategy explained in Fig. 8. The mitigation strategy con-
sists of fixing the final estimate of the project to minimize
the estimation risk. For instance, the organization may
have different risk policies, (1) get the contract accepting
the risk of earning less money, (2) avoid loosing money
once the contract has been obtained, or (3) something in
between. The organization may increase the chance of
getting the contract by increasing the underestimate risk
(i.e. decreasing the bid) or decrease the risk of loosing
money once the contract has been obtained by decreasing

28

the underestimate risk (i.e. increasing the bid), see Fig. 8.
It is important noting that step 4.A in Fig. 19 is based on
feeding the estimated data into the BDF. In fact, we do
not know the actual data at that time.

Fig. 20. Improve the estimation model EM (actual data).

The improvement takes place in step 5.B (Fig. 16) and
is summarized in Fig. 20. To improve the estimation
model we need to know the actual data of the project.
Although we use a relative error measure instead of an
absolute measure, the magnitude of the estimate predic-
tion interval)O,O(UP

1N
estDOWN

1N
est

++ cannot be used for in-
vestigating the improvement needs of the estimation
model. We have to look at the error prediction interval
(MeDOWN, MeUP), i.e. performing the analysis shown in
Fig. 7 on the relative error.

When dealing with actual data, the only two kinds of
error that we have to worry about are model error (intrin-
sic to the model) and scope error (coming from an out-of-
scope use of the model). For model error, improving the
model means unbiasing the error prediction interval (e.g.
[c] and [d] in Fig. 7) and/or reducing the magnitude of
the prediction interval (e.g. [b] and [d] in Fig. 7). Improv-
ing the model in the case of scope error means extending
the project prediction capability of the model. Based on
the analysis in Fig. 20, the EIP finishes up by building an
improved version of the estimation model and the related
BDF that embodies the current organization experience
(Fig. 17).

6.3.2 Strategic organization control
The Estimation Improvement Process in Fig. 16 is a proc-
ess executed for each project organization and supported
by the EF. For each EIP iteration, the EF produces a new
BDF. At the beginning of iteration t, we would have a
number of BDFs, i.e. (BDF0, BDF1, …, BDFt – 1) Fig. 17. The
number of independent variables included in each BDF
may be different from each other.

The set of all of the BDFs (Fig. 17) can be used to trace
the estimation model improvement over time. For a fixed
project P, the set of BDFs can be used to figure out
whether the estimation model has actually been im-
proved, kept the same, or worsened over time (Fig. 21).

For instance, in Fig. 21, assume that we are at the be-
ginning of iteration t and we would like to investigate the
evolution of the error prediction interval for the next pro-
ject P over the previous iterations. We feed values de-
scribing P into each element of (BDF0, BDF1, …, BDFt–1).
Based on the procedure in Section 6.1, we can get a 90%
(or 95%) prediction interval from each BDF, i.e. we get
STP = (PIP1, PIP2,…, PIPt – 1, PIPt), where PIP1 is provided by
BDF0, PIP2 is provided by BDF1, and PIPt is provided by

BDFt-1. Possible results of such an analysis are shown in
Fig. 21, where an improvement takes place when the PIs
shortened over the iterations, the same if their magnitude
keeps constant, and worsed if their magnitude increases.

Fig. 21. Error Prediction Intervals provided by each BDF fed with the
data of the next project P.

Based on this analysis, the latest version of the estima-

tion model may no longer be useful for predicting the
variable of interest (e.g. effort) because of the increased
risk. This situation might mean that something has
changed in the organization (e.g. productivity, the devel-
opment environment, people) and new variables or esti-
mation models should be considered. This means that, the
process in Fig. 17 may be used by the EF to provide pro-
active support for higher levels in the organization in un-
derstanding changes that cause risks before they occur.

6.4 Building BDFs (the framework)
The term “framework” is used to denote a set of rules,
techniques, strategies, methods, and procedures that lead
to tools (the BDF) for evaluating the risk and uncertainty
(i.e., prediction intervals) of an estimation model and im-
proving its prediction and inference capabilities.

In the current section, we delve into the details of the
approach. We describe activities for (1) building the BDF
(Fig. 18), (2) using the BDF in evaluating uncertainty and
mitigating the risk (Fig. 19), and (3) exploiting the BDF for
improvement (Fig. 20). We will not deal in depth with
steps 4.B and 5.A in Fig. 16, because they are typically
addressed in risk management approaches [CMMI].

The process for building a BDF flows through three
different layers, each layer corresponding to a different
error model: (Error) Data model, (Error) Regression
model, and (Error) Discrimination model. Each layer pro-
duces an output that is used by the next layer. Outputs
are, respectively, the relative error sample (DRE), the error
regression model (EReg), which provides the X-
dependent median of the relative error, and the BDF.
Each model is composed of three different activities,
which can be iterated.

Each output can be viewed as an experience package
in its own right, representing a different abstraction of the

 29

error. For instance, the error data layer is the lowest ab-
straction where we consider estimation model errors, e.g.
this package is a sample of relative errors (DRE). In the
second layer (regression), we map DRE to the independent
variables X to predict the expected error, e.g., this pack-
age is an error regression function (EReg). The discrimi-
nation layer is a higher abstraction where we predict the
error variability according the project characteristics, e.g.
this package is the Bayesian Discrimination Function
(BDF).

6.4.1 Preconditions
Historical data is available (e.g., the history stored in the
experience base, Fig. 18). The data set is a QxN matrix
(DSQxN) where Q represents the number of X variables
that describe each observation and N represents the
number of observations (called data points or examples).
Note that, DSQxN is also the data set of independent vari-
ables used for building the estimation model (EM). Yact is
the dependent variable (e.g. actual effort) of the estima-
tion model and Yact, (1xN) is a 1xN vector of Yact values not
included in DSQxN. Therefore,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

QN1Q

N221

N111

QxN

x......x
..

x..x
x......x

DS . (21)

In Eqn. (21), there are N data points (one for each col-

umn) each described by Q variables (X1, …, XQ). The es-
timation model (EM) provides Yest = EM (DSQxN, b), where
b represents the parameter values of the EM. In software
cost estimation, Yest would be the estimated effort on the
history, Yact the actual effort, and DSQxN the project input
values.

6.4.2 (Error) Data Layer
The aim in this layer is to characterize the performance of
the chosen estimation model according to the relative
error measure.
Step 1 – Consider an estimation model
We mainly refer to improvable models where a linear,
log-linear, or non-linear parametric function (e.g. machine
learning) is sought. Model variables may come from a
known model (e.g., COCOMO-I, COCOMO-II [CO-
COMO2]) or from a specific environment (variables that
are known for a specific organization). Except for the first
time, when performing this step, we assume that we have
an estimation model (EM), see Fig. 17. Therefore, the
model being selected in this step has already evolved
over the previous improvement iterations of the EIP. As
an example, the EM may be a log-linear function where
variables refer to the COCOMO-I model [CHEN05] or a
multi-layer neural network for regression based on the
same variables [FINNIE97]. Of course, we may consider
other models based on different variables, as well.
Step 2 – Select a (relative) error measure
We have discussed several issues about selecting the rela-
tive error measure. In this step, we select an error meas-

ure that can separate spread and bias such as RE or BRE.
Here we focus on the RE because of its wider popularity.
Step 3 – Calculate the (relative) error on the history
Based on the two previous steps and the available histori-
cal data, we can calculate the relative error measures over
the history (DRE). For instance, choosing RE, we would
have REi = (Yiact – Yiest)/Yiact for i = 1 to N. Therefore, the
output of this step is a relative error sample DRE={RE1,
RE2… REN}. These N error measures represent the per-
formance of the estimation model based on the chosen
relative error (weighted residuals). We add DRE to the
data set, DSQxN, , i.e. DS(Q+1)xN ≡ {DSQxN ∪ DRE}, where DRE
is a 1xN vector as it will be used to build the BDF in step
9. This union operation is shown in Eqn. (22). Note that
DRE may also represent the performance of human-based
techniques as well since the X variables are the variables
affecting the relative prediction error [JØRGENSEN03].

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

++

+

N)1Q(1)1Q(

QN1Q

N221

N111

xN)1Q(

x......x
x..x

..
x..x
x......x

DS . (22)

Where, (Q+1)-th row of the matrix in (22) is

]RE......RE[]x......x[D N1N)1Q(1)1Q(RE == ++ .
(23)

6.4.3 (Error) Regression Layer
The aim of this layer is to calculate a regression function
predicting the expected error according to the variables
(X1, …, XQ). As we have shown, when regression assump-
tions are violated, the estimation model can be biased
depending on the X variables. Because of the bias, it is
wrong to use univariate statistics such as mean or median
of the sample DRE to calculate the expected error. We
should use a regression function EReg (Fig. 18) taking (X1,
…, XQ) as independent variables and the RE as a depend-
ent variable, i.e. RE = EReg (X1, …, XQ) + ε would be the
regression model, see Fig. 13. If there is no correlation
between the X variables and RE, the EReg can be replaced
with summary statistics on RE such as the median.

Since we cannot assume that the variables have a
Gaussian distribution and may be skewed and have out-
liers, the error regression function EReg should be calcu-
lated by a (non-linear) regression function minimizing the
Minkowski-R distance with R = 1 (non-linear robust re-
gression) instead of using the least squares linear regres-
sion (Sections 3.1 and 3.2). Another approach to calculat-
ing the regression function EReg may be to remove out-
liers making the distributions as close to a Gaussian dis-
tribution as possible and applying the least squares strat-
egy. However, removing outliers may be dangerous and
unreliable. Therefore, we should remove only the few
data points that are in strong disagreement with the rest
of the error sample using a box-plot diagram (or other
non-parametric techniques [KNOR98], [PAPADIMIT-
RIOU03]) and apply the non-linear robust regression to-

30

minimize the Minkowski-R distance with R = 1. Other
options may be applied as well. We will focus on the one
based on not removing outliers and estimating a non-
linear regression function to minimize the Minkowski-R
distance with R = 1. This choice is based on the goal of
avoiding any specific assumption.
Step 4 – Select variables and complexity
In this step, we select the independent variables (X1, …,
XQ) of the error regression function (EReg) that affect the
relative error RE and the least complex family of func-
tions in terms of flexibility that describe the dependent
variable according to the selected independent variables
(Section 3.6). If the RE is not correlated with any X vari-
able, to estimate the expected RE, we can calculate the
median of RE, i.e. Median(DRE). It is important noting
that, since the selected estimation model (EM) is a para-
metric function, the X variables of EReg are the same as
the X variables of the EM [BISHOP95A]. If we considered
human judgment-based approaches, the error may also
be affected by variables other than X, see [JØRGEN-
SEN04A] for some additional explanations.

Note that, for multi-layer feed-forward neural net-
works complexity refers to the hidden unit number (Fig.
10) while for polynomials, complexity refers to the degree
of the polynomial in the sense of Eqns (16) and (17) (Sec-
tion 3.6). The current step is strictly related to Step 5,
where we look for the best model in terms of generaliza-
tion error (“best” refers to the model that shows the
smallest generalization error) [DREYFUS05, pp. 134-137].

To select the most suitable model and variables, we
apply leave-one-out cross validation (LOOCV) together
with the exhaustive procedure as explained in Section 3.2.
We start by considering the suitability of linear models
with respect to their generalization error, and whether we
have to increase their complexity (i.e., changing their
shape) until an acceptable model is found. LOOCV con-
sists of calculating a score for each possible model and
choosing the best one [DREYFUS05, pp. 134-137]. For in-
stance, the score for each model is calculated by the
SQRT(MSE) where MSE is the mean of the squared error
calculated on the data points left out and averaged over
the scores of the models calibrated by leaving out the data
points used for calculating the error. To perform LOOCV
together with the exhaustive variable selection procedure,
the score has to be calculated for each buildable model by
changing the number of the input variables (e.g. starting
with the complete set, we remove a variable stepwise
backwards until the set has only one variable). For in-
stance, if we had Q input variables then we would con-
sider 2Q possible models, each composed of different
numbers of input variables. For each model, we calculate
the LOOCV score and choose the best model among
them. For each of the 2Q models, we calculate N different
LOOCV scores, one for each project. The overall cost of
executing the exhaustive procedure is N * 2Q for one fam-
ily of functions having the same complexity. So, if we had
Q = 15 variables and N = 77 projects, we should calculate
77 * 215 = 77 * 32,768 = 2,523,136 different models for only
one family. Assuming that it takes 0.5 seconds on average
to calculate the parameters of one model, calculating all

the LOOCV scores would take about 14 days; and this for
only one family of functions having the same complexity.
If on the average for each family of functions, we in-
creased the set of complexities to K, then the calculation
would take (on the average) K * 14 days. The exhaustive
procedure is too expensive to be applied in reality.

Based on the motivations described in Section 3.1, we
use LOOCV (or K-fold CV) together with Curvilinear
Component Analysis (CCA), because they avoid perform-
ing the exhaustive procedure and make the model more
parsimonious [SARCIA08].

When applying CCA together with LOOCV (Fig. 22),
instead of considering 2Q possible models (each com-
posed of a different set of input variables), we consider Q
models, e.g. Q-th model has Q input variables, (Q-1)-th
model has Q-1 input variables, and the last one has only
one input variable. Using the example above, the cost of
this procedure for only one family of functions having the
same complexity is N * Q.

Fig. 22. This diagram illustrates the strategy to performing the LOO
CV with CCA. For instance, in the ith vertical pattern we use Q - (i -1)
= Q - i +1 components to represent the complete pattern. For each of
Q vertical patterns we calculate the LOOCV score and keep the best
model (the one having the smallest score).

If for each family of functions, we increased the com-
plexity to K on the average, then the number of models
would be on the average K * N * Q. Moreover, when con-
sidering non-linear models using an iterative procedure
to calibrate the model parameters, we must try several
initial variables as the starting point of the iterative pro-
cedure [DREYFUS05]. If the model is linear in the pa-
rameters, we have a closed solution to the calibration pa-
rameter problem and K would be 1. We then pick the best
model, i.e. the one with the least generalization error. Let
R be the average number of trail runs, then the cost of
executing LOOCV with CCA for a non-linear model for K
different families of function on the average would be R *
K * N * Q. For instance, with R = 6 repetitions, Q = 15
variables, N = 77 data points, if each model took 0.5 sec-
onds to be calculated, the overall cost would be about 1
hour and 10 minutes for each iteration. Therefore, if we
performed on the average K iterations, the overall cost
would be K * (1h 10’).

As we explained in Section 3.1, stepwise regression as-
sumes the sample is not affected by multicollinearity.
Since we want to avoid any specific assumptions about

 31

the selection procedure, we apply CCA instead of using
other techniques such as stepwise regression.

LOOCV could also be combined with Principal Com-
ponent Analysis (PCA) [JOLLYFE86], [NEUMANN02].
Both CCA and PCA are able to find a shrunken configura-
tion of the complete input pattern that does not suffer
from multicollinearity (Section 3.4). If we compress the
information expressed through Q variables by applying
CCA, e.g. substituting the variables with a shrunken rep-
resentation, we lose information. However, if some com-
ponents among the Qs are redundant, CCA (or PCA)
turns the complete input pattern into an equivalent repre-
sentation without loosing information. Note that, PCA
captures the linear relationships and CCA captures both
the linear and curvilinear ones [DREYFUS05, p. 96]. For
this improved capability, we suggest using CCA. The
CCA output is shown in Fig. 22, where there are Q con-
figurations, obtained one by one by fixing the number of
components for shrinkage. For instance (Fig. 22), the 1-st
item coincides with the complete input pattern (no
shrinkage), the 2-nd one is turned into a configuration
with Q-1 components, i-th one is turned into a configura-
tion with Q-i+1 components, the last one (Q-th) is turned
into a configuration with only 1 component. In Section 7,
we will show a practical application with CCA.

Note that, Steps 4 and 5 are repeated cyclically. We
start b y considering the first configuration of Q compo-
nents (Fig. 22), and then we perform Step 5. In the subse-
quent executions of Step 4, we consider the remaining
configurations in Fig. 22. This means that we have the
same number of executions of Step 5 as of Step 4, Q, as we
feed each column in Fig. 22 (from 1-st through Q-th), into
Step 5.
Step 5 – Look for the best regression model
For each execution of this step, we receive i-th input com-
ponent calculated by CCA in Step 4.

For each column in Fig. 22, we consider a set of non-
linear regression models (EReg), where each element of
this set has increasing complexity starting from 1 for-
ward. For each element of the model set, we calculate the
LOOCV score. If we increase the model complexity, the
LOOCV score can no longer decrease [DREYFUS05, pp.
134-137]; it can stay the same or increase. We continue
increasing the complexity as the score decreases. If we
have executed K steps before stopping the procedure,
then (K-1)-th model is the best (Fig. 22). This (K-1)-th
model is stored. The procedure goes on cyclically execut-
ing Steps 4 and 5 until all the columns in Fig. 22 have
been processed. Overall, the best model is the one with
the smallest LOOCV score among the stored Qs. Note
that, in performing Steps 4 and 5, we turn the data set
DSQxN into a shrunken data set XRxN

(DSQxN) ⇒ XRxN (24)

where R≤Q.
Step 6 – Estimate the X-dependent error
Based on outputs of previous steps, we now have a less
redundant data set (i.e., a shrunken input representation
of the initial data set). Of course, it may be possible that

the best data set is the one with the the initial size (no
shrinking). Based on XRxN, Eqn. (24), we can build a model
as parsimonious as possible (Section 3.6).

Then, we calculate the unknown parameters W of the
error regression function EReg, Eqn (25).

DRE = EReg (XRxN, W) (25)

where, DRE is the known vector of observed relative errors
and XRxN is the matrix of input components affecting DRE
(R is the number of components representing Q variables
with R≤Q, N is the cardinality of the data set). To fit pa-
rameters W, we can apply iterative methods such as the
Backpropagation algorithm along with the Levenberg-
Marquardt optimization technique [RUMELHART86],
[HAGAN94]. Based on the considerations in Section 6.1,
parameters W have to be fitted by minimizing the Min-
kowski-R distance with R = 1 (robust regression). Note
that, once parameters W have been fitted, EReg can pro-
vide the X-dependent median of the relative error, Eqn.
(26),

EReg (XRxN, w) = MeRE (26)

where w represents the fitted values of parameters W and
MeRE is the X-dependent median of the relative error on
the history (XRxN). A two-dimensional example is shown
in Fig. 13 (solid-line).

Based on properties and characteristics of the robust
regression (i.e. the X-dependent median), EReg is able to
split the data set (history) into two subsets whose ele-
ments represent sets A and B, respectively. Set A is com-
posed of any data point whose relative error is greater
than the X-dependent median in that point and set B is
composed of any data point whose relative error is lower
than the X-dependent median in that point.

6.4.4 (Error) Discrimination Layer
The aim of this layer is to calculate the Bayesian Dis-
crimination Function (BDF).

Fig. 23. A 3-D view of the EReg output before applying the CCA. RE
is the dependent variable and KSLOC and Complexity are the inde-
pendent variables (i.e. X1 = KSLOC and X2 = Complexity).

As illustrated above, based on the MeRE, we can (1) split
the sample into two subsets A and B, (2) associate target 1
with Class A and target 0 with Class B, and (3) calculate
the best discrimination function BDF by applying

32

LOOCV+CCA and minimizing the cross-entropy error
function (Section 3.7).

For instance, in Fig. 23, the clear points represent Class
A (where the actual RE value is greater than the MeRE in
that point) and the black points represent Class B (where
the actual RE value is lower than the MeRE in that point).
Step 7 – Select variables and complexity
The independent variables (also called features) selected
as inputs to the BDF are the Q + 1 variables of Eqn. (22),
DS(Q+1)xN, i.e. Q variables (X) and the RE. The dependent
variable of the BDF takes on real values in [0; 1]. For in-
stance, with respect to Fig. 23, the BDF would be built
upon 3 features (or input variables), KSLOC, Complexity,
and RE.

In this step, we select the ‘right’ complexity for the
multi-layer feed-forward neural network for discrimina-
tion problems. This selection is the same as in Step 4, ex-
cept here we have a different number of input variables
and the dependent variable is bounded in [0;1]. We apply
the LOOCV with Curvilinear Component Analysis. Since
the sought model deals with discrimination problems, the
LOOCV score has to be calculated by selecting the model
that can classify all of the data points in DS(Q+1)xN (history)
with the most correct classification rate, i.e. hopefully a
100% correct classification. For instance, a 100% correct
classification means that the neural network can correctly
discriminate all the data points in the data set DS(Q+1)xN
with no misclassification error. The shrunken input con-
figurations are fed into Step 8 where we continue to cal-
culate the LOOCV score as long as it is decreasing.
Step 8 – Look for the best discrimination model
This step is the same as Step 5, except that again we have
one more input variable (i.e. Q+1) and the output variable
is bounded in [0; 1]. Fig. 22 can still be applied by turning
the number Q into Q+1. We receive Q+1 shrunken input
configurations from Step 7 one by one and calculate, for
each of them, the LOOCV score for models with increas-
ing complexity (where the complexity is still expressed by
the number of the hidden units). Again, we stop increas-
ing model complexity when the score starts to increase
(see Step 5). The procedure executes Step 7 and Step 8
cyclically until all Q+1 shrunken input configurations
have been processed. In performing Steps 7 and 8, we
turn the data set DS(Q+1)xN into a shrunken data set X†SxN.
That is,

DS(Q+1)xN ⇒ X†SxN (27)

where S (≤ Q+1) is the number of input components and
N is the cardinality of X†SxN.
Step 9 – Calculate the Bayesian Discrimination Function
In this step, we show the process for building the Bayes-
ian Discrimination Function (BDF) using the shrunken
input matrix X†SxN.

Let Γ be a random variable (Section 3.7), which is a
function of a vector of features X†S, and is equal to 1 when
the input belongs to A, 0 otherwise. We build Γ by obser-
vations in X†SxN such that Γ = 1 if RE ≥ MeRE, i.e. if the rela-
tive error RE on an observation in X†SxN is greater than its
X-dependent median calculated by Eqn. (26). Γ = 0 oth-

erwise.
Based on Eqn. (18), Γ is defined as follows:

Γ: (X†SxN) → {0, 1} . (28)

Based on the theorem in Eqn. (18), the regression function
of Γ is the expected value of Γ given x. This means that, if
we calculate the regression function of Γ by minimizing
the cross-entropy error function, we get the posterior
probability of class A, given x. In particular, the function
that we have to fit is

PP = BDF(X†SxN, U) (29)

where, PP is the known N-vector of {0, 1} given by Eqn.
(28), i.e. 1 if RE ≥ MeRE and 0 otherwise. The BDF is the
function that calculates the regression function of Γ (rep-
resenting the Posterior Probability of Class A, given x),
X†SxN is the shrunken known observation matrix, and U is
the set of unknown parameters, which define the BDF.

Based on the Backpropagation algorithm together with
some optimization techniques such as Levenberg-
Marquardt [RUMELHART86], [HAGAN94], we can esti-
mate U. Once U has been calculated, if we feed the BDF
with XSxN, we obtain

Pr(A|x) = E(Γ|x) = BDF(X†SxN; u) . (30)

Where Pr(A|x) is the posterior probability of class A,
given x with x∈X†SxN, and u represents the estimated val-
ues of U.

6.5 Prediction by the BDF
We can use the BDF for both prediction and model im-
provement. The former takes place in the end of step 4.A,
while the latter takes place in the end of step 5.B (Fig. 16).
In the current section, we deal with prediction. In the next
section, we will deal with improvement. As a further ref-
erence, step 4.A is represented in Fig. 19 (Section 6.3). To
carry out step 4.A (i.e. making the prediction), we apply
the risk exposure procedure reported in the end of Sec-
tion 3.2 and shown in Fig. 8, with some additional im-
provements.

In Section 3.2, we argued that the analysis in Fig. 8 was
incomplete. The problem was that the traditional meth-
odologies that we used for calculating the estimate pre-
diction intervals dealt with neither the scope nor the
model error in case of regression violations. To overcome
such limitations, we suggested applying the mathematical
solution presented in Section 6.1, a methodology that re-
quires an instance of the BDF, which has to be available
into the EB, before the Estimation Improvement Process
(EIP) can take place (Fig. 16).

6.5.1 Estimating (Bayesian) error prediction intervals
EIP starts with a project organization retrieving the BDF
from the EB. To cope with assumption error, a project
organization has to consider a variety of possible estima-
tion model inputs. Assume that there are C most likely
inputs describing the project P being estimated, i.e. I =

 33

)I,...,I,I(C21 , where i-th element is represented by vari-
ables of (X1, X2, … , XQ). The i-th instance gets the values Ii
= (x’1i, x’2i, … , x’Qi) with i = 1 to C. For instance, each ele-
ment of set I may differ from the other by project size,
complexity, or something else. Moreover, for each Ii, the
project organization associates a subjective probability
that Ii occurs for P, i.e.)IPr(),...,IPr(),IPr(C21 . Note that, if
project organization managers have no information for
assigning those probabilities, then the uncertainty has to
be considered as its maximum,
i.e. C/1)IPr(...)IPr()IPr(C21 ==== .

We feed each element of set I into the BDF and, based
on the procedure shown in Fig. 14 and Fig. 15, obtain as
many (Bayesian) error prediction intervals, i.e. [Me-
DOWN(I1), MeUP(I1)], [MeDOWN(I2), MeUP (I2)], … , [Me-
DOWN(IC), MeUP (IC)] (Fig. 24).

Each (90/95% credibility) error prediction interval can
be obtained by fixing values of the variables X and letting
the RE vary as explained in Section 6.1 and shown in Fig.
24.

Fig. 24. Inverting the BDF. Estimating error prediction intervals from
the assumed inputs by applying the mathematical solution in Section
6.1.

6.5.2 Scope error evaluation algorithm (similarity analy-
sis)
Since we now use the BDF, the magnitude of the error
prediction intervals takes into account any kind of model
error and we can figure out whether or not inputs in the
set I will bring about a scope error. In Section 3.2 (Table
3), we described two different problems with scope error.
The first involved a project P2 whose characteristics had
been partially observed previously in projects A and B
(Table 2). The second involved a project P3 never ob-
served before. Situations 2 and 3 in Fig. 25 show how to
deal with both kinds of scope error.

Fig. 25. BDF reliability and scope error analysis.

In situation no. 1 (Fig. 25), the error prediction interval
provided by the BDF includes the expected relative error
RE, where the expected relative error is provided by the
RE median or the EReg (Section 6.4, Step 6). Therefore,
the BDF can be considered reliable and the error predic-
tion interval accurate (the scope error is acceptable). In
situation no. 2, the error prediction interval provided by
the BDF does not include the estimated relative error.
Then, it can be a warning that the BDF is unreliable and
the error prediction interval is inaccurate, i.e. the scope
error may be unacceptable. Actually, we are not sure
whether a scope error may happen. We have to check the
actual values once they are available (see Section 6.6).
Situation 2 may show that, the data set has an insufficient
number of observations to allow the building of the BDF.
In that case, we would have a scope error. Conversely, the
actual observations may exclude this conjecture when the
actual relative error would fall within the interval. This
may happen if the x-dependent median (EReg) or the
median that we use to split up the RE sample would not
be accurate. In that case, there would not be any scope
error. For prediction purposes, however, before knowing
the actual values, we should consider situation 2 as a po-
tential scope error.

Note that, situation no. 2 (Fig. 25) can be improved. We
can make the error prediction interval accurate even
though the BDF stays biased. It can be done by increasing
the (upper or lower) interval endpoint beyond the ex-
pected RE so that the interval can contain the expected RE
itself. This kind of improvement is useful only if the mag-
nitude of the final error prediction interval is acceptable
in the sense of Fig. 7. If the magnitude exceeds the accept-
able threshold, this correction is not recommended.
Therefore, situation no. 2 may not be a problem because it
can be turned into situation no. 1 (increasing uncertainty).

With respect to situation no. 3, there is no error predic-
tion interval to use, i.e. the BDF is not able to provide any
interval. This happens when the historical data used for
building the BDF (Section 6.4) did not include data points
similar to the project being estimated. The Backpropaga-
tion algorithm cannot generalize information if no infor-
mation is available [DREYFUS05]. Therefore, we are sure
that a scope error will occur in situation 3. Mathemati-
cally, this case is not about “overfitting” [DREYFUS05].
Technically, the point here is that the classification capa-
bilities of a neural network decrease when it is no longer
able to provide significant results. Usually, researchers
and practitioners use this characteristic to design new
experiments and gather new information. We exploit this
characteristic to detect and evaluate the scope error im-
pact on the relative error.

Based on Fig. 25 we can perform a scope error analysis
for each error prediction interval in Fig. 24. Based on the
Jørgensen’s strategy [JØRGENSEN03], i.e. getting an es-
timate prediction interval applying Exn. (9), we can turn
the error prediction intervals of Fig. 24 into estimate pre-
diction intervals (Fig. 26), i.e. we calcu-
late)]I(O),I(O[1UP

1N
est1DOWN

1N
est

++ ,)]I(O),I(O[2UP
1N

est2DOWN
1N

est
++ ,

…,)]I(O),I(O[CUP
1N

estCDOWN
1N

est
++ .

34

Fig. 26. Turning error prediction intervals into estimate prediction
intervals.

This operation takes the bias out of the model by correct-
ing the estimates, as explained in Section 3.2. Removing
the model bias from the estimates by applying Exn. (9)
improves the estimates (not the model). Of course, some
of the intervals in Fig. 26 may not be available because of
scope error.

We should apply now the procedure shown in Fig. 8 to
get the ultimate estimate, i.e. the one mitigating the esti-
mation risk.

6.5.3 Risk exposure analysis
After performing the procedure in Fig. 26, assume we
have the error prediction intervals in Fig. 27, with C = 4.
That is, assume we have four possible inputs describing
project P with four different probabilities, respectively, as
shown in Fig. 27. Note that, input no. 3 has no estimate
prediction interval because of the scope error. Neverthe-
less, it has a 15%probability of occuring.

Fig. 27. Risk exposure analysis.

We can now apply risk exposure analysis. We build
the histogram (and so eliciting the probability) of each
segment obtained by projecting each interval endpoint
onto the x-axis. Based on the risk mitigation strategy of
the organization, we choose the ultimate estimate for pro-
ject P, i.e. 1N

estO + . In Fig. 27, we chose the estimate corre-
sponding to the median. This means the risk exposure
analysis of the organization is aimed at having the same
probability for both underestimates and overestimates.

If the organization wants to reduce the risk of underes-
timating (usually the most severe [MCCONNELL06]), we

would choose a value greater than the median (i.e. on the
right side with respect to the median). To make the risk of
underestimation minimum, we would choose the value
corresponding to the point “Up”. As we have already
explained, we may apply different risk mitigation strate-
gies. Nevertheless, since an underestimate is usually con-
sidered more severe than an overestimate [MCCON-
NELL06, pp. 21-26], we should pick an estimate in [Me-
dian, Up] (Fig. 27).

In Fig. 27, we considered a 15% chance of a scope error
happening as acceptable. Suppose now the organization
decides that anything greater than a 10% scope error is
unacceptable, then this estimation model would be too
risky. Then they should change the approach, e.g., use a
human based approach, until additional historical data is
available. Then they can revert to this approach, calibrate
another model, and check out the acceptability level.

It is worth noting that unlike traditional methodolo-
gies, the presented approach is able to improve the per-
formances of parametric estimation models by taking into
account model error regression violations, such as scope
error, and assumption error at the same time. Moreover,
the approach is able to signal in terms of risk whether the
available historical data is sufficient for building the pa-
rametric estimation model or not.

6.6 Model improvement using the BDF
Once actual data is available, we can check whether the
prediction was accurate enough. In particular, whether
the relative error, i.e. RE = (Actual Effort – 1N

estO +)/ Actual
Effort (where 1N

estO + is the ultimate estimate, Section 6.5),
fell into the interval [Down; Up], Fig. 27. Such an analysis,
however, cannot be used for model improvement. To im-
prove the estimation model, we need to evaluate the
model behavior using actual values.

To perform such an improvement analysis, we exploit
the BDF, the expected RE (Median or EReg), and the ac-
tual RE. Note that, the actual RE is different from the ac-
tual relative error calculated by the ultimate estimate (see
above). As we explained in Section 6.3 through Fig. 20, we
first feed the actual input Iact into the BDF and than exe-
cute the analysis.

6.6.1 Scope extension algorithm (posterior similarity
analysis)
Since there is no uncertainty with respect to the input
values (even though we might get some measurement
error, see Fig. 9), we do not consider the assumption error
anymore, i.e. once actual data is available, we deal with
model error and scope error. The improvement analysis
starts with evaluating the scope error (Fig. 28).

Situations 1.a and 1.b in Fig. 28 refer to situation 1 in
Fig. 25, where the expected RE falls within the interval. In
situation 1.a there is no scope error (i.e. no scope exten-
sion). Both the expected RE and the actual RE fall within
the error prediction interval. Rebuilding a new instance of
the estimation model including the actual project data in
1.a (i.e. the procedure explained in Section 6.3 Fig. 17)
does not extend the scope of the EM.

 35

Fig. 28. Scope extension analysis on Fig. 25.

In situation 1.b, there is also no scope error. This is be-
cause the error prediction interval (EPI) is reliable (the
BDF was correctly built), but the actual RE falls outside
the interval. This situation is similar to the traditional
evaluation of outliers in statistics. If we included the pro-
ject in 1.b in the training set when building a new version
of the EM, we might observe an inclusion of the expected
RE within the interval, but the model would not extend
its scope. Therefore, situation 1.b would lead to increasing
the uncertainty of the EM, event though it may make the
error prediction interval closer to reality.

Therefore, we should decide whether it is worth in-
cluding that project data in the training set for building
the next version of the EM. In fact, situation 1.b may inply
that some kind of model error would affect the EM unac-
ceptably. In that case, we may decide not to include the
project data in the next building procedure of the EM
since we would not remove the model error (e.g., finding
the missing variables, the right model complexity). How-
ever, when we have too “few” data points to build the
EM, as is usually the case in software engineering, the
best we can do is to use projects like those of 1.b to build a
new version of the EM.

 Situations 2.a and 2.b in Fig. 28 refer to situation 2 in
Fig. 25, where the expected RE falls outside the interval.
In situation 2.a, we can make sure that no scope error oc-
curs because the actual RE falls within the interval even
though the interval does not include the expected RE.
This means that the BDF was biased because of the me-
dian rather than for a lack of observations. Therefore,
situation 2.a is similar to situation 1.a apart from the fact
that the EReg (or median) used for splitting up the RE
sample did not represent correctly the expected value of
the RE.

Situation 2.b refers to situation 2 in Fig. 25. Unlike
situation 2.a, in situation 2.b, the actual RE falls outside
the interval. This situation occurs not because the EReg
(or the median) did not correctly represent the expected
value, but the problem is that there are not sufficient ob-
servations to build the BDF. Therefore, situation 2.b refers
to a scope error because of this lack of observations. Re-
building a new instance of the estimation model with that
data point extends the scope of the EM and we would
observe a shorter distance between the actual RE and the

interval, or possibly an interval that includes the RE. Note
that, this kind of improvement would increase the EM
uncertainty making the prediction interval more credible.

Situation 3 in Fig. 28 refers to situation 3 in Fig. 25. We
duplicated it for the sake of completeness. As we have
already explained in Fig. 25, situation 3 leads to increas-
ing the scope of the model. This happens when there is no
interval because the data set did not have data similar to
the considered project. Therefore, if we rebuilt the EM by
including the project in the training set, we would ob-
serve a scope extension. Of course, including only one
data point may not be sufficient. Nevertheless, situation 3
leads to extending the EM scope.

6.6.2 Model-error improvement algorithm
To check whether the model error affects the EM, we ex-
ploit the error prediction intervals with respect to the zero
point. In particular, Fig. 29 shows four cases (4, 5, 6, and
7) arising from both situation 1 and 2 in Fig. 25.

Situation 4 (Fig. 29) does not need improvement be-
cause the model error is within the utility thresholds and
the model is unbiased (it includes zero), see also Fig. 7.
Note that, situation no. 4 does not mean that the estima-
tion model cannot be further improved. We can improve
the model as far as the prediction error is different from
zero. In situation 4, we just mean that the uncertainty is
acceptable for the organization goals.

In situation 5, the estimation model remains unbiased
even though the magnitude of the error prediction inter-
val is unacceptable. Improvement involves shrinking its
magnitude.

 Fig. 29. Model error analysis on situations no. 1 and 2 in Fig. 25.

To do that, we can try to include some dummy vari-
ables into the estimation model [BISHOP95A, p. 300],
[KEUNG08]. Dummy variables are (dichotomous) cate-
gorical variables that group the available data points into
distinct subsets. To check whether the improvement with
dummy variables has been effective (the interval is
shorter), we can apply the procedure in Fig. 17 and the
analysis in Fig. 21.

In situation 6, the estimation model is biased. That is
because of one or more missing variables (i.e. we did not
consider some relevant independent variables affecting
the dependent variable of the estimation model) or the

36

estimation model is not flexible enough. To improve the
model we can try to increase the model flexibility by in-
creasing the degree of the polynomial, the number of the
hidden units for neural network, or we may apply a loga-
rithmic transformation (log-linear regression). Note that,
if the estimation model is linear in the parameters we can
turn it into a non-linear-in-the-parameter model as ex-
plained in Section 3.1 and subsequently increase its flexi-
bility. If such an improvement falls short of improving
the model, the only thing that we can do to improve it is
to find the right independent variables affecting the de-
pendent variable. If we do not find the right variables, the
model cannot be improved. Note that, due to the analysis
in Fig. 29, we are able to identify the EM improvement
needs. To find the right variables we can use previous
research, experts, or context analysis (Section 3.1). Situa-
tion 1.d can be improved by applying the improvements
of both situation 1.b and 1.c.

It is worth noting that, since situations 1 and 2 in Fig.
25 and situations 4, 5, 6, 7 in Fig. 29 are independent of
each other, the model and scope errors may affect the
estimation model at the same time. As an example, if the
project were classified as situation 2.b in Fig. 28 and situa-
tion 7 in Fig. 29, we would infer that the EM would be
affected by scope error and model error (biased and un-
acceptable spread) at the same time.

6.7 Discussion
When applying Exn. (9) to turn the error prediction inter-
vals into estimate prediction intervals (see Fig. 26), we
actually make estimates unbiased since we deal with a
relative measure of error. However, it only happens when
the error prediction interval is reliable and unbiased
(situations 4 and 5 in Fig. 29). In situations 6 and 7, apply-
ing Exn. (9) may not make the estimates unbiased. The
real problem for prediction that we have to worry about
is to shrink error prediction intervals. This is one of the
real benefits of using relative errors for evaluating the
estimation model uncertainty proposed by Jørgensen et
al. [JØRGENSEN03].

Note that, considerations in Fig. 29 are similar to the
ones made in Fig. 7. There are some differences, however.
The main difference is that the traditional methodologies
used in Fig. 7 cannot deal with the scope error quantita-
tively, i.e. they are not able to discriminate among all of
the situations in Fig. 28. Moreover, error prediction inter-
vals in Fig. 7 have been calculated without considering
any regression violation. So, if we used traditional meth-
odologies as in Fig. 7 instead of applying the proposed
approach, we would confuse the scope error with the
model error and we would not be able to improve the
model.

To avoid such a misleading situation, many research-
ers suggest not undertaking the development of projects
never dealt with before, i.e. projects where a scope error
may happen. As we have already explained in Section 3.2,
Kitchenham et al. [KITCHENHAM97] suggest applying
the portfolio concept to overcome this problem. While,
Jørgensen et al. deal with this issue by assuming that they
are able to select historical projects on which the estima-

tion model has the same accuracy [JØRGENSEN03]. An-
gelis et al. [ANGELIS00] deal with the problem by apply-
ing the bootstrap method. Once they select similar pro-
jects to make a baseline for prediction, the selected data
points may be not enough to make any prediction, i.e.
calculating statistics [KIRSOPP02B]. Then, a resampling
procedure such as bootstrap may somehow enlarge the
data set for calculating and making significant the re-
quired statistics.

We argue that, (1) the portfolio concept cannot be ap-
plied to every situation hence it is not a solution to the
scope error. (2) The Jørgensen et al.’s assumption stated
above might lead to taking very different projects into
account so the error prediction interval may be incor-
rectly calculated. (3) The bootstrap method cannot make
sure that the error prediction interval is correct hence we
may base our inference on wrongly assumed uncertainty.
Conversely, the proposed approach overcomes such limi-
tations and assumptions by using a particular kind of
multi-layer feed-forward neural network (i.e. the BDF),
which is able to detect and discriminate between scope
error and model error. Moreover, the proposed approach
exploits benefits of parametric estimation models (e.g.,
estimates come from mathematical applications, the proc-
ess is traceable and repeatable) and avoids their draw-
backs (i.e. unreal parametric assumptions).

7 THE CASE STUDY
In this section, we apply the approach to the NASA CO-
COMO data set [PROMISE] by considering different
models (e.g., linear, log-linear, and non-linear). The
analysis aims at demonstrating the application of the
proposed approach using real data. Conclusions enacted
from this case study offer some new insights for the pro-
jects developed at NASA.

Regarding the improvement procedure, we focus on
both improving accuracy and decreasing the uncertainty
of the estimation model. The best model will be the one
having the best accuracy and the least uncertainty among
those considered. We first build a linear model. Because
this shows to perform poorly on both aspects (i.e. accu-
racy and uncertainty), we improve the model by consid-
ering a log-linear transformation. The resulting model
performs very well. To improve the log-linear model
from an uncertainty point of view, we include some cate-
gorical variable as independent variables. Since the na-
ture of the approach is to evolve the model over time by
adding the results of new projets, we show that further
rebuilding the log-linear model with new non-outlier pro-
jects (see Fig. 28) does not make the uncertainty worse.
But rebuilding the log-linear model with new outlier pro-
jects makes the model more risky; a price we may have to
pay if we are moving into new territory with the projects
we are developing. We stop improving the model because
we have use up all of the variables in the considered data
set. In real cases, however, we would continue improving
the model from an accuracy and uncertainty point of
view trying out new variables and models.

An important consideration arising from this study is

 37

that, the uncertainty analysis proposed above is useful for
model selection as well. In particular, along with the tra-
ditional model selection techniques based on accuracy,
the one that we propose in this work is based on selecting
the model that shows the least uncertainty among the
available models. Note that, the uncertainty comparison
has to be performed over a fixed test set of projects (16
projects in this study). Instances of models are linear, log-
linear, non-linear, and generalized (e.g., non-linear in the
parameters).

7.1 The Context
Consider the situation where NASA is the learning or-
ganization [BASILI92B] using measurement [BASILI94A]
and, from 1971 to 1987, they developed 8 projects, e.g.,
Hubble Space Telescope, involving 93 software systems.
We start with our analysis at the beginning of 1985, when
NASA has already developed 77 software systems so
their experience is based upon those 77 software systems,
which we will use as the basis for prospective evalua-
tions, risk analysis, and model improvement. In fact, the
NASA’s goal is to exploit such experience to evaluate un-
certainty in estimating the effort of the 16 next software
systems (from 1985 to 1987). Since we actually know the
data from these 16 software systems, we can use them to
carry out an overall iteration of the proposed framework
as explained in Section 6.2 (Fig. 17).

As a learning organization, NASA also has the goal of
shortening the risk and improving their models to better
manage resources such as time, personnel, and budget.

7.2 Applying the framework
Based on Fig. 18, we now apply the procedure to build
the first instance of the BDF as explained in Section 6.3.

GQM template: Analyze the uncertainty (risk) of a linear
regression model for the purpose of evaluation with respect
to the Relative Error (RE) from the point of view of the pro-
ject managers in the context of NASA’s projects. This goal
focuses our study.

7.2.1 Preconditions
Historical data is available according to the COCOMO-I
variables. We call instances of the data set “data points”
or “projects”. Note that, what we call a project or data
point is actually the project undertaken to develop an
individual software system. This name must not be con-
fused with the NASA’s projects, which are only 8
(de,erb,gal,X,hst,slp,spl,Y), and include several software
systems.

7.2.2 (Error) Data layer
The data set [PROMISE] is composed of 93 project in-
stances. Each instance is described by 24 attributes (Table
4). In particular, “Size”, 15 COCOMO-I multipliers, “Ef-
fort”, and 7 attributes describing further characteristics of
the NASA software system (project ID, project name,
category of application, flight/ground system, NASA
center, “YEAR” finished, and development mode). Note
that, “Effort” is measured by calendar months of 152

hours, including development and management hours
[BOEHM81].

TABLE 4
DATA SET DESCRIPTION

For demonstration purposes, we start with a simple
linear model and will demonstrate how to identify risks
and make improvements. To calibrate the linear model
we start by considering only numerical variables. It is also
possible to include categorical variables into the model as
we explained in Section 6.6. The problem is that, regres-
sion models cannot deal with categorical variables. They
have to be coded first. A common mistake is to use an
ordinal value for nominal scale. For example, consider the
attribute “NASA center” in Table 4. If we included an
ordinal variable (e.g., 1, 2, 3 …) in the regression model to
describe the NASA centers, the parameters of the result-
ing regression model would be biased because the train-
ing procedure would create parameters for an ordered
variable, while that variable has no order at all. The right
way of coding categorical values is to use dummy (di-
chotomous) variables. If we have C categorical values, we
create (C – 1) dichotomous variables, i.e. the variable can
have values 0 or 1. For instance, if we have 5 NASA cen-
ters, then “NASA center 1” becomes “0001”, “NASA cen-
ter 2” becomes “0010” and so on up to “NASA center 5”,
which becomes “0000” [BISHOP95A], [KEUNG08]. If we
considered irrelevant categorical variables, however, the
regression model would increase in complexity (i.e. a
greater number of parameters) and it would be less par-
simonious. Thus, we should include dummy variables
with care.

Note that, we only use the attribute “YEAR” to split up
projects, i.e. the first set (before 1985) was composed of 77
software systems, and the second set (after 1984) was
composed of 16 software systems. In particular, the first
set was considered as a training set (history) and the sec-
ond set was considered as a test set (what being esti-
mated), i.e. the object of our analysis.
Step 1 – Consider an estimation model
The estimation model selected is a linear regression
model trainined by Ordinary Least Squares (OLS). It is
based on input variables from the COCOMO-I model
where the dependent variable (DV) is the effort and the
independent variables (IVs) are the size and 15 CO-

38

COMO-I multipliers.

TABLE 5
OLS ESTIMATES

Based on the training set, we applied OLS and obtained
the parameter estimates in Table 5.

The analysis of variance (ANOVA) shows that there is
a statistically significant relationship between the IVs and
the DV at 99% confidence level (p-value = 0.0000). The R-
Squared statistic indicates that the model explains 66.4%
of the variability in the DV. The adjusted R-Squared sta-
tistic is 57.5%. The standard error (SE) of the estimate
shows the standard deviation of the residuals to be
796.56. The model may be simplified by removing the
parameters having a p-value greater than 0.10 in Table 5
(e.g. rely p-value = 0.86). Although applying stepwise
regression may simplify the model, it would require the
assumption that multicollinearity does not affect the
model as explained in Section 3.1. For this reason, we do
not apply the stepwise regression.

TABLE 6
PREDICTION ON THE TEST SET

We can now use the model for prediction by feeding
the test set into the model. Table 6 shows the results,
where EST stands for “Estimated Effort”, “ACT” stands
for “Actual Effort”, RE stands for “Relative Error”, and
“ID” stands for software system identifier. Notice that,
Table 6 contains results that are ordered based on their
size. From a software engineering point of view, the esti-
mation model (EM) provides three unreliable results, IDs
36, 39, and 37 because they are negative value while the
effort may only be a positive value. From a mathematical
point of view, these values are correct and they must not
be considered as outliers in statistical terms. The implica-
tion is that, the model cannot be used for predicting the

effort of those projects. Consequently, from a software
engineering point of view, the RE value for those projects
makes no sense even though it is correctly calculated
from a mathematical point of view.

Fig. 30. Prediction intervals for the test set in Table 6 obtained by
appling the canonical formula. The circled values of EST represent
negative estimates that cannot be used for prediction.

Based on formula (12), we calculate the prediction in-
tervals for the estimates in Table 6. As Fig. 30 shows, the
prediction intervals are definitively huge and they do not
have any utility for evaluating uncertainty and improve-
ment needs as explained in Section 3.1. Since effort cannot
be negative, the prediction intervals in Fig. 30 can be
shrunk by ignoring the lower negative limit. Even though
we considered prediction intervals having their lower
limit on zero, the situation would not change, because the
interval would be too wide, as well. Further, having an
estimated effort equal to zero would make no sense ei-
ther.

From a prediction point of view, the situation does not
change. The prediction intervals do not provide any util-
ity because the magnitude is too high. Note that, tradi-
tional approaches stop the analysis at this point. Fig. 30
aims at showing that, in evaluating risk and uncertainty
arising from a parametric estimation model, we cannot
rely upon traditional statistics. We need better techniques
that are able to show the real improvements that the esti-
mation model requires as we explained in Section 6.1.
Step 2 – Select a (relative) error measure
We selected RE as a relative measure of error. Where REi
= (ACTi – ESTi) /ACTi with i = 1 to the sample size, see
Eqn. (5).
Step 3 – Calculate the error on the history
To calculate the REi for each point of the historical data
set (i.e. the training set composed of 77 data points hence i
= 1 to 77), we feed the training set into the EM. Once we
obtain the estimates, we apply the Eqn. (5). The sample
error that we obtained is shown in Table 7. In particular,
the RE sample is ordered according to the project size.
“ID” refers to the original data set identifier, “RE” is the
relative error, “ACT” is the actual effort, and “EST” is the
estimated effort. Notice that, we hightlighted with dark
rectangles (Table 7) the data points where the EM pro-
vided negative values of effort. As explained above, since
our analysis is based on as few assumptions as possible,
we decide not to remove these points from the data set.

 39

The reason for this choice is that, these data points are
correctly calculated even though they make no sense from
a software engineering point of view. Therefore, the ac-
tual behavior of the estimation model in terms of estima-
tion error over the history has to be evaluated on these
data points, as well.

TABLE 7

RELATIVE ERROR SAMPLE (RE) ON THE TRAINING SET

7.2.3 (Error) Regression layer
In this layer, the aim is to calculate the expected (relative)
error arising from the estimation model over the historical
data. As we have exaplained in Section 4, assumptions on
which the EM is based may not hold (e.g., the error is x-
correlated). Then, a better measure of the expected RE
would be the output of a robust regression function hav-
ing as a DV the RE and as IVs the x variables. Therefore,
we apply the procedure explained in Section 6.4 (Step 4)
where we called such a robust non-linear regression
EReg, Eqn. (26).
Step 4 – Select variables and complexity
In order to select the model having the lowest generaliza-
tion error, we calculate the Leave-One-Out Cross-
Validation (LOOCV) score, as explained in Section 6.4
(Step 4).
Step 5 – Look for the best regression model
Here we find the best regression model for extimating RE,
i.e., EReg. Fig. 31 shows the results. In particular, the non-
linear model having the lowest generalization error (best)
is the one composed of 4 hidden units and 16 input com-
ponents. The result in Fig. 31 is confirmed by the fact
that, we have also calculated the LOOCV score for a lin-
ear-in-the-parameter model (linear polynomial), which
provided the value 0.86, which is greater than the best
value (0.56).

Fig. 31. Leave-one-out cross validation and curvilinear component
analysis applied to a non-linear model based on Multi-Layer Feed-
Forward Neural Networks for regression (EReg).

The number of iterations to generate Fig. 31 was 5856
(with R = 6, the procedure is explained in Section 6.4, Step
4) and it took about 2 hours with an ordinary laptop.

Step 6 – Estimate the x-dependent error
Based on the result in Fig. 31, we selected the non-linear
model based on neural networks having 16 input compo-
nents and 4 hidden units.

Fig. 32. Calculating the expected relative error (RE).

Then, we calculated the expected RE by applying a ro-
bust regression, which provided an x-dependent median.
Fig. 32 shows the results. The straight line in Fig. 32 is a
line that points out whether the model estimates are valid
(RE = 1). In particular, if an RE data point (Actual RE)
falls above this line, it means that that point comes from a
negative effort estimates and it is invalid. If the RE data
point falls below the line, the effort estimate from which it
comes is valid (i.e., the estimate is positive). Note that,
there are 12 data points falling above the straight line as
shown in Table 7 by the dark rectangles.

In Fig. 32, we drew the median of the RE, as well
(dashed line). The median seems to be a better representa-
tive of the expected RE than the x-dependent median cal-
culated by the robust regression because the REs are not
biased with respect to the x-axis. For this reason, we use
the median for splitting up the relative error sample, not
the x-dependent median. It is worth noting that, even
though the error sample seems not to be biased with re-
spect to the KSLOC (it is very close to zero), the assump-
tion on the homoscedasticity is definitively violated. In
fact, the error variance decreases as the KSLOC increases.

Based on the median (dashed line in Fig. 32), we calcu-
late the target values, as follows. If the actual RE is not
less than the median then the target value is (Γ =) 1, it is
zero otherwise (Γ = 0). Table 8 shows the target values
obtained, see Eqn. (18) in Section 3.7. Note that, the “ID”
row in Table 8 is the project identifier of the data set

40

(Table 4) ordered by the KSLOC.

TABLE 8
VALUES OF THE RANDOM VARIABLE Γ (TARGET)

7.2.4 (Error) Discrimination layer
The aim in this layer is to build the discrimination func-
tion that we called BDF. As explained in Section 6.4, the
BDF is a non-linear function based on multi-layer feed-
forward neural networks having a real variable ranging
in [0;1] as a dependent variable (DV) and the variables
(KSLOC, 15 COCOMO multipliers, RE) as independent
variables (IVs). To calibrate such a BDF, we consider the
target values in Table 8 as observations of the DV and
consider the COCOMO NASA data set together with the
RE values in Table 7 as observations of the IVs. Then, we
apply the Backpropagation together with the Levenberg-
Marquardt algorithm to obtain the parameters of the BDF.
Before applying the Backpropagation, we select the best
non-linear model by executing LOOCV and CCA, as ex-
plained below.
Step 7 – Select variables and complexity
To select the non-linear discrimination model having the
lowest generalization error, we calculate the LOOCV
score, as explained in Section 6.4 (Step 7).
Step 8 – Look for the best discrimination model
Fig. 33 shows the results. In particular, the non-linear
model having the lowest generalization error (best) is the
one composed of 1 hidden unit and 17 input components.
The best generalization error obtained by executing the
procedure was 0.04.

Fig. 33. Leave-one-out cross validation and curvilinear component
analysis applied to a non-linear model based on Multi-Layer Feed-
Forward Neural Networks for discrimination (BDF).

Step 9 – Calculate the Bayesian function
Based on the result in Fig. 33, we select the non-linear
model based on neural networks having 17 input compo-
nents and 1 hidden unit. Then, we calculate the BDF by
minimizing the cross-entropy error function by the Back-
propagation together with the Levenberg-Marquardt al-

gorithm (Fig. 34).

Fig. 34. Representation of the BDF as a non-linear function of 17
independent variables. The BDF provides a measure in between
[0;1] of how far the input is from the median. Mathematically, the
BDF provides the posterior probability that the input is not less than
the median (i.e. the posterior probability of class A, Fig. 14).

We stopped the training procedure when all of the
data points in the training set were correctly classified.
Notice that, a data point is correctly classified when the
BDF provides a value greater than or equal to 0.5 for the
target “1” and less than 0.5 for the target “0”. Other stop-
ping techniques may be applied (e.g., validation-set stop-
ping technique).

7.2.5 Prediction by the BDF
The BDF that we calculated by applying the 9-step
framework can be used both for prediction and model
improvement. Nevertheless, we show the use of the BDF
for prediction partially because the COCOMO NASA
data set does not include estimated inputs. Since we
know the actual values of the projects being estimated,
there is no assumption error on the inputs. Therefore, we
execute analysis in Fig. 25, but we do not execute analysis
in Fig. 27 (Risk exposure analysis). As we explained in
Section 6.5, before using the BDF, we have to invert it, so
that the BDF yields the RE range where the error of the
next estimate will probably fall (i.e., what we called
Bayesian error prediction interval in Section 6.1).

Fig. 35. Representation of the inverted BDF of Fig. 34.

Based on the Inv(BDF) in Fig. 35, we can calculate a 95%
(Bayesian) error prediction interval for each project be-
longing to the test set.

 41

Fig. 36 . BDF reliability and scope error analysis.

To check whether the BDF correctly trained to learn the
required discrimination function, we run the analysis in
Fig. 25. The results of such an analysis are shown in Fig.
36. In particular, the vertical segments represent 95%
Bayesian prediction intervals and the crossed points are
the expected RE (median). In three cases (IDs 26, 24, and
25), the BDF could not learn correctly the required dis-
crimination function (“OUT”). In the remainder cases, the
BDF performed correctly (“IN”). In real cases, when using
the BDF for prediction, we can use analysis in Fig. 36 to
evaluate the reliability of the BDF before using it. As ex-
plained in Section 6.5, using the BDF for predicting pro-
jects 26, 24, and 25 may be very risky, implying that other
approaches should be used. Once we obtain the actual
values for each project being estimated, we find out
whether a scope error actually occurred.

Fig. 37.Calculating estimate prediction intervals.

Fig. 37 shows the estimate prediction intervals that we
calculated by applying Exn. (9). The y-axis represents the
effort and the vertical segments represent the (Bayesian)
estimate prediction intervals for the projects being esti-
mated. “X” is the actual effort and “–” is the estimated
effort. “?” refers to the fact that the EM provided negative
effort estimates (invalid).

Fig. 38 . Comparison of prediction intervals calculated by the tradi-
tional methodology (Fig. 30) and the proposed one (Fig. 37) in the
worst case.

Note that, the intervals in Fig. 37 are much narrower
than the ones calculated with the traditional approach
(Fig. 30). As hinted above, if we considered only the up-
per limit of each estimate prediction interval as the worst
case of our prediction, the suggested approach may de-
finitively shrink the prediction intervals making them
more useful for prediction (Fig. 38). In Fig. 38, the solid
rectangles represent the upper limit of the prediction in-
tervals in Fig. 30 (traditional), while the other rectangles
represent the upper limit of the prediction intervals in
Fig. 37 (proposed), “X” stands for actual effort and “–”
stands for estimated effort. Apart from the projects on
which the EM provides negative effort values (i.e., 36, 39,
and 37), where the comparison is not possible, the pro-
posed approach provides better prediction intervals in
terms of magnitude than the traditional one for all of the
remaining cases except on project 52 where the interval
does not include the actual RE. A valuable result is that
the proposed approach is a valid alternative to the tradi-
tional methodology of shrinking the estimate prediction
intervals for the worst case (where the worst case corre-
sponds to the upper limit of the estimate prediction inter-
val). Note that, it is trivial to see that, the proposed ap-
proach provides better intervals than traditional method-
ologies for the best case as well (the lower limit of the
estimate prediction interval).

7.2.6 Model improvement by the BDF
Once we know the actual effort values of the projects in
the test set, we can calculate the actual RE and perform
the model improvement explained in Fig. 28 and Fig. 29.

Fig. 39 shows the model improvement analysis. The ac-
tual RE of each individual project is represented by the dia-
monds and the expected RE is represented by the crossed
circles. As already discussed in Section 6.6, once we know
the actual values of the projects, we can check whether the
potential scope errors (situation 2 in Fig. 25) turns into ac-
tual scope errors.

42

Fig. 39. Model improvement by the BDF in terms of scope error and
model error.

In particular, to check it out, we run the analysis in Fig.
28 situations 2.a and 2.b. Since the actual RE falls outside
the interval for projects 26 and 24, we conclude that those
two cases represented a scope error. That is, the data set
had an insufficient number of observations similar to pro-
jects 26 and 24 to build the BDF. This means that, we can
extend the scope of our estimation model (i.e. the linear
regression function in Table 5) by rebuilding it with the
projects labeled “EXT” in Fig. 39 (26 and 24). Since the
actual RE falls within the interval for project 25, we con-
clude that no scope error occurred and the problem was
with the median used to split up the RE sample.

With respect to the outlier analysis (situation 1.b in Fig.
28), we can see that (Fig. 39), only the RE on projects 25,
22, and 38 fall within the interval while the RE falls out of
the interval for the remaining projects, where we consider
the BDF as reliable on project 25 for the reasons explained
above. This means that if we used the remaining projects
to build a new version of the EM, the uncertainty of the
EM would increase. So, to avoid degrading the EM we
should not include those data points in the rebuiling of
the model. An alternate choice would be to include those
projects anyway because of the scarcity of observations
and the potential of improving estimates if there are more
data points of that kind.

Fig. 39 allows us to perform a model error analyis.
Since we fixed a relative error magnitude of 0.3 as accept-
able, we need to find categorical variables to shrink the
magnitude of the error prediction intervals on projects 33,
34, 13, 35, 52, 21, 23, and 22 (unbiased solid squares in Fig.
39). The magnitude of the RE was acceptable on projects
36, 39, 37, 40, 38 (unbiased circle in Fig. 39).

The EM is biased on projects 26, 24, and 25. In that
case, more suitable variables should be found and a more
flexible function should be tried (e.g. log-linear models,
non-linear models).

Overall, the EM can be extended in its scope by includ-
ing projects 26 and 24 in the training to build a new ver-
sion of the EM. The EM uncertainty can be improved by
(1) including in the model the right categorical variables,
(2) using a more flexible function, and (3) taking out out-
liers. Projects 25, 22, and 38 can be included in the train-
ing, but they will neither improve nor worsen the model.

7.2.7 Including (irrelevant categorical variables)
As shown in Table 4, the COCOMO NASA data set pro-
vides some categorical variables that can be included in
the estimation model (EM) to check whether the EM in-
proves accuracy and lessens the risk. Including categori-
cal variables in the EM involves the use of dummy vari-
ables. If we use dummy variables that are irrelevant,
however, we can make the EM worse because dummy
variables split up observations into distinct sub sets. This
data splitting increases the number of similarity groups. If
the categorical (dummy) variables are irrelevant, a higher
number of projects may be affected by scope error. This is
because, for each subset of similar projects, there would
be a less data points available to build the BDF. By con-
trast, if we have relevant categorical variables and a suffi-
cient number of observations, we would shrink the
(Bayesian) error prediction intervals.

Fig. 40. The effect of including irrelevant dummy variables.

Fig. 40 shows the effect of including the categorical
variable “Mode” in the EM. Since “Mode” has three cate-
gories (“Semidetached”, “Embedded”, “Organic”), we
included two dummy variables (D1, D2) in the EM and
coded the categories as follows, “Semidetached” became
{D1 = 0, D2 = 1}, “Embedded” became {D1 = 1, D2 = 0},
“Organic” became {D1 = 0, D2 = 0}.

As Fig. 40 shows, the number of projects where a scope
error would occur increased from two (26 and 24, in Fig.
39) to six (36, 39, 13, 37, 40, and 38, in Fig. 40). Notice that,
the accuracy in terms of RE was similar to the previous
one. The comparison can be made by calculating the
mean and the standard deviation of the relative error on
the same test set for both models [BOEHM81],
[CONTE86], [MYRTVEIT05]. The linear model has
Mean(RETsS) = -0.525 and STD(RETsS) = 3.116. The linear
model with dummy variables has Mean(RETsS) = -0.740
and STD(RETsS) = 2.751. Therefore, the former is less bi-
ased than the latter, i.e. its Mean(RETsS) is closer to zero
than the latter. However, the former has a higher spread
than the latter, i.e. the STD(RETsS) of the former is greater
than the STD(RETsS) of the latter. Since many organiza-
tions are still using MMRETsS, we also show this statistic
(see Section 3.2 for its definition and the discussion about
its inappropriateness for comparison [KITCHEN-

 43

HAM01]). The linear model has MMRETsS = 2.396 and the
linear model with dummy variables has MMRETsS = 2.214.
Based on the discordant statistics, we concluded that the
former and the latter have similar accuracy with respect
to the considered data set.

It is worth noting that, the error prediction interval on
project 25 became unbiased while the interval on project
38 became biased. This is because of the splitting effect
discussed above, which increased the occurrence of scope
errors. As a practical consideration, even though using
categorical variables may increase the EM accuracy in
terms of RE, the risk of getting a scope error may increase.
This is why using categorical variables should be done
with care.

We also considered the other categorical variables in
Table 4. However, the results in terms of magnitude of
error prediction interval were similar to the one shown in
Fig. 40 and in some cases were even worse (not shown).

7.2.8 Improving the model shape (logarithmic transfor-
mation)
We tried to improve the model by considering a loga-
rithmic transformation. The logarithmic transformation
provides a non-linear model that is linear in the-
parameters for which the least squares estimates can be
calculated without using iterative procedures. Unlike the
linear model, the logarithmic model provides much more
accurate and less risky estimates than the linear model.

To build the log-linear model, we considered only nu-
meric variables in Table 4, i.e. the dependent variable
(DV) was the “Effort” and the independent variables (IVs)
were the “Size” and the “15 COCOMO-I multipliers”.
Then, we calculated the logarithm of each value and ap-
plied the least squares procedure for estimating the
model parameters. To build the BDF, we followed a pro-
cedure with the same settings as the one shown above.
Then, we used the BDF to calculate the error prediction
intervals (Fig. 41).

Fig. 41. Model improvement by applying a log-linear transformation.

The EM provided valid estimates (non-negative) for all
of the projects considered. In Fig. 41, the vertical intervals
represent the 95% (Bayesian) error prediction intervals for
the considered projects. The diamonds are the actual RE
values and the crossed circles are the expected RE values
(the median). As we can see in Fig. 41, all of the intervals

were acceptable and valid, i.e. they included the expected
RE (the median), except for project 38 in which the inter-
val does not include the expected error (“EXT”). Based on
the decision algorithm in Fig. 28 (2.b), we concluded that
the EM would cause a scope error on project 38. Con-
versely, the EM would not provide any scope error on the
remaining projects.

The outlier analysis shows that there are only three
data points that fall outside the interval (33, 24, and 21). It
is worth noting that, the EM is much less risky than the
linear one. In fact, only four intervals exceed the accept-
able RE limit of 0.3 (36, 37, 52, and 22), while the linear
model had 8 intervals exceeding the limit (rectangles in
Fig. 39) and the linear model with dummy variables had
10 unaceptable intervals (rectangles in Fig. 40). Except for
project 38, all of the intervals were unbiased.

To calculate the estimate prediction interval related to
the RE intervals in Fig. 41, we applied Exn. (9). The re-
sults are shown in Fig. 42, where the vertical intervals are
the (Bayesian) estimate prediction intervals for the project
considered, “X” stands for the actual effort, and “–”
stands for the estimated effort by the log-linear EM.

Fig. 42. Estimate (effort) prediction intervals related to Fig. 41.

As Fig. 42 shows, the estimation model was definitely
improved with respect to the linear one (Fig. 37). In fact,
all of the estimates fell within the expected range except
for projects 33, 24, and 21 (outliers) and project 38 (unac-
ceptable scope error).

Fig. 43. Comparison of prediction intervals calculated by the tradi-
tional methodologies and the proposed one (worst case).

44

In Fig. 43, we again look at a worst case scenario (ex-
amining the upper prediction interval endpoints to esti-
mate the risk). We compared the (effort) prediction inter-
vals calculated by the traditional methodologies (solid
rectangles in Fig. 43) and the ones provided by the pro-
posed approach (the unfilled rectangles in Fig. 43). As we
can see in Fig. 43, the proposed approach was definitely
able to shrink the intervals. The only actual effort value
that fell outside the interval was on project 38.

As an application of the proposed approach, before
undertaking a project, a software organization may use
the upper endpoints of the rectangles in Fig. 43 to figure
out whether the risk of a failure (e.g. exceeding the
schedule, budget, and quality) would be acceptable. In
particular, the approach is able to provide a useful risk
evaluation in quantitative terms that traditional method-
ologies cannot yield because the intervals produced are
too large and the regression assumptions are violated.

7.2.9 Including (relevant categorical variables)
Based on Fig. 41, we can continue to improve the model
in terms of accuracy and risk by applying the approach
again, e.g. including categorical variables in the model.
We tried to consider the same categorical variable as the
one taken for the linear model, i.e. “Mode” (Table 4). To
this end, we applied the same dichotomous (dummy)
coding as above. The result is shown in Fig. 44.

Fig. 44. Error prediction intervals for the log-linear model with the
categorical variable “Mode”.

Unlike Fig. 40, the categorical variable “Mode” is relevant
for the log-linear model. In fact, all of the error prediction
intervals have been shrunk and made unbiased. In par-
ticular, the intervals on projects 36, 37, 52, and 22 (squares
in Fig. 41) turned into acceptable intervals (circles in Fig.
44). However, the relative error on project 37 turned in an
outlier. Instead, the interval on project 38 turned into a
valid one, even though the relative error became an out-
lier.

From an accuracy point of view, the variable “Mode”
did not improve the model. In fact, the model without
categories (Fig. 41) has Mean(RETsS) = -0.005, STD(RETsS) =
0.045, and MMRETsS = 0.030. The model with categories
(Fig. 44) has Mean(RETsS) = -0.026, STD(RETsS) = 0.049, and
MMRETsS = 0.044. From an uncertainty (risk) point of
view, however, the latter is less risky than the former be-

cause the magnitude of the intervals in Fig. 44 is less than
the magnitude of the ones in Fig. 41. Another interesting
effect is that, the categorical variable “Mode” was unable
to improve the linear model in terms of uncertainty (Fig.
40) but, it was able to improve the log-linear one (Fig. 44).
From a computational point of view, if we select some
dummy variables as relevant for a model (e.g. linear) and
then turn the model into another model (e.g. log-linear or
non-linear) having the same variables as the former, the
relevance of the dummy variables has to be rechecked.

7.2.10 Using uncertainty for model comparison
The uncertainty analysis presented in this work has an
important implication for software organizations and
practitioners in terms of model comparison. Analyses in
Fig. 41 and Fig. 44 show that, one estimation model can
be more accurate than another, even though the former
may be more risky than the latter. Therefore, unlike tradi-
tional approaches, model selection should be based upon
both accuracy and uncertainty.

Before claiming that one model is “better” than an-
other, however, an organization should specify the nature
of the comparison and the context where the comparison
is made. For instance, one should say that a model is bet-
ter than another in terms of accuracy (or in terms of un-
certainty/risk) and select the one that is more appropriate
with respect to organization’s goals. In the example
shown above, an organization aiming at accuracy should
select the log-linear model without categories (Fig. 41).
An organization aiming at shrinking the uncertainty
should select the the log-linear model with categories
(Fig. 44). It is worth noting that, some authors [MCCON-
NELL06], [JØRGENSEN03], however, argue that provid-
ing one-point estimates (i.e. aiming at accuracy) is ineffec-
tive and even misleading. Organizations should aim at
uncertainty, i.e., estimates should always be provided in
terms of prediction intervals (two-point estimates) be-
cause two-point estimates are more realistic and useful
for software organizations.

7.2.11 Proving that “outliers” behave as outliers
With respect to Fig. 44, we rebuilt the log-linear estima-
tion model with the same categories as above by includ-
ing only outliers (33, 37, 24, 21, and 38). The result is
shown in Fig. 45.

Fig. 45. Error prediction intervals for the log-linear model with the

 45

categorical variable “Mode” trained with five more outliers in Fig. 44.

From an accuracy point of view, the model in Fig. 44 is
less accurate than the one in Fig. 45 because the former
has Mean(RETsS) = -0.026, STD(RETsS) = 0.049, and
MMRETsS = 0.044, while the latter has Mean(RETsS) = -
0.007, STD(RETsS) = 0.045, and MMRETsS = 0.035. This re-
sult was predictable because five projects in Fig. 45 (i.e.
the outliers of Fig. 44) were included in the estimation
model training. Therefore, only 11 projects out of 16 were
independent from the remaining projects. Table 9 shows
the relative errors of both models (i.e. models in Fig. 44
and Fig. 45) on those projects.

From an uncertainty point of view, however, the effect
of including outliers in the training set of the model in
Fig. 45 made the uncertainty worse as we expected (com-
pare the magnitude of the intervals of both figures). In
particular, the intervals on projects 36, 52, 22, and 38 in-
creased insofar as their magnitude exceeded the accept-
ability threshold (RE = 0.3).

TABLE 9
RELATIVE ERROR COMPARISON

Note that, both models have 5 outliers, three in com-
mon (33, 24, and 21) and two different (52 and 25 in Fig.
44, and 37 and 38 in Fig. 45). The log-linear model with
dummy variables is unable to explain these points be-
cause of the model error, which can be removed if and
only if further explanatory variables are included in the
model and /or a more suitable (flexible) model is consid-
ered. So, we tried to use a non-linear model (MLFFNN),
but we did not get any significant improvement (not
shown). We concluded that the improvement depended
on the lack of some relevant variables, rather than the
model shape/complexity. Then, we stopped trying to
improve the model because we used up all the variables
available in the COCOMO NASA data set.

7.2.12 Proving that “non-outliers” behave as non-
outliers

With respect to Fig. 44, we also rebuilt the log-linear
estimation model with categories by not including the
outliers and using the remaining projects, i.e. 36, 39, 26,
34, 13, 35, 40, 52, 23, 25, and 22. The result is shown in Fig.
46.

Fig. 46 shows the expected result, i.e. the magnitude of
the error prediction intervals did not increase with re-
spect to Fig. 44. Nevertheless, from an accuracy point of
view, the model in Fig. 46 did not improve. In fact, it has
Mean(RETsS) = -0.024, STD(RETsS) = 0.198, and MMRETsS =
0.146. Note that, the model in Fig. 46 has three outliers as
the model in Fig. 44 (33, 24, and 21). It has three more out-
liers (36, 52, and 25), and two fewer outliers (37 and 38)
than the model in Fig. 44. The outliers in Fig. 46 are the

same as the ones in Fig. 45, apart from project 36, where
the interval did not include the actual RE. This means
that, actually the log-linear model with dummy variables
is not able to explain these points confirming the conclu-
sions made above.

Fig. 46. Error prediction intervals for the log-linear model with the
categorical variable “Mode” trained with eleven non-outliers in Fig.
44.

7.2.13 Discussion
Analyses in Fig. 44, Fig. 45, and Fig. 46 show that the un-
certainty (risk) calculated by the (Bayesian) prediction
interval on the relative error is more stable and reliable
for evaluating and selecting estimation models than using
some summary statistics on the relative error expressing
the estimation model accuracy.

This case study shows that, to improve the accuracy of
the linear estimation model, we have to change the model
shape (i.e. applying a logarithmic transformation). To
improve the model from an uncertainty point of view, we
have to include the categorical variable “Mode” in the
log-linear model. Moreover, the case study shows that,
further rebuilding the EM with either oultiers or non-
outliers does not improve the accuracy. Nevertheless,
rebuilding the model with non-outliers does not increase
the uncertainty. Therefore, it is acceptable to include non-
outliers as expected.

It is important to note that, the outlier analysis given
above provides a criterion that we can use to drop those
data points that worsen the estimation model in terms of
accuracy and uncertainty. This means that, once we build
the BDF we can use it for selecting those data points that
are less risky for building a new version of the estimation
model, dropping the ones that deteriorate the model. Of
course, this criterion can be used to remove from the data
set old data points, as well. Thus, by applying the speci-
fied analysis, we can get a less risky model over time.

Based on the uncertainty analysis, before predicting a
new project, we should consider different models as
stated above and select the one that provides the least
risk. Once the most accurate and least risky model has
been selected among those considered and we can use the
model for predicting new projects and continue improv-
ing the model repeatedly.

46

8 CONCLUSION
The problem addressed in this work was that the tradi-
tional methodologies for estimating prediction intervals
(i.e. the most probable interval where the next estimate
will fall) of parametric models provide intervals that are
too wide to be useful in terms of prediction accuracy and
model improvement. This is because, unlike the Bayesian
statistics, frequentist statistics (traditional approaches)
exclude the opportunity of using posterior information.
Traditional approaches only use prior information. In-
cluding posterior information in the statistics calculation
allows the shrinking of prediction intervals. We showed
that the traditional methodologies do not take into ac-
count the fact that assumptions on which the estimation
models are based may not hold (Section 3.1.1). We
showed that the estimation risk analysis performed by
traditional methodologies might be incorrect because they
do not deal with the consequences of violations (Section
3.1.2).

We provide an alternative point of view to the tradi-
tional way of improving the accuracy of estimation mod-
els. We not only try to improve the model as traditional
methodologies do, but also correct the estimates by ana-
lyzing the estimation error trend of the model over its
history of application. Unlike current research, we focus
on defining a strategy for improving the model over time
by assessing the actual errors versus the expected error
ranges. We use the uncertainty as a discrimination pa-
rameter, not only the accuracy as usually done. To ana-
lyze the estimation error trend of the model, we define an
additional model based on a specific multi-layer neural
network for discrimination, which helps us calculate the
estimation error of the model, without making specific
assumptions. Once we know the estimation error trend of
the model, we can correct the estimates, improving the
accuracy of the model.

This new point of view is based on the fact that, any
model is a limited representation of the reality. Therefore,
errors cannot be removed completely. That is why we use
an additional model (e.g. the neural network for dis-
crimination) for overcoming the limitations of the estima-
tion model (Section 6.1). These limitations concern the fact
that, estimation models violate assumptions on which
they are built without dealing with the consequences of
those violations. Moreover, unlike traditional techniques,
the defined neural network is able to cope with scope
(Sections 3.2.6 and 6.5.2) and assumption errors (Sections
3.2.7 and 6.5.3), as well. To highlight the impact of viola-
tions against the estimation model, we use the neural
network because it is based on the Bayesian paradigm,
which can consider all of the available information (prior
and posterior information) as explained above.

Another important point discussed in this work is that,
traditional estimation approaches use accuracy to select
the best model. Then, based on the organization’s history,
they find an estimation model that is able to improve the
accuracy calculated by some summary statistics over the
estimation error. This is not a suitable way of improving
the accuracy because it depends on the statistics used for
evaluating the accuracy. The approach proposed in this

work is based upon evaluating and selecting candidate
estimation models by uncertainty, which is invariant with
respect to the accuracy statistics (Section 7.2.10). In other
words, the approach selects the least risky model by un-
certainty. This means that, instead of finding the most
accuracte model, we find the least risky model (i.e. having
the least uncertainty). However, to apply such an ap-
proach, we need a methodology that is able to provide
narrow an uncertainty range and is based on avoiding
any assumption over the model. That is why we defined
the proposed approach extending the traditional method-
ologies.

8.1 Benefits and drawbacks
Benefits of applying the proposed approach are that the
approach
− supports learning organizations because it focuses on

evolving the estimation model over time,
− is based on an Estimation Improvement Process (EIP)

that makes the approach formal, traceable, repeatable,
and improvable over time,

− introduces the concept of packaging the experience of
using the estimation model into a feed-forward multi-
layer neural network, therefore it facilitates packag-
ing, storing, delivering and exploiting the experience
of an organization over time,

− can deal with the scope error, assumption error, and
model error at the same time,

− defines an “a priori” strategy to mitigate the estima-
tion risk by considering all kinds of errors,

− shrinks the magnitude of the prediction intervals to
make them useful for prediction and model improve-
ment,

− allows comparing models in terms of uncertainty and
accuracy at the same time,

− is not based on any specific assumptions,
− can be applied to estimating any software engineering

variable such as effort, size, defects, number of test
cases, fault proneness over any stage of the project
(e.g. inception, construction); the approach does not
care about the development process hence it can be
used for iterative, agile, and traditional development
processes,

− improves the competitive advantage of learning or-
ganizations by improving the estimation model over
time; the approach does not focus on finding a un-
reachable best estimation model, but it deals with im-
proving the parametric model that each organization
uses and trusts,

− is able to perform a similarity analysis in terms of risk
between the historical projects and the one being esti-
mated, i.e. the approach can answer questions like the
following, what is the estimation uncertainty on this
project considering its similarities with my past pro-
jects?

− can be implemented as a stand-alone estimation
methodology or used for supporting experts and or-
ganizations together with other estimation techniques.
Software applications based on such an approach off-
load the complexity of dealing with neural networks

 47

to experts and allow project managers to rely on effec-
tive and powerful automatic tools for analyzing esti-
mation risk and improving the estimation model

− helps the highest organizational management make
proactive strategic decisions by checking automati-
cally over time whether the software development en-
vironment is changing with respect to its history,

− can be implemented as a support software tool and
used by organizations that apply human-based esti-
mation methodologies,

− is modular insofar as it can be eventually improved by
new findings. Modularity allows us to apply the ap-
proach partially, e.g. we may only run the similarity
analysis or check whether our estimation process is
improving over time,

− The proposed approach has a few drawbacks. The
approach requires

− being able to apply neural networks and their optimi-
zation techniques,

− a support software tool implementing the overall pro-
cedure,

− the expense of rerunning the training procedure for
enhancing the estimation model capabilities as the his-
tory grows,

− spending non-negligible time for training the network.
What we proposed in this paper is of course a first step

towards using computational intelligence techniques for
dealing with statistical problems that traditional method-
ologies have not solved. We hope that researches and
practitioners will contribute to enhance and consolidate
research in this rising field of software engineering that
promises fascinating solutions.

8.2 Future work
In this work, we have argued the theoretical benefits of
the proposed approach and demonstrated its use on exist-
ing model and data (i.e., regression functions calibrated
on the COCOMO-NASA data set). However, we did not
empirically evaluate our results against the results that
traditional improvement methodologies can yield. To this
end, we are planning a comparative analysis between the
proposed approach and the traditional ones.

Further future work is aimed at experiments to in-
crease confidence in the use of uncertainty as a selection
criterion for estimation models. We believe that uncer-
tainty can be a keystone for eventually evaluating models
in a consistent way.

Ideally, we would like to run a pilot study, where we
apply the approach to a real software development envi-
ronment allowing an organization to control strategically
their estimation capability (Fig. 21). The organization
could use the methodology to make proactive decisions
about the organization’s future, e.g. evaluating whether
variables are changing in the organization, knowing
whether new variables are required for figuring out the
environment, assessing changes, evaluating development
tools, and evaluating people in terms of capability and
productivity.

ACKNOWLEDGMENT
The authors wish to thank people from the Fraunhofer

Center Maryland (USA), University of Maryland, and
Simula Labs (NO) for discussing the topics presented
above, and providing suggestions for improvement.

REFERENCES
[AHA96] D.W. Aha, and R.L. Bankert, “A comparative evaluation of sequen-
tial feature selection algorithms”, Artificial Intelligence and Statistics,
Springer-Verlag, NY, 1996.
[AITKEN95] C.G.G. Aitken, “Statistics and the Evaluation of Evidence for
Forensic Scientists,” New York, J. Wiley & Son. 1995.
[ANGELIS00] L. Angelis, I. Stamelos, “A Simulation Tool for efficient anal-
ogy based cost estimation,” Empirical Software Engineering, Vol. 5, no. 1, pp.
35-68, March 2000.
[BAILEY81] J W. Bailey, V.R. Basili, “A meta-model for software develop-
ment resource expenditures,” in Proceeding of the 5th International Confer-
ence on Software Engineering, pp. 107-116, 1981.
[BAIN92] L.J. Bain, M. EngelHardt, “Introduction to Probability and Mathe-
matical Statistics,” PWS-Kent, Boston, 1992.
[BARRON93] A. Barron, “Universal approximation bounds for superposi-
tion of a sigmoidal function”, IEEE Transaction on Information Theory, 39,
pp. 930-945, 1993.
[BASILI92] V. R. Basili, G. Caldiera, and G. Cantone, “A Reference Architec-
ture for the Component Factory,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), Vol. 1(1): 53-80, January 1992.
[BASILI94a] V. R. Basili, G. Caldiera, H. D. Rombach, “Goal Question Metric
Paradigm,” In Encyclopedia of Software Engineering, Ed. J.J. Marciniak, John
Wiley & Sons, 1994.
[BASILI92B] V. R. Basili, G. Caldiera, H. D. Rombach, “The Experience Fac-
tory,” In Encyclopedia of Software Engineering, Ed. J.J. Marciniak, John
Wiley & Sons, 1994.
[BASILI95] V.R. Basili, “Software Quality Assurance and Measurement: A
Worldwide perspective,” Applying the Goal/Question/Metric Paradigm in
the Experience factory, Chapter 2, pp. 21-44, International Thomson Com-
puter Press, 1995.
[BASILI88] V.R. Basili and H.D. Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Transactions on
Software Eng., vol. 14, #6, June 1988.
[BASILI84] V.R. Basili and D. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software Engineering, pp.
728-738, November 1984.
[BINGUS96] J. P. Bingus, “Data Mining With Neural Networks: Solving
Business Problems From Application Development to Decision Support,”
McGraw-Hill, NY, 1996.
[BISHOP95A] C. Bishop, “Neural Network for Pattern Recognition,” Oxford
University Press, 1995.
[BISHOP95B] C. Bishop and C.S. Qazaz, “Bayesian inference of noise levels in
regression,” ICANN95, EC2 & Cie, Paris, pp. 59-64, 1995.
[BOEHM81] B.W. Boehm, “Software Engineering Economics,” Prentice Hall,
1981.
[BRIAND92] L.C. Briand, V.R. Basili , and W. Thomas, “A pattern recognition
approach to software engineering data analysis”, IEEE Transactions on Soft-
ware Engineering, 18 (11), pp. 931-942, 1992.
[BRIAND99] L.C. Briand, K. El-Emam, K. Maxwell, D. Surmann, and I.
Wieczorek, “An Assessment and Comparison of Common Cost Software
Project Estimation Methods,” Proc. 21st Int’l Conf. Software Eng. (ICSE 21),
pp. 313-322, 1999.
[BRIAND99] L.C. Briand, T. Langley, and I. Wieczorek, “A Replicated As-

48

sessment and Comparison of Common Software Cost Modeling Tech-
niques,” Proc. Int’l Conf. Software Eng. (ICSE 22), pp. 377-386, 2000.
[BROCK03] S. Brock, D. Hendricks, S. Linnell, D. Smith, “A Balanced Ap-
proach to IT Project Management”, ACM, SAICSIT’03, Sep. 2003.
[BUSEMEYER00] J.R. Busemeyer, and Y.M. Wang, “Model comparisons and
model selections based on generalization criterion methodology,” Journal of
Mathematical Psychology, 44(1), 171-189, 2000.
[CANTONE00] G. Cantone, P. Donzelli, “Production and Maintenance of
Goal-oriented Measurement Models,” World Scientific, Vol. 10, no. 5, pp. 605-
626, 2000.
[CHEN05] Z. Chen, T. Mezies, D. Port, B.W Boehm, “Feature Subset Selection
Can Improve Software Cost Estimation Accuracy”, PROMISE ‘05, ACM,
Missouri USA, pp. 1-6, 2005.
[CHULANI99] S. Chulani, B.W. Boehm and B. Steece, “Bayesian analysis of
empirical software engineering cost models,” IEEE Transactions on Software
Engineering 25(4): 573-583, 1999.
[CMMI] CMMI Product Team, “Capability Maturity Model Integration
(CMMI) Version 1.1,” TR-012, CMU/SEI, pp. 397-416, 2002.
[COCOMO2] The COCOMO II Suite, http://sunset.usc.
edu/research/cocomosuite/index.html, 2004.
[CONTE86] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, “Software Engineer-
ing Metrics and Models,” Benjamin-Cummings, Menlo Park CA, 1986.
[DREYFUS05] G. Dreyfus, “Neural Networks Methodology and Applica-
tions,” Springer, 2005.
[EFRON93] B. Efron and R.J. Tibshirani, “An Introduction to the Boot-
strap,” Chapman & Hall, NY, 1993.
[ENGLE82] R.F. Engle, “Autoregressive Conditional Heteroscedasticity with
estimates of Variance of United Kindom Inflaction,” Econometrica, Vol. 50,
pp. 987-1007, 1982.
[FEIGENBAUM56] A.V. Feigenbaum, “Total Quality Control,” pp. 93-101,
November-December, 1956.
[FENTON93] N. E. Fenton, “Software Metrics - A Rigorous Approach”,
Chapman & Hall, 1993.
[FENTON99] N.E. Fenton and M. Neil, “Software Metrics: Successes, Failures
and New Directions,” J. Systems and Software, vol. 47, nos. 2-3, pp. 149-157,
1999.
[FENTON00] N.E. Fenton and M. Neil, “Software Metrics: Roadmap,” The
Future of Software Eng., A. Finkelstein, ed., pp. 357-370, 2000.
[FINNIE97] G. Finnie, G. Wittig, and J.-M. Desharnais, “A comparison of
software effort estimation techniques using function points with neural net-
works, case based reasoning and regression models”, J. of Systems & Soft-
ware, 39: pp281-289, 1997.
[FOSS03] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A Simulation
Study of the Model Evaluation Criterion MMRE,” IEEE Trans. Software Eng.,
vol. 29, no. 11, pp. 985-995, Nov. 2003.
[GENERO05] M. Genero, M. Piattini, and C. Calero, “Metrics for Software
Conceptual Models, Imperial College Press, 2005.
[GILKS96] SW R. Gilks, R. Richardson, and D.J. Spiegelhalter, “Markov
Chain Monte Carlo in Practice,” Chapman & Hall, London, 1996.
[GREENE97] W.H. Greene, Econometric Analysis, 3rd edn. (Prentice-Hall,
Upper Saddle River, NJ, 1997).
[GULEZIAN91] R. Gulezian, “Reformulating and calibrating COCOMO”, J.
of Systems & Software, 16: pp235-242, 1991.
[GUYON05] Guyon, S. Gunn, M. Nikravesh, L. Zadeh, “Feature Extraction
foundations and applications,” Springer, 2005.
[HAGAN94] M.T. Hagan, M.B. Menhaj, “Training Feedforward Networks
with the Marquardt Algorithm,” IEEE Transactions on Neural Networks,
vol. 5, no. 6, Nov. 1994.
[HIGUERA96] R.P. Higuera, “Software Risk Management.” TR-012
CMU/SEI, pp. 1-48, 1996.

[HUBER81] P. J. Huber, “Robust Statistics,” Wiley, 1981.
[HWANG97] J.T. G. Hwang and A.A. Ding, “Prediction Intervals for Artifi-
cial Neural Networks,” Journal of American Stastistical Association, Vol. 92,
no. 438, pp. 748-757, 1997.
[HUSMEIER04] D. Husmeier, R. Dybowski, and S. Roberts, “Probabilistic
Modeling in Bioinformatics and Medical Informatics,” Springer, 2004.
[JEFFERY90] R. Jeffery, and G. Low, “Calibrating estimation tools for soft-
ware development,” Software Engineering Journal, 5(4), pp215-221, 1990
[JOHN94] G. John, R. Kohavi, K. Pfleger, “Irrelevant features and the subset
selection problem,” 11th Intl. Conference on Machine Learning, Morgan
Kaufmann, pp. 121-129, 1994.
[JOLLIFE96] I.T. Jollife, “Principal Component Analysis,” Springer, 1986.
[JØRGENSEN95] M. Jørgensen, “Experience With the Accuracy of Software
Maintenance Task Effort Prediction Models,” IEEE TSE, 21(8), pp. 674-681,
August 1995.
[JØRGENSEN04A] M. Jørgensen, “Regression Models of Software Devel-
opment Effort Estimation Accuracy and Bias,” Empirical Software Engineer-
ing, Vol. 9, 297-314, 2004.
[JØRGENSEN07] M. Jørgensen, and M. Shepperd, “A Systematic Review of
Software Development Cost Estimation Studies”, IEEE Transactions on Soft-
ware Engineering, 33(1): pp. 33-53, 2007.
[JØRGENSEN03] M. Jørgensen and D.I.K. Sjøberg, “An Effort Prediction
Interval Approach Based on the Empirical Distribution of Previous Estima-
tion Accuracy” Journal of Information Software and Technologies 45: 123-
136, 2003.
[JØRGENSEN04B] M. Jørgensen, K. Teigen, and K. Moløkken, “Better sure
than safe? Overconfidence in judgment based software development effort
prediction intervals,” J. of Systems & Software, 70, pp79-93, 2004.
[KÄNSÄLÄ97] K. Känsälä, “Integrating Risk Assessment with Cost Estima-
tion,” IEEE software, pp. 61-66, May-July 1997.
[KAPLAN92] R. S. Kaplan, D. P. Norton, “The Balanced Scorecard – Meas-
ures that drive Performance,” Harvard Business Review 70, Nr. 1, 1992.
[KAPLAN96A] R. S. Kaplan, D. P. Norton, “Using the BSC as a Strategic
Management,” Harvard Business Review 74, Nr. 1, 1996.
[KAPLAN96B] R.S. Kaplan, D.P. Norton, “The Balanced Scorecard: Translat-
ing Strategy into Action,” Harvard Business Press, Boston, 1996.
[KARUNANITHI92] N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Using
Neural Networks in Reliability Prediction,” IEEE Software, vol. 9, no. 4, pp.
53-59, 1992.
[KEMERER87] C.F. Kemerer, “An Empirical Validation of Software Cost
Estimation Models,” ACM Comm., vol. 30, no. 5, pp. 416-429, May 1987.
[KEUNG08] J.W. Keung, B. A. Kitchenham, and D. R. Jeffery, “Analogy-X:
Providing Statistical Inference to Analogy-Based Software Cost Estimation,”
IEEE Trans. On Software Engineering, (34) 4, pp. 1-14, 2008.
[KHOSHGOFTAAR97] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and
S. J. Aud, “Neural Networks for Software Quality Modeling of a Very Large
Telecommunications System,” IEEE Trans. on Neural Networks, (8)4, pp.
902-909, 1997.
[KHOSHGOFTAAR95] T. M. Khoshgoftaar and D. L. Lanning, “A Neural
Network Approach for Early Detection of Program Modules Having High
Risk in the Maintenance Phase,” J. Systems Software, 29(1), pp. 85-91, 1995.
[KHOSHGOFTAAR94] T. M. Khoshgoftaar, D. L. Lanning, and A. S.
Pandya, “A comparative-study of pattern-recognition techniques for quality
evaluation of telecommunications software,” IEEE Journal on Selected Areas
In Communications, 12(2):279-291, 1994.
[KIRSOPP02A] C. Kirsopp, and M. Shepperd, “Case and Feature Subset
Selection in Case-Based Software Project Effort Prediction”, Research and
Development in Intelligent Systems XIX, Springer-Verlag, 2002.
[KIRSOPP02B] C. Kirsopp, and M. Shepperd, “Making inferences with small
numbers of training sets,” IEE Proceedings- Software, 149(5), 2002.

 49

[KITCHENHAM04] B. Kitchenham, T. Dyb°a, and M. Jørgensen, “Evidence-
based Software Engineering”, Proc. of 27th IEEE Intl. Softw. Eng. Conf. (ICSE
2004), Edinburgh: IEEE Computer Society, 2004.
[KITCHENHAM97] B. Kitchenham and S. Linkman, “Estimates, Uncer-
tainty, and Risk.” IEEE Software, 14(3), pp. 69-74, May-June 1997.
[KITCHENHAM01] B. Kitchenham, S. MacDonell, L. Pickard, and M. Shep-
perd, “What accuracy statistics really measure,” IEE Proceedings - Software
Engineering, 48, pp81-85, 2001.
[KNOR98] E.M. Knor and R.T. Ng, “Algorithm for Mining Distance-Based
Outliers in Large Databases,” In VLDB, NY, 1998.
[KOHAVI97] R. Kohavi, G.H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, Vol. 97, no. 1-2, pp.273-324, 1997.
[LANUBILE97] F. Lanubile and G. Visaggio, “Evaluating predictive quality
models derived from software measures lessons learned,” J. Systems and
Software, 38:225-234, 1997.
[LINDVALL05] M. Lindvall, P. Donzelli, S. Asgari. V.R. Basili, “Towards
Reusable Measurement Patterns,” Proc. Of 11th IEEE Symposium on Soft-
ware Metrics, METRICS’05, 2005.
[MACKEY91] D.J.C. MacKey, “Bayesian Models for Adaptive Models, ”
Ph.D. Thesis, California Institute of Thecnology, Pasadena, CA, USA, 1991.
[MAIR00] C. Mair, et al., “An investigation of machine learning based predic-
tion systems”, J. of Systems & Software, 53(1) pp23-29, 2000.
[MCCONNELL06] S. McConnell, “Software Estimation, Demystifying the
Black Art” Microsoft press, 2006.
[MCGARRY02] J. McGarry, D. Card, J. Cheryl, B. Layman, E. Clark, J. Dean,
and F. Hall, “Practical Software Measurement – Objective Information for
Decision Makers”, Addison-Wesley, 2002.
[MCQUARRIE98] A.D.R. McQuarrie, C. Tsai, “Regression and Time Series
Model Selection,” World Scientific, 1998.
[MEZIES05] T. Menzies, D. Port, Z. Chen, J. Hihn, “Validation Methods for
Calibrating Software Effort Models”, Proc. 27st Int. Conf. Software Eng.
(ICSE), 2005.
[MIYAZAKI94] Y. Miyazaki, et al., “Robust Regression for Developing Soft-
ware Estimation Models”, J. of Systems & Software, 27(1) pp3-16, 1994.
[MOJIRSHEIBANI96] M. Mojirsheibani and R. Tibshirani, “Some Results on
Bootstrap Prediction Intervals,” Statistical Society of Canada, 1996.
[MOSES00] J. Moses and J. Clifford, “Learning How to Improve Effort Esti-
mation in Small Software Development Companies,” Proc. 24th Ann. Int’l
Computer Software and Applications Conf. (COMPSAC), pp. 522-527, 2000.
[MYRTVEIT99] I. Myrtveit, E. Stensrud, "A controlled experiment to assess
the benefits of estimating with analogy and regression models," IEEE Trans-
action on Software Engineering 25(4), pp. 510-525, 1999.
[MYRTVEIT04] I. Myrtveit, E. Stensrud, "Do Arbitrary Function Approxima-
tors make sense as Software Prediction Models?," 12 International Workshop
on Software Technology and Engineering Practice, pp. 3-9, 2004.
[MYRTVEIT05] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and
Validity in Comparative Studies of Software Prediction Models,” IEEE Trans.
Software Eng., vol. 31, no. 5, pp. 380-391, May 2005.
[NEUMANN02] D.E. Neumann, “An Enhanced Neural Network Technique
for Software Risk Analysis,” Trans. on Soft. Eng., Vol. 28, no. 9, pp. 904-912,
Sept. 2002.
[NIX94] A.D. Nix and A.S. Weigend, “Estimating the mean and variance of
the target probability distribution,” IEEE International Conference of Neural
Networks, Vol. 1, pp. 55-60, New York, 1994.
[OHSUGI07] N. Ohsugi, A. Monden, N. Kikuchi, M.D. Barker, M. Tsunoda,
T. Kakimoto, K. Matsumoto, “Is This Cost Estimate Reliable? – The Relation-
ship between Homogeneity of Analogues and Estimation Reliability.” Em-
pirical Software Engineering and Measurement, pp. 384-392, Sept. 2007.
[PAPADIMITRIOU03] S. Papadimitriou, H. Kitagawa, P. Gibbous, and C.
Faloutsos, “Loci: Fast outlier detection using the local correlation integral,”

2003.
[PARK96] R. E. Park, W. B. Goethert, W. A. Florac, “Goal-Driven Software
Measurement,” Handbook CMU/SEI-96-HB-002, SEI, August 1996.
[PENDHARKAR05] P.C. Pendharkar, G.H. Subramanian, J.A. Rodger, “A
Probabilistic Model for Predicting Software Dvelopment Effort”, Transaction
on Soft. Eng., Vol. 31, no. 7, pp. 615-624, July 2005.
[PEDHAZUR97] E.J. Pedhazur, “Multiple Regression in Behavioral Re-
search,” Orlando, FL, Harcourt Brace, 1997.
[RAO73] C.R. Rao, “Linear Statistical Inference and Its Applications,” NY, J.
Wiley & Sons, 2nd Ed., 1973.
[RUMELHART86] D.E. Rumelhart, G.E. Hilton, R.J. Williams, “Learning
Internal Representations by Error Propagation,” Parallel Distributing Com-
puting: Explorations in the Microstructure of Cognition, pp. 318-362, MIT
press, 1986.
[SAMSON97] B. Samson, D. Ellison, and P. Dugard, “Software Cost Estima-
tion Using an Albus Perceptron (CMAC),” Inform. and Software Technol-
ogy, vol. 39, nos. 1/2, 1997.
[SARCIA07] S.A. Sarcia, G. Cantone, V.R. Basili, “A Statistical Neural Net-
work Framework for Risk Management,” ICSOFT’07, Barcelona, SP, 2007.
[SARCIA08] S.A. Sarcia, G. Cantone, V.R. Basili, “Adopting Curvilinear
Component Analysis to Improve Software Cost Estimation Accuracy,”
EASE08, Bari, Italy, 2008.
 [SHEPPERD07A] M. Shepperd, “Software project economics: a roadmap,”
FOSE’07, IEEE, 2007.
[SHEPPERD97B] M.J. Shepperd, and C. Schofield, “Estimate software project
using analogies”, IEEE Transaction on Software Engineering. 23 (12), pp. 736-
743, 1997.
[PROMISE] J.S. Shirabad, and T. Menzies, “The PROMISE Repository of
Software Engineering Databases,” School of Information Technology and
Engineering, University of Ottawa, Canada. http://promise.site.uottawa.ca
/SERepository, 2005.
[SOLINGEN99] R. van Solingen and E. Berghout, “The
Goal/Question/Metric Method,” McGraw Hill, 1999.
[SRINIVASAN95] K. Srinivasan and D. Fisher, “Machine Learning Ap-
proaches to Estimating Software Development Effort,” IEEE Trans. on Soft.
Eng., 21(2), pp. 126-137, February 1995.
[STENSRUD02] E. Stensrud, T. Foss, B. Kitchenham, I. Myrtveit, “An empiri-
cal Validation of the Relationship between the Magnitude of Relative Error
and Project Size,” Proc. of 8th IEEE Symposium on Software Metrics, MET-
RICS’02, 2002.
[STONE74] M. Stone, “Cross-validation choice and assessment of statistical
predictions,“ Journal of Royal Statistical Society, B 36, pp. 111-147, 1974.
[STOPPIGLIA03] H. Stoppiglia, G. Dreyfus, R. Dubois, Y. Oussar, “Ranking a
Random Feature for Variable and Feature Selection,” Journal of machine
Learning Research, pp. 1399-1414, 2003.
 [VARDEMAN92] S. B. Vardeman, "What About the Other Intervals?," The
American Statistician, 46, 193-197, 1992.
[VAPNIK95] V.N. Vapnik, “The Nature of Statistical Learning Theory,”
Springer, 1995.
[WEISBERG85] S. Weisberg, “Applied Linear Regression”, 2nd Ed., John
Wiley and Sons, NY, 1985.
 [WHITE80] H. White, “A heteroskedasticity-consistent covariance matrix
estimator and a direct test for heteroscedasticity,” Econometrica Vol. 48, pp.
817-838, 1980.
[WITTIG94] G.E. Wittig and G.R. Finnie, “Using Artificial Neural Networks
and Function Points to Estimate 4GL Software Development effort,” Austra-
lian J. Information Systems, vol. 1, no. 2, pp. 87-94, 1994.
[WOHLIN00] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A.
Wesslén, “Experimentation in Software Engineering – An Introduction”,
Springer, 2000.

