TR-638 Section V &R

through 5.%. For each aspect class, it is interesting to jointly
interpret the individual outcomes in an overall manner in order to
see something of how these higher-level issues are affected by the

factors of team size and methodological disciplines

Class l:'

Within Class I {(process aspects dealing with COMPUTER JOB
STEPS), there is strong evidence of an important difference among

the grouss, in favor of the disciplined methodology, with respect

"to average development costs. As a class, these aspects directly

reflect the freguency of computer system operations (i.e«, module

compilations and test program executions) during development.
They are one possible way of measuring machine costs, in units of
basic coperations rather than monetary charges. Assuming each
computer system ocperation involves a certain expenditure of the

programmer”s time and effort (e.g., effective terminat'contact;

test result evaluation), these aspects indirectiy reflect human

costs of development (at least that portion not devoted to design

WOrk) e

The strength of the evidence supporting a difference with

"respect to location compariscons within this class is based on both

{a) the near unanimity [8 out of % aspects] of the DT < AI = AT
cutcome and (b) the very tow critical levels [<.025 for 5 aspectsl
involved. 1Indeed, the single exception among the location
comparisoﬁs (AT = AT = PT on COMPUTER JOB STEPS\MODULE
COMPILATIONSVIDENTICAL)Y is readily explained as a direct
consequence of the fact that aii teams made essentially simitar
usage (or nonuse, in this case, since identical compilations were
not uncommon) of the on-Line storage capability (for saving
relocatable modules and thus avoiding identicatl recompilations).,

This was expected since all teams had been prouidgd with identical

'storage capability, but without any training or urging to use it.

The conclusions on location comparisons within this class are
interpreted as demonstrating that
o employment of the disciplined methodology by a

TR—OSE Section ¥ &9

programming team reduces the average costs, both machine
and humans of software development, relative to both
individual programmers and programming teams not
employing the methodology.
Exeminastion of the raw data scores themselves indicates the
magnitude of this reduction to be on the order of 2 to T (i.€a44

50%) or better.

With respect to dispersion comparisons within this class, the

evidence generally failed to make any distinctions among the

groups [AI = AT = DT on 7 out of 9 aspectsl. These null

conclusions in dispersion comparisons are interpreted as

-demonstrating that

variability of software development costs, especially
machine costs, is relatively insensitive to the factors
of programming team size and degree of methodological

discipline.

"The two exceptions on individual process aspects both deserve

mention. The COMPUTER JOB STEPS\MISCELLANEOUS aspect showed a

AT = DT < Al dispersion distinction among the groups, reflecting
the wider-spread behavior (as expected) of individual programmers
relative to programming teams in the area of building an=line
tools to indirectly support software development (e.ge,
stand~alone module drivers, one—-shcet auxiliary computations, table

generators, unanticipated debugging stubs, etcs). The MAX UNIQUE

COMPILATIONS F.A.0. MOBULE aspect showed a DT < AI = AT dispersion

distinction among the groups at an extremely low critical Llevel
[<.0051, reflecting the lower variation (increased predictabitity)
of the disciplined teams relative to the ad hoc teams and
jndividuals in terms of “worst case" compilation costs for any one
module. The additional AI < AT distinction for this comparison is

clearly attributable to the fact that several teams in group AT

“build moneolithic single-module systems, yielding rather inflated

raw scores for this aspect.

TR-€688 Section V 70

Within Class II (the process aspect PROGRAM CHANGES), there
is strong evidence of an impeortant difference among the groups,
again in favor of the disciplined methodology., with respect tc
average number of errors encountered during implementation.
Appendix 1 contains a deta{ted explanation of how program changes
are counteds This aspect directly reftects.the amount of textual
revision to the source code during {(postdesign) development. '
Claiming that textual revisions are generally necessitated by
errors encountered yhile building, testing, and debugging
softuarey recent research {[Dunsmore and Gannon 771 has confirmed a
high (rank order) correlation of total program changes (as counted
automatically according to a specific algorithm) with total error
occurrences {as tabulated manuatly from exhaustive scrutiny of
source cocde and test results)'during sgftware implementation.

This aspect is thus a reasonable measure of the relative number of
programming errofs encountered cutside of design worke Assuming
each textual revision involves a certain expenditure aof the
programmer”s effort (e.gey planning the revision, on-line editing
of source code), this aspect indirectly reflects the level of

human effort devoted to implementatione.

With respect to location comparison, the strength of the

evidence supporting a difference among the groups is based cn the .

very Llow criticai level [<.00%3 for the DT < AI = AT outcome. The

additional trend toward AI < AT is much less pronounced in the
data. The interpretation is that
the disciplined methodology effectively reduced the
average number of errors encountered during software
implementation.
This was expected since the methodology purposely emphasizes the
critica{ity cf the design phase and subjects the software design
(cocde) to through reading and review prioer to coding (key—-in or
testing), €nhancing error detectian and correction prier'to

implementation (testingl.

TR=-&EE Section V 71

With respect to dispersion comparison, no distinction among
the groups was apparent, with the interpretation that
variability in the number of errors encountered during
implementation was essentially uniform across alt three

programming environments considered.
Class I11: s

Within Class 1II (product aspects dealing with the gross size
of the software at various hierarchical levels), there is evidence
of certain consistent differences among the groups with respect to
both average size and variability of size. As a class, these
aspects directly reflect the number of objects and the average
numger of component (sublobjects per object, according to the
hierarchical organization (imposed by the programming language) of
thé software itself into bbjects such as modules, segments, data
variables, Llines, statements, and tokens.

Wwith respect to location comparisons within £:;;U£(;ss, the
non-null conclusions [7 out of 17 aspects] are nearly unanimous (5
out of 71 in the AI < AT = DT outcome. The interpretation is that
individuals tend to produce software which is smaller (in certain
ways) on the average than that produced by teams. It is unclear

whether such spareness of expression, primarily in segments,

-glebatl variabtes, and formal parameters, is advantageous or nct.

The two non-null exceptions te this AI < AT = DT trend deserve
menticny since the one is only nominally exceptional and actually

supportive of the tendency upon closer inspection, while the other

indicates a size aspect in which the disciplined methodology

"enablted programming teams to break out of the pattern of

distinction from individual programmers. The AT = DT < Al outcaome
on AVERAGE STATEMENTS PER SEGMENT is a simple consequence of the
outcome for the number of STATEMENTS (AI = AT = DT) and the
cutcceme for the number of SEGMENTS (AI < AT = pT) and it still
fits the overall pattern of AI # AT = DT on location differences

on size aspectse 0Gn the LINES aspect, the DT = AI < AT

distinction breaks the pattern since DT is associated with 21 and

TR-688 Section V ' 72

not with AT. Since the number of statements was roughily the same
for ali three groups, this difference must be due mainly to the
stylistic manner of arranging the source code (which was
free-format with respect to lLine boundaries), to the amount of

documentation comments within the source code, and to the number

of lines taken up in data variable declarations.

With réspect to dispersion comparisans within this class, the
fewu aspects.uhich do indicate any distinction among the groups [5
cut of 17 aspects] seem to toncur dn the AI = AT < DT outcome.
This pattern, which asscciates increased variation in certain size

aspects with the disciplined methodology, is somewhat surprising

“and lacks an intuitive explanation in terms of the experimentatl

factors. The exception dT = Al < AT on AVERAGE SEGMENTS PER
MODULE is reatly an exaggeration due to the fact of several A7
teams implementing manolithic single-module systems, as mentioned
aboves The exception AT < DT = AI on STATEMENTS 'is only a very
slight trend, reflecting the fact that the AT products rather

consistently contained the largest numbers of statements.

Cne overali observation for Class Il is that white certain
distinctions did{consistentty appear (especially for location but
also for dispersion cbmparisons) at the middle levels of the
hierarchical scate [segments, data variables, lines, and
statementsl, no distinctions‘appeared at either the highest
[medulesl or lowest [tokens] levels of size. The null conclusions
for size in modules and average module size seem attributable to
the facf.that particular programming tasks or application domains
often have certain standard approaches at the topmost conceptual
fevels which strongly influence the organization of software
systems at this highest tevel of gross size. In this case, the

two—pass symbol-tablte/scanning/parsing/code-generation approach is

- extremely common for language translation problems (i.€.,

compilers), regardless of the particular parsing technique or
symbol table corganization employed, and the mocules of nearly
every system in the study directiy reflected this common agpproache.

The nutl conctusions for size in tokens is interpretable in view

TR-4E8 Section Vv 73

of Helstead”s software science concepts [Halstead 771, according
to which the program {ength N is predictable from the number n; of
basic input-output parameters and the language lLevel A. Since the
functicnal specification, the application area, and the
implementation tanguage were 2ll fixed in the study, both n; anc¢ A
are essentially constant for each of the software systems,
implyine essentially constant Lengths'N as measured in terms of
operators and operands. C(onsidering the number of tokens as
roughty equivalent to program length N, the study”s data seem to
support the scftware science concepts in this instance.

.

Class:IV:

Within Class IV (product aspects dealing with the software s

organization according to statements, constructsy and controt

‘structures), there are only a few distinctions made between the

Grcupse.

With respect to location comparisons, the few [5 out of 243

aspects that showed any distinction at all were unanimaus in

‘concluding DT = Al < AT. Essentially, three particular issues

were involved. The STATEMENTS TYPE COUNTSVIF, STATEMENT TYPE
PERCENTAGESVIF, and DECISIONS aspects are all related to the
frequency of programmer-coded decisions in the software producte.
Their common outcome BT = AI < AT is interpreted as demonstrating-

an important area in which the disciptined methodology causes a

programming team to behave like an individual programmer. The

number of decisions has been commonly accepted, and even

formalized [McCabe 763, as a measure of program complexity since.

- more decisions create more peths through the code. Thusy the

disciplined methodology effectively reduced the average complexity
from what 1t otherwise would have been. The STATEMENT TYPE
COUNTS\RETURN aspect indicates a difference between the ad hoc
teams and the other two groups. Since the EXIT and RETURN
statements are restr{cted-forms"of'GGTos; this diffefénce seems to
hint at another area in which the disciplined methodology improves

conceptual control over program structure. The STATEMENT TYPE

TR-46B8 Section V 74

COUNTSV(PROCICALL\NINTRINSIC aspect also indicates a slight trend in
the area of the frequency of input-output operaticns,y which seems

interpretable only as a result of stylistic differences.

With respect to dispersion comparisons, only two particular
issues were involvede The STATEMENT TYPE COUNTSVRETURN and
STATEMENT TYPE PERCENTAGE\RETURN aspects both indicated & strong
DT = AL < AT différence, suggesting that the fregquency of these
réstrictéd GOTOs is an area in which the disciplined methodology
reduces variability, causing a programming team to behave more
tike an individual programmers The STATEMENT TYPE COUNTS\
(PROCICALL and STATEMENT TYPE COUNTS\(PROCICALLVNONINTRINSIC
aspects both showed a DT < AI = AT distinction among the groups,

which is dealt with more appropriately within Class VII below.

In summary of Class IV, the interpretation is that the

functional component of control-construct organ:zat1on 15 {araely

unaffected by the team size and methodo{og1cal dzsc1pt1ne factors,'

~probably due to the overriding effect of project/task

uniformity/commonality. However, two facets of the control
component that were influenced were the frequency of decisions
(especially IF statements) and the frequency of restricted G0T0s
(especially RETURN statements). For these aspects, fhe
disicplined methodology altered the control structure (and reduced
the complex1ty) cf a team”s product to that of an individual”s

product.
Class v

Within Class V (product aspects dealing with data variables

~and their organization within the software), there are several

distinctions among the groups, with an overall trend for both the

location and dispersion comparisons. Data variable organization

Wasy houevér, not emphasized in the disciplined methodology, nor

in the acsdemic course which the participants in group DT were

taking. With respect te lLocation comparisons, all aspects shewing

any distinction at all were unanimous im concluding AI # AT = DT."

TR-&EE Séction '} 75

The trend for individuals to differ from teams, regardless of the
disciplined methodology, appears not only for the total number of
data variables declared, but also for data variables at each scope
level (global, parameter, local) in one fashion or another. The
difference regarding formal parameters is especiatly prominent,
since it shows up for their raw count frequency, their normalized
percentage frequency, and their average freguency per natural
enctosure (segment), With respect to dispersion comparisons, the
apparent overall trend fcr aspects which show a distinctionhis
toward the AI = AT < DT outcome. No particular interpretatior in
view of the experimental factors seems appropriate. Exceptions to
this trend appeared for both the raw count and percentage of
caLL-by*referende paramenters (both Al < AT = DT), as well as two

other aspectse.
Class VI:

_ Within Class VI (product aspects.dealing with modularity in
terms of the packaging'stfucture), there are essentially no
distinctions among the groups, except for two location comparison
issuess. Most of the aspects in this class are also members of
Class iIly Gross Size,y, but are (redconsidered here to focus
attenticn upon the packaging ctharacteristics of modularity (i.e.,
how the source code is divided into modules and segments, what
type of segments, etCed. The disciplined methodology did not
'explicitty include (nor did-group DT”s course work cover) concepts
of modularization or cfiteria for'evatuating good modularity;
hencey no particular distinctions'among the groups were expected

in this area {(Classes VI and VII).

With respect to LocationICOmparisons, the AI < AT = b7
butcome for the SEGMENTS aspectsy atbng with the companion outcame
AT = DT < AI for the AVERAGE STATEMENTS PER SEGMENT aspect tas
‘explained under Class 111 above), indicates one area of packaging
that is apgarentl}'sensitivé to the team size factor. Individual
. programmers built the system with fewer, but larger (on the

‘average), segments than either the ad hoc teams or the disciplined

TR-6&E Section ¥ 76

teams. The AI < AT = D7 ocutcome for the AVERAGE NONGLOBAL
VARIABLES PER SEGMENT\PARAMETER aspect indicates that average
“calling sequence" length, curiously enocugh, is another area of
packaging sensitive to team size. With respect to dispersicn
compariscns, there reatly were no differencess since the single
non=null cutccome for AVERAGE SEGMENTS PER MODULE is adtuatly a
fluke (raw score§ for AT are exaggerated by the several monolithic
systems)_as explained above. The overall interpretation for this
~class is that

modularity, in the sense of packaging code intc segments
and modules, is essentially unaffected by team size or
methodological discipline, except for a tendency by
individual prdgrammers toward fewer, longer segments

than prcgramming teamse.
Class VII:

Within Class VII {procduct aspects dealing with modularity in
terms of the invocation structurel), there are two distinction
trends for locatién comparisons, but no clear pattern for the
dispersion comparisen conclusions. This class consists of raw
counts and average-per-segment frequencies for invocations
(procedure CALL statements or function references in expressions)
and is considered separately from the previous glass since
mocdutarity involves not only the manner in which the system is
packagedy, but also the frequency with which the pieces are
invoked. For the raw count freguencies of calls to intrinsic
prccedures and intrinsic routines, the trend is for the
"individuals and disciplineg teams to exhibit fewer calls than the
ad hecc teams. These intrinsic procedures are almost exclusively
the input—-output cperations of the language, while the intrinsic
functions are mainly data type conversion routiness The second
trend for Location comparisons occurs for two aspects (a third
asgpect is actualLy redundant) related to the average freguency of
calls teo programﬁér*défiﬁed‘routinés, in which the individuals
'disptay higher average frequency than either typé of teame This

seems coupled with group AI”s preference for fewer but larger

TR=63E& Section V 77

routinesy, as noted above. With respect to dispersion comparisonsy
several distinetions appear within this c¢lass, but no averall
interpretation is readily aoparent (except for a consistent
reflection of a DT < AL difference, with AT falling in between,

leaning one side or the otherd,.
Class VIII:

Within Class VIII (product aspects dealing with interQSegment
communication via formal parameters), there are only a few
distinctions among-the_groups‘ With respect to tocation
comparisonssy the total frequency of parameters and the avefage
frequency of parameters per segment both show a difference. The
interpretation is that _ '

" the individual programmers tend to incorporate Less
inter~segment éommunication via parametersys on the
average, than either the ad hoc or the disciplined
programming teams.

With respecf to'dispe?sion comperisons, im addition to the
difference in the raw count of parameters referred to in Class Vv,
there is a strong difference in the variability of the number of
cali-by-reference parameters, alsc apparent in the
gercentages—by—~type~af parameter aspectss« The interpretation is

that
the indiiiduai programmers were more consistent as a
group in-théir use {in this case, avoidancel) of
reference parameters. than either type of programming
team.

.CLass 1X:

¥ithin Class IX (pgroduct aspects dealing with inter—segment
communication via global variables), there are seveEaL differences
among the groups, including two which indicate the beneffcia{
influence of thé disciptined'méthodblogy;' This class is composed
of espects dealing with (a) frequency of globals, (b} average

frequency of globals per module, (c) segment-global usage pairs

~ TR-68E Section V 78

(frequency of access paths from segments to globals),y and (d)
segment—-global—-segment data bindings {[Stevens, Myers, and
Constantine 74; ppe. 118-119) (frequency of legical bindings
between two different segments via a global variable which is

mocdified by the first segment and referenced by the second).

With respect to location comparisons, there is the
Al < AT = DT distinction in sheer numbers of globats, particutlarly
glebals which are modified during execution, as noted in Class V.
However, when averaged per.modu{e, there appears to be no
distinction in the frequency of globais. The AL < AT = DT
difference in the number of possible segment-global access paths
makes sense as the result of group AI having both fewer segments
anc¢ fewer globalses AlL three groups had essentially similar
average levels of actual segment-global access paths, but severat
differences appear in the relative percentage {(actual-to—-possible

ratic) category. These three instances of AT < DT = Al

differences indicate that the degree of "globality™ for giobal
variables was higher for the individuals and the disciplined teams
than for the ad hoc teams.,. Finallys another AT # DT = Al
difference appears for the frequericy of possible
segment-global~segment data bindings, indicating a2 positive effect
of the disciplined methodology in reducing the possible data
coupling among segments. It may be noted that these last two
categeries of aspects, segment-glabal usage relative percentages
and segment-global-segment data bindings, also reflect upon the
guzlity of modularization, since good modularity should promote

the degree of "globality"™ for globals and minimize the data

‘c0up£ing among segments. The interpretation here is that

certain aspects of inter-segment communication via
globals seems to be positively influenced, on the

averagé, by the disciplined methodologye.

With respect to dispersion comparisons, there is a diversity

of differences in this class, without any unifying interpretation

in terms of the experimental factors,

TR-688 Section VI 79

VI. Conciluding Remarks

A R - ——

A practical methodology was designed and developed for
experimentally and.quantftatiue{y investigating the software
development phenomenon. It was employed to compare three
particular software development environments and to evaluate the
relative impact of a particutar disciplined methodology (made up
of so-called modern programming practices). The experiments were
successful in measuring differences among programming environments
and the results support the claim that disciplined methodology"
effectively improves both the process and product of saoftware

development.

One way to substantiate the claim for improved process is to
measure the effectiveness of the particular programming
methodotlogy via the numbef of bugs initially in the system (i.e.y
in the initial source code) and the amount of effort reguired to
remové them. (This criteria was independently suggested by
Professor M. Shooman of Polytechnic Institute of New York while
speaking recently on the subject of sofware reliability models.)
Although neither of these méasares was dijrectly computed, they are
each closely asscciated with one ¢f the preocess aspetts considered
in the study: PROGRAM CHANGES and ESSENTIAL JOB STEPS,
respectively. The statistical conclusions (on location
comparison}) for both these aspects affirmed 0T < AI = AT cutcomes
at very low (<.01) significance tevels, indicating that on the
average the disciplined_téams meaéured lower than either the ad
hoc individuals or the ad hoc teams whieh both measured about the

same. Thus, the evidence collected in this study strongly

confirms the effectiveness of the disciplined methodology in

“building reliable software efficiently.

The seécond cla1m, that the product of a d1sc1p{1ned team

.should cLosety resemble that of a S1ngle 1nd1v1dual since the

disciplined methodology assures a semblence of conceptual

integrity within a programming team, was partially substantiated.

TR-(BE Section VI 80

In many product aspects the products developed using the
Giscipiined methodology were ejther similar to or tended toward
the products developed by the individuals. In no case did any of
the measures show the disciplined teams” products to be worse than
those developed by the ad hoc teams. It is felt that the
superficfality of most of the product measures was chiefly
responsible for the lack of stronger support for this second
claimes. The need for product measures with increased sensitivity

to critical characteristics of software is very clear.

The results of these experiments wilft be used to guide
further experiments and will act as a basis for analysis of
software development products and processes in the Software
Engineering Laboratory at NASA/GSFC [Rasili et ale 771. The

intention is to persue this type of research, especially extending

“the study to include more sophisticated and promising programming

aspects, such as Halstead”s software science guantities [Halstead

7731 and other software complexity metrics [McCabe 761].

TR=62E References &1

References
[Baker 75] F.T. Baker. Structured Programming in a Production
Programming Environment. IEEE Transactions on Software

- - En S A e e e e e e e e - ———

Engineering, Vol. 1, No. 2 (June 1675), ppe. 241-252.

[8asili and Baker 75] V.R. Basili and F.T. Baker. Jutoriat of
Structured Programming. IEEE Catalog No. 75CH104%9-6,
Elteventh IEEE Computer Society Conference (COMPCON), 1975,

[Basili and Turner 753 V.R. Basili and A.J. Turner. Iterative

nhancement: A Practical Technique for Software Development.

becember 19753, ppe. 390-396,

E
IEEE Trapsactions on Software Engineering, Vol. 1, No. &
(_
{Basili and Turper 76] V.R. Basiti and A.Jl. Turners SIMPL=Iy A

§£59gggfg§ Programming Language. Patadin House Publishers,
Geneva, Illinois. 1976.

(Basili et al. 773 V.R. Basili, MaV. Zelkowitz, FeEs McGarry, RoW.
Reitery Jru., WeF. Truszkowski, and DeL. Weiss. The Software
Engineering'Laboratory. Technical Report TR-535, Department
of Computer Science, University of Maryland. Mays 1977.

[Belady and Lehman 763 L.A. Belady and M.M., Lehman. A Model{ of
Large Program Development. IEM Systems Journal, Vol. 15
(19763, Noe 3, ppe 225-251.

-[Broocks 753 F.P. Brooks, Jr. The ﬂxthital Man-Montha

-

[Conover 711 W.J. Conover. Practical Nopparametric Statistics.

_ John Wiley & Sons Incey, New York. 1971,

[bahl, Dijkstra, and Huare 723 Ou—Jde. Dahl, E.W. Dijkstré, and
CeA.R. Hoare. Structured Programmino. Academic Press, New
York. 1972. '

{baley 773 E.8. bDaley. Management of Software Development. IEEE

T e - e e e . —— e —— o -

1977), pp. 229-242.

‘[punsmore and Gannon 77] HeE. Dunsmore and J«De Gannone.

Experimental Investigation of Rrogramming Complexitys
Proceedings of ACH-NBS Sixteenth Annual Technical Syﬁpdsium:
Systems and Software (June 1977}, Washington, DaCes ppe.
117-125. s

TR~688 FReferences _ ‘ 82

{Halstead 77] M., Halstead. Elemenis of Software Sciegncee.

{Jackson 75] M.A. Jacksone. Principles of Proaram Desigpne

Academic Press, New York. 1975,

[Kirk 68] R.E. Kirk. Experimental Design: Procedures for the

Behavigral Sciences. Wadsworth Publishing Co., Belmont,
California. 19638.

[Lingery, Mills, and Witt 79] R.CL. Linger, HeDs Mills, and B.l.
Witte Structured Programming Theory and Practice.
Addison—-Westey (to be publisﬁed). 1979

[McCabe 761 T.d. McCabe. A Complexity Measure. JLEEE Iransacticns
on Software Engingering, Vole 2y Nos. 4 (December 1976), pp. |
208-220.

(Mills 73] H.D. Mills. The Complexity of Programs. in Proaram

Prentice-Hall, Ince., Englewood Cliffs, New Jersey. 1573,

[Myers 751 Ga.Jo. Myers. Reliable Socftware through Composite

besign. PetrocellifCharter. 1975,

(Myers 78] G.J. Myers. A Controlled Experiment in Program Testing

~and Code walkthroughs/Inspections, Communications of the
ﬁ_c’ﬂ’ Vaol. 2?’ Nos 9 (September 19?8)' jo7+ 'Y ?60-768.
ENemenyt et ale. 771 P. Nemenyi, S.Ks Dixony, N.E. Nhife, Jres and

M.L. Hedstrom. Statistics from Scratch. Holden—-bzy, San

. —— g - — o

Francisco, California. 1977, _
[O0stte and Mensing 751 B. Ostle and R.W. Mensing. Statistics in

Research, Third Edition. Iowa State University Press, Ames,

Iowae 1975,

[Sheppard et al. 78] S.B. Sheppard, M.A. Borst, B. Curtis, and T.

Love. Factors Influencing the-Understandabi{ity and
Modifiability of Computer Programs. Human Factors (to te
published). 1978.

{Shneiderman.et ale 771 S+« Shneiderman, R. Mayer, D« McKay, and F.

Hellers. Experimental Investigations of the Utility of

I+
=
jm

‘Detailed fFlowcharts in Programming,., Communications of

ALKy Vols 20y Noe & (June 1577), ppe 373-381.
ESiegel 563 S. Siegel. Nopparametric Statistics: for the

T L L e e e S S e S ——

Behavioral Sciences. McGraw—Hill Book Co., New Yorks. 1856,

TR-6E8 References _ g2

LStevens, Myers, and (onstantine 747 We.P. Stevensy G.Je+ Myers, and
LeL. Constantine. Structured Design. IBM Systems dournal,
Vole 13 (1974), No. 2, pp. 115-136.

CTukey €91 JeWs Tukeye Analyzing Data: Sanctification or
betective Work? American Psycholcgists Yole 24, No. 2
(February 196%9), pp. 83-91, _

{Wirth 711 N. Wirth. Program Development by Stepwise Refinement.

. e - — . ——

Communications of the ALM, Vol. 14, No. 4 (Aprit 19712, o] o0
221-227. ' '

TR~688 Appendix 1 g4

Appendix 1. Explanatory Nctes for the Programming Aspects

The following numbered paragraphs, keyed to the List of
aspects in Table 1, explain in detail the programming aspects
considered in the study. Various system— or language-dependent

terms (e.Qs.y module, segment, intrinsic, entry) are also defined

herea

(1Y A computer job step is & single activity performed on a
computer at the coperating system command fevel which is inherent
to the development effort and involves a nontrivial expenditure of
computer or human resources. Typical job steps might include text
editing, module compilaticon, program collection or'link-editing,
and program execution; however, operations such as guerying the
operating system for status information or requesting access to
on-lLine files would not be considered as job steps. in‘this _
study, only'modulé compil&tions and program executions are counted

as COMPUTER JCEB STEPS.

(2) A module compilation is an jinvocation of the
'imptementation language processor on the scurce code of an

individual module. In this study, only compilations of modules
comprising the final software product (or togical predecessors

thereof) are counted as COMPUTER JOB STEPS\MGDULE COMPILATIONS.

{3) ALL MODULE COMPILATICNS are classified as either
IDENTICAL or UNIGUE depending on whether or not the scurce code
compiled is textually identical to that of.a previous compilation.
._During the development proéess. each unique compitation'was
necessary in scome sensey, while an identical comhilation could have
been logically avocided by saving the relocatabte cutput of a '
previcus compilqtion'for (ater reuse (except in the situation of
undoing source code revisions after they have been tested and
found to be erronecus or superflucus).

(4} A program execution ¥s an invocation of a complete

- e m m -

TR-6828 Appendix 1 g%

precgrammer-developed program (after the necessary compilation(s)

and collection or link-editing) upcn some test datas

execution of something other than the final software preoduct.
Only job steps counted as C(OMPUTER JOB STEPSs but not counted as
COMPUTER JOB STEPS\MODULE COMPILATIONS or COMPUTER JOB-STEPS\ |
PRCOGRAM EXECUTIONS, are counted as COMPUTER J0B STEPS)
MISCELLANEQUS ..

(&) An essential job step is a computer job step which
involves the final softuafe product {(er togical predeceésors
~therecf) and could not have been avoided (by off-line computation
or by on—-line storage of previcus.ccmpitations er results). In
this study, the number 6f ESSENTIAL JOB STEPS is the sum of the
number of COMPUTER J0B STEPS\MODULE COMPILATIONS\UNIGUE plus the

number of COMPUTER JOB STEPS\PROGRAM EXECUTIONS.

(7} The number of AVERAGE UNIGUE COMPILATIONS PER MODULE is
simply the number of COMPUTER JOB STEPS\MODULE {OMPILATICNSAUNIQUE
divided by the number of MODULES.

(8) The number of MAX UNIGUE COMPILATIONS FeA.0. MODULE is
simpty the maximum number of unigue compilations for any one
module of the final softuare broduct. F.A.O._stands for “"for any
one*, Fach unigue compilation is associated (either directly or

3% a Logicat prececessor) with a particular module of the final’
product; their sum is computed for each module; and the maxiqum of

the sums is takenes

_ (93 The program changes metric [Dunsmore and Gannon 771 is
defined in terms of textual revisions in the source code of a
mocdule during the development gperiod, from the time that mcdule is

~ first presented to the computer system, te. the completion_of the
project. The rules for counting program changes --which are
reproduced below from the gaper referenced above with the kind
permission of the authors-=- are such that one program change |

TR~688 Appendix 1 86

should represent approximately one conceptual change ta the

program.

The following each represent 3a single program change:

(a)(one or more changes tg 2 single statement,) .
(A single statement in a program represents a single

concept and even multiple character changes to that

statement represent mental activity with a single

concept.) . L.
(b}(one or more statements inserted between existing

statements,)
(The contiguous group of statements inserted probably
corresponds. to_a single abstract instruction.) .

(c) a change to a single Statement followed by the insertion

of new statements. .
1 ' (This _instance probably represents a discovery that an
; existing statement is insufficient and that 1t must be

| altered and supplemented in order to achieve the singte

concept for which it was produced.)

.|
| However, the following are not counted as program changes:
i (a) the deletion of cne or more existing statements,
; : (Statements which are deleted must usually be replaced
‘ © Wwith other statements elsewhere. The inserted
i statements are counted; counting
i sive double weight to such a change.
} Statements are deleted but not replaced;
|
|

Occasionally
these are

probably being used for debugging purposes and their

deletion takes no great mental activily. .
(b) the insertion of standard output statements or special
compiler—provided debggg1n%.d3rect1ves, .
- (These are occasionally inserted in a wholesale fasion
he probiem is discerned, these

e durdn mdebu%ging; wWhen t
\ . are then all removed, and the actual ststement change

| : takes places) . . .
| ~ (¢) _the insertion of blank lines, insertion of comments,
i revision of comments, and reformatting without alteration of

J existing statements. : ..
‘ (These are all judged to be cesmetic In nature.)

Program changes are counted automatically according to a specific
algorithm which symbolically compares the source code from each

pair of consecutive compilations of a-particular module (or

logical'predecessor-;hereof). Thus the total number of program

changes is a measure of the amount of textual revision to source

code. during {(postdesign) system development.

- -

complete software system.
a typical module is a collection of the declarations of several

glocbal variables and the definitions of several segments. [In

this studys only those modules which comprise the final product

. are counted . as MODULES.I

(11> A segment is a collection of source code statements,

together with declarations for the formal parameters and local

variables manipulated by those statements, which may be invoked

deletions as well would

In the implementatian tanguage SIMPL-T,

-2

TR-68E& Appendix 1 ' &7

an operational unite In the jmplementation language SIMPL-T, 2

are allowed and fully supporteds The segment, function, and
precedure of SIMPL-T correspond to the (sublprogram, functicn, and

subroutine of FORTRAN, respectively.

(12) The gfoup cf aspects named SEGMENT TYPE COUNTS, etcCe.y
gives the absolute number of programmer-defined segments of each
type. The group of aspects named SEGMENT TYPE PERCENTAGES, etc.,
gives the relative percentage cf each type of segment, compared
with the total number of programmer-defined segments. The second
group bf aspects s computed from the first by simply dividing by
tﬁe number'of SEGMENTSy as a way of normalizing the segment type

counts.

(13) Since segment definitions in the implementation tanguage
SIFPL-T occur within the context of a module, this provids a
natural way to normalize (or average) the raw counts of segments.

The AVERAGE SEGMENTS PER MODULE aspect represents the number of

segments in a typical module. It is compguted in the obvious wave.

(14) The number of LINES is the total count of every textual

.tine in the source code of the complete final product, inctuding

comments, compiler directives, variable dectarations, executable

stateménts, etce

(155 The number of STATEMENTS counts only the executable
constructs in thé source code of the complete final product,
These are high-level, structured—-programming statements, inciuding
simple statements'--such as assignment and procedure.call-- as
welli 2s compound statements —-such as if-then-else and while-do-——
which have other statements nested within them. The
implementation Langﬁage SIMPL-T allows exactly seven different

statement types (referred to by their distinguishing keyword or

‘'symbol) covering assignment (:=), alternation-selection (IF,

TR-682 Appendix 1 ' 88

CASE), iteration (WHILE, EXIT), and procedure invocatien (CALL,
RETURNJ. Input-output operations are accomplished via calls to

certain intrinsic procedures.

{181 The group of aspects named STATEMENT TYPE COUNTS, etcCc .,
gives the absolute number of executable statements of each type.
The group of aépects named STATEMENT TYPE PERCENTAGES, etc., gives
the retativé percentage of each type cf statement, compared with
the totai{ number of executable statements. The second group of
aspects is computed from the first by simpty dividing by the
number of STATEMENTS, as a way of normalizing the statement type

countsae

{17} As mentioned above, the := symbol denoctes the assignment
Sta;ement. it assigns the Qalue of the expressicn on the right

hand side to the variable on the left hand side.

(18) Both if-then anad if-then—-else constructs are counted as
IF statements. _Each IF statement allows the execution of either |
the then- or else-part statements, depending upon its Boolean

expressione.

(19) The CASE statement provides for selection from severatl
alternatives, depending upon the value of an expressions. In the
impglementation language SIMPL-T, exactly one of the alternatives
{or an optional elSe—part) is selected per execution of a CASE, a
{ist of constants is exptiéitty given for each alternative, and
selection is based upan the equality of'the expression value with
one of the constants. A case construct with n alternatives is
Logicélly and semantically equivalent to 3 ceftain pattern of n

nested if~then-else constructse.

(20) The WHILE statement is the only iteration or looping
construct provided by the-imptementation_{anguége SIMPL=-T. ft
allows the statements in the Lsop. body to bé executed repeatedly
(zero'or more times) depending.upon a Boolean expression which is

reevaluated at every itération; the loop may also be terminated

TR-688 Appendix 1 8¢

via an EXIT statement. £ach WHILE statement may be opticnally
labeled with a designator (referenced by EXIT statements) which

unigquely identifies it from other nested WHILE statements.

(21> The EXIT statement allows the abnormal termination of
iteration loops by unconditional transfer of control tc the
statement immediately following the WHILE statement. Thus it is a
very restricted form of GOTO. This.exiting may take place from
any depth of nested loopss since the EXIT statement may cptionally
name a designator which identifies the [oop'to be exited; without

such a designator only the immediately enclosing loop is exited.

(22) Since there are fuo types of segments in the
implementation language SIMPL-T, there are two types of "calls" or
segment 1nvccat1ons. Procedures are invoked via the CALL
statement, and functions are invoked via reference in aﬁ
expression. The counts for these separate constructs are reported
separately as the (PROC)CALL and FUNCTION CALL aspects, and
3ozntly as the INVOCATIONS aspect.

- g A - —

R e . —— v ———

by the programmer. These terms are used‘to distinguish built-in
‘procedures or functions (which are supported by the compiler and
utitized as primitives) from seagments (which are written by the
programmér himself). Nearly all of the intrinsic procedures
.provided by the impleméntation tanguage SIMPL-T perform
input-output operations and external data fite manipulaticns. ALl
of the intrinsic functions provided by SIMPL-Y rerform data type

conversions and character-string-maniputations,

(24) The RETURN statement allows the abnormal termination of
the_current segment by unconditional resumpticn of the previously
executing segments Thus it is another very restricted form of
G070« Within a anction, & RETURN statement must specify an
expression; the value of which becomes the value returned for the

function invocation. Within a procedure, a RETURN statement must

TR-688 Appendix 1 a0

not specify such an expreséion. Additionally, @ simple RETURN
statement is optional at the textual end of procedures; it will be
implicitly assumed if not explicitly coded. In this study, the
totat number of explicitly coded and implicitily assumed RETURN
stetements, both from functicns and procedures combined, is

counteds.

(25) Thé AVERAGE STATEMENTS PER SEGMENT aspect provides a way
of normalizing the number of statements relative to their natural
enclosure in a program, the segment. The measure alsc represents
the length, in executable statements, of a typical segment of the

prcegramas

(26) In the implementation language SIMPL-T, both simptle

(evgey assignment) and compound (e.Ge, if-then-else) statements

nesting level is associated with each statement, starting at 1 for

@ statement at the outermost level of each segment and increasing
by 1 for successively nested statments. MNesting level can be
displayed visually via proper and consistent indentatiocn of the

scuce code listinge

(27) The number of DECISIONS is simply the sum of the numbers
of IF, CASE, and WHILE statements within the complete source codea.
‘Each of these statements represents a unigue {(possibly repeated)
run—t ime decision coded by the programmer. This count is closely
associated with a recently proposed complexity metric [McCabe 763
which essentially reflects the number of binary-brénching

decisions represented in the source code.

- Ak e

keywords, operators, parentheses, identifiers, etc.-- that occur
in & program statement. Thg average number of tokens per
statement may be viewed as an indication of how much *information™
a tyﬁicak'stateﬁénf'dontéinéf how "powerful® a_typicé[statement

is, or how concisely the statements in general are coded.

TR=688 Appendix 1 @1

(29) An invocatign is simply the syntactic occurrence of a
coristruct by which either a programmer—defined segment or a
built~in routine is invoked from within another segment; both
procedure calls and function references are counted as
INVOCATIONS. They are (subldclassified by the type (i.e., function
or procedure, nonintrinsic or intrinsic) of segment or rcutine

being invoked.

(302 fhe group of aspects named AVG INVOCATIONS PER {(CALLING)
SEGMENT, etc., represents one way to normalize the absolute number
of invocations. These aspects reflect the number of calls to
programmer—-defined segments and built-in routines from a typical
prcgrammer-defined segment. They are (sub)classified by the type
of segment or routine being invoked. The measures for this group
cf aspects are computed by simply dividing each of the
corresponding measures in the INVOCATIONS aspect group by the
number of SEGMENTS.

(31) The group of aspects named AVG INVOCATIONS PER (CALLED)
SEGMENT,s ettey represents another way to normalize the absolute
number of invocations. These aspects reflect the number of caltis
to a typical programmer—-defined segment from other segmentse. They
are (subldclassified by the type (i.e.y function or procedure) of
segment being invoked,

(32> A data variable is an individually named scalar or array
of scatarse In the imb{ementation language SIMPL-T, (a)‘there are
thfee data types for scalars ~?integer, character, and Evarying
scalar) —--single dimensional array, with zero-crigin subscript
range-=, and (c) there are several levels of scope (as explained
in note 33 below) for data variables. 1In addition, all data
variables in a SIMPL-T program must bhe explicitty'dectared, with
attributes fully specified.. The number_Qf bA?A VARIABLES is
computed by counting each of the data'varﬁables'declared’Tn the
final software product once, regardless of type, structure, or

séope. Note that each array is counted as a single data variable,

TR-¢EE Appendix 1 92_

(32) In the implementation language SIMPL-T, data variables
can have any one of essentiatlly four levels of scope =-entry
gicbaly, nonentry globat, parameter, and Local-— depending on where
eand how they are declared in the program. Note that the-hotion of
scope deals only with static accessibility by name; the effective
accessibitity of any variable can alwéys be extended by passing it
as a parameter between segments. The scope levels are explained |
here_(qnd'presented in the'aspect'(sub)c[assifications) via a
hierarchy of distinctions. _

The primary distinction is between global and nonglobal.’

AL

the module in which they are declared. Menaglobal variables are

accessible by name only to the single segment in which they are

'declared.'.

Global varaibles are secondarily distinguished into entry and

-nonentry. Entry globals are actually accessible by name to each

of the segments in several (two or more) modules: the module which
dectared it ENTRY, plus each of the modules which declared it

EXTernal (as explained in note 34 below). Nonentry globals are
accessible by name only within the module in which they are |
declared. . _ _ |

Nonglobal variables are secondarily distinguished intoc formal
parameter and loccal. Formal parameters are accessible by name

oniy within the enclosing (called) segment, but their values are

not completely unretated tc the cailing segment (as exptained in

"note 34 below)s LocCals are accessible by name only within fhé

enclosing segment, and their values are comptetely isolated from

any other segment.

(34) Entry means that the data variable [or segment] is
déclared to be accessitle from within other separately Compited
modules (in which it must be explicitly declared a2s EXTernatl.

Nonentrz means. that the data variable Cor segment] is accessible

only within the module in which it is .declared {or definedl. 1In

this study these terms are used pertaining only to global

variables. "Entry global™ actually constitutes an extra lLevel of

'scepe peyond "nonentry global™. [Although the jmplementation

TR-6E88 Appendix 1 3

lanzuage SIMPL-T does aliow the EXTernsl attribute to be declared
for local variables -~just the enclosing segment has access to a
glebal declared in a different module--, it is an extremely

ocbscure and rarely used feature; it never occurred in any of the

final software products examined in this study.]

(35) Modified means referred to, at least once in the program
. Source codey in such a manner that the value of the data variable
woultd be f{redset when (and if}_the appropriate statements were tgo
be executed. Data variables can be (re)set onty by {a) being the
“target"™ of an assignment statement, (h) being passed by reference
to some programmer-defined segment or built-in routine, or (c)
being named in an “input statement.” This third case is really
covered by the second case since all the "input statements"™ in
SIMPL-T are actuatly calls to certain intrinsic procedures with
passed~by-reference parameters., ggggglflgg means referred to,
throughout the program source code, in such a manner that the
value of the data variable could never be (redset during
_executione. These terms are used pertaining to global data
variables; any global variable is allowed to have an initial value
(constants only) specified in its declaration. Globals which are
initialized but UNMODIFIED are particularly useful in SIMPL~T

programs, serv1ng as “named constants."

(36) The inplementation language SIMPL-T allows two types of
parameter passage. Pass-by-value means that the value of the
actual argument is simply copied (upbn invocation) intao the
correspénding formal parameter (which thereafter behaves like a
tocal varﬁable for all intents and purposes), with the effect that
the called routine cannot modify the value of the catiting
segment”s actual argument. Pass- by-reference means that the
address of the actual argument --which must be a variable rather
than an expression-- is passed {upan invocation) to the called
routine, with the effect that any cﬁanges made by the called
routine to the corresponding formal pérameter willt be reflected in
the vatue of the calting_segment’s actual argument (upon return),

In SIMPL-T, formal parameters ghich=are scalars are normally.

TR-6E2 Appendix 1 G4

(default) passed by value, but they mey be explicitly declared to
be passed by reference; formal parameters which are arrays are

always passed by reference.

(27} The group of aspects named DATA VARIABLE SCOPE COUNTS,
etcsy gives the absolute number of declared data variables
according to each level of scope. The group of aspects namecd DATA
VARIABLE SCOPE PERCENTAGES, etca.y, gives the relative percentage of
variables at each scope. level, compared with the total number of
declared variables. The second group of aspects is computed from
the first by simply dividing by the number of DATA VARIABLES, as a

way of normalizing the data variable scope countse.

(38) Since data variable declarations in the implementation
Language SIMPL=-T may only appear in certain contexts within the

prearam —-globals in the context of 2 module and and nongliobals in

" the context of a segment--, this provides a natural way to

normalize (or average) the raw counts of data variables. The
group of aspects named AVERAGE GLOEAL VARTABLES PER MODULE, etcCa.y
represent the number of globals dectared for a typical module.
They are computed by simb{y dividing each of the corresponding raw
counts of glokal data variables by the number of MODULES. The
group of aspects named AVERAGE NONGLOBAL VARIABLES PER SEGMENT,
etCay rebfesent the number of nongtobals declared for a typical
segment. They are computed by simply dividing each of the _
cerrespending raw counts of nonglobal data variables by the number
of SEGMENTS. '

(39) Since there are two types of parameter passing
mechanisms in the implementation language SIMPL-T (as explained in
note 15 abaovel, it is desirable to normalize their raw frequencies
into relative percentages, indicating the programmer”s cdegree of

"oreference"™ for one type or the other. The group of aspects

‘named PARAMETER PASSAGE TYPE PERCENTAGES, etc., gives the

percentsges of each type of parameter relative to the total number
of parameters dectared in the program. They are computed in the

obvious way.

TR~688 Appendix 1 G5

(4C) A segment-global ugsage pair (psr) is simply an instance
of a glooal variable r being used by a segment o (f.e., the globat
is either modified (set) or accessed (fetched) at least once
within the statements of the segment). Each usage pair represents
a unique "use connection®™ between a global and a segment. Usage
pairs are (sublclassified by the type (i.e., entry or nonentry,
mocdified or unmodified) of global data variable involved.

In this study, segment—global usage pairs were counted in
three different wayse First, the (SEG,GLOBAL) ACTUAL USAGE PAIP
counts are the absolute numbers of true usage pairs (pyr): the
glebatl variable r is actually used by segment p. They represent
the true frequencies of use connections within the program,
Second, the (SEG,GLOBAL) POSSIBLE USAGE PAIR counts are the
absolute numbers of potential usage pairs (p,r), given the
srogram”s global variables and their declared scope: the scope of
global variable r simptLy coﬁtains segment Do so that segment p
could potentially modify or access r. These counts of possible
usage pairs are computed as the sum of the number of segments in
each global”s scope. They represent a sort of "“worst case"
frequengies of use connections. Third, the (SEG,GLOBAL) USAGE
RELATIVE PERCENTAGE counts are a way of normalizing the number of
usage pairs since these measures are simply the ratios (expressed
as percentages) of actual usage pairs.to possibte usage pairs.
They represent the freqguencies of true use connections relative to
potential use connections. These usage pair relative percentage
metrics are empirical estimates of the tikelihood that an
arbitrary segment uses (j.e., sets or fetches the value of) an

arbitrary global variable.

occufrence of the following arrangement in a program [Stevens,
Myers, and Ccnstantfne 741: a segment p modifies (sets) a globat
variable r which is also accessed (fetched) by a segment gy with
segment p diffetent from segment g. The existencguof a data
Binding (gyreq) indicates that the behavior of segment G is
brobably.dependent on the performance of segment p because of the

data variable r, whose value is set By p and used by g« The

TR-6838 Agppendix 1 ' 94

BYinding (p,ryg) is different from the binding (gyrsp) which may
also exist; occurrences such as {pyryn) are not counted as data
bindings. Thus each (SEG,GLOEAL,SEG) CATA BINDING represents a
unigue communicaticon path between a pair of segments via a glcbal
variable., The total number of (SEG,GLOBAL,SEG) DATA BINDINGS
reflects the degree of a certain kind of *“connectivity" (j.e.,

between segment pairs via globals) within a comptete program.

(42) In this study, segmeht-global-segment data bindings were
counted in three different ways. First, the ACTUAL count is the
absotute number of true data bindings (psryq): the glecbal variabte
r is actually modified by segment p and actually accessed by
segment g. It represents the degree of true connectivity in the
program. Second, the POSSISLE count is the absolute number of
potential data bindings (p,r,q), given the program”s globatl
variables and their declared scaope: thé scope of global variable r

simply contains both segment p and segment q, so that segment p

could potentially modify r and segment g could potentially access
r« This count of POSSIBLE data bindings is computed as the sum of
terms s*{(s-1) for each global, where s is the number of segments
in that globalt”s scope; thus, it is fairly sensitive (numerically
speaking) to the total number of SEGMENTS in & programe. It
represents a3 sort of “worst case'" degree of potential
connectivity. Third, the RELATIVE PERCENTAGE is a way of
normalizing the number of data bindings since it is simply the
quotient (expressed as a percentage) of the actual data bindings
divided by the possible data bindingse It represents the degree

of true connectivity relative to potential connectivity.

(4Z) Actual data bindings are (sub) classified as
“"subfunctional®™ or "independent® depending on the invocation
relationship between the two segments. A data binding (psryal) is
other, whether directly or indirectLy (via a chain of intermediate
invocations invelving other segménts). In this situation, the

. function of the one segment may be viewed as contributing to the

cverall function of the other segment. A data binding (psryg) is

TR-688 Appencdix 1 27

______ if neither of the twoc segments p or q can invoke the
other, winether directly or indirectly. The transitive closure of
the call graph among the segments cf a program is employed to make

this distinction between subfuncticnal and independent.

(44) There exist several instances of duplicate programming
aspects in the Table 1 Listing. That is, certain logically unicue
aspects appear a second time with another name, in order to
provide alternative views of the same metric and to achieve a
certain degree of completéness within a set of related aspects.
For example, the FUNCTION CALLS aspect and the STATEMENT TYPE
COUNTSN(PROCICALL aspect are listed (and categorized app?opriatety)
from thne viewpcint of the varfous type of constructs which
comprise the the implementation language. But the very same
metrics can be considered from the unifying viewpoint of the
various Subtype frequencies for segment invocations, and thus it

- is desirable to include the duplicate aspects INVOCATIONS\H
FUHCTiGNS and INVOCATIONS\PROCEDURES as part of the natural
categorization of INVOCATIONS. Listed below are the pairs of
duplicate programming aspects ihat were considered in this study:

- FUNCTION CALLS |
<=> INVOCATIONSVFUNCTION
"2« FUNCTION CALLS\NONINTRINSIC
<=> INVOCATIONS\FUNCTION\ANONINTRINSIC
T. FUNCTION CALLS\INTRINSIC
<=> INVOCATIONSVFUNCTION\VINTRINSIC
4. STATEMENT TYPE COUNTS\ (PROCICALL
_ <=> INVOCATIONS\PROCEDURE
S..STATEMENT'TYPE COUNTSV(PROCICALL\NONINTRINSIC .
<=> INVOCATIONS\PROCEDUREWNONINTRINSIC
6. STATEMENT TYPE COUNTSV(PROCYCALL\NINTRINSIC
<=> INVOCATIONS\PROCEDURENVINTRINSIC '
7« AVG INVOCATIONS PER (CALLING) SEGMENT\NONINTRINSIC
<=>.AVG INVOCATIONS PER (CALLED) SEGMENT
By definition, the cata scores obtafned for any paif of duplicate
'aspects.yil(‘be indentical, and thus the same statistical

conclusions will be reached for both aspects.

TR-688 Appendix 2 G2

Appendix 2. English Statements for the Non~Null Conclusions

B e P . S 3 T T L D AL

translations for the non=null Locatign comparisons presented in
| symbolic equation form in Table 2.1« They may be skimmed by the
| reader since .they do not add toc the information appearing in the

| table.

(1) According to the SEGMENTS aspect, the individuats (A1)
organized their.softuare inte noticeably fewer routines
(i.e., functions or procedures) than either the ad hoc teams

_'(AT)_or the disciplined teams (DT). '
(2) Both the ad hoc teams (AT) and the disciplined teams (DT)
~decltared a noticeably larger number of data variables (i.e.,
scalars or arrays of scalars) than the individuals (AI),
according to the DATA VARIABLES aspect. |

(3) In particular, a definite trend toward this same difference

' was apparent im the number of global variabtes;.the number of
glebal variables whose values could bte modified during
execution, and the number of formal parameter variables,
according to the DATA VARIABLE SCOPE COUNTS\GLOBAL, DATA
VARIABLE SCOPE COUNTS\GLOBAL\MODIFIED, and DATA VARIABLE
SCOPE COUNTSANONGLOBAL\PARAMETER aspects, respectivelys

{43 A trend existed for the individuals (AI) to have a smatler
percentage of formal parameters compared to the total number
of declared data variables than either the ad hoc teams (AT)
or the disciplined teams (dT), according to the DATA VARIABLE
SCOPE PERCENTAGES\NONGLOBAL\PARAMETER aspecta

(5) According to the AVERAGE NONGLOBAL VARIABLES PER SEGMENTY
PARAMETER aspecty there was a trend for the individuals (AI)

tc have fewer formal parameters per routine than did either

_ the ad hoc teams (AT) or the disciplined teams (DT),

(63 A definite trend existed for the individuals (AI) to have
fewer possible sezment-global usage pairs (i.e., potential
éccess of a global variable by a rcutine) than either the ad

hoc teams (AT) or the disciplined teams (DT), accaording to

TR-688 Appendix 2 | 50

the (SEG,GLOBAL) PCOSSIELE USAGE PAIRS aspecte.

(7) Accerding to the AVERAGE STATEMENTS PER SEGMENT aspecty, the

individuats_(AI) displayed a trend toward having a greater
number of statements per routine than did either the ad hoc
teams (AT) or the disciplined teams (DT).

(8) There existed slight trends toward more calls to

programmer—defined routines per calling routine and per

catled routine for the individuals (AI) than for either the

ad hoc teams (AT) or the disciplined teams (DT), according to

the AVG INVOCATIONS PER (CALLING) SEGMENTANONINTRINSIC and
AVG INVOCATIONS PER (CALLED) SEGMENT aspects.

{9} In addition, a very éiight trend existed for the individuals

(1)

(112

(132

(AI) to have more calls to programmer—defined functions,
averaged per programmer-defined function, than either the ad
hoc teams (AT) or the disciplined teams (0T}, according to
the AVG INVOCATIONS PER (CALLED) SEGMENT\FUNCTION aspect.
According to the DATA VARIABLE SCOPE PERCENTAGES\NONGLOBAL\
LOCAL aspect, the individuals (AI) had & larger percentacge of
tocal variables compared to the total number of declared data
variables than either the ad hoc teams (AT) or the '
disciplined teams (DT).

A slight trend existed for bLoth the individuals (AI) and the
disciplined teams (DT) to have a.Largeb relative percentage

of segment-global usage pairs (iseey the ratio of actual

-segment-glocal usage pairs to possible segment-global usage

"pairs) than the ad hoc teams'(AT) for'nonentry global

variables whose values were not modified during execution

(ieeey, the simplest kind of "named censtants"}), according to

the (SEG,GLOBAL) USAGE RELATIVE PERCENTAGES\NONENTRY\

UNMODIFIED aspecte. ,

According to the STATEMENT TYPE COUNTSVIF and STATEMENT TYPE
PERCENTAGENIF aspecfs, toth the individuals (AI) and the
dlsc1pl1ned teams (D7) coded not1ceab£y fewer IF statements
than the ad hoc teams (AT), in terms of both total number and
percentace of total statements.

A trend existed, according to the STATEMENT TYPE COUNTS\
{PROC)CALL\INTRINSiC aspect,'for-the ad hoc teams (AT) to make

TR-6E8 Appendix 2 ' 100

(14)

(15>

(16)

(17)

a8 larger number of calls on intrinsic procedures (jee.,
built=-in language-provided routines primarily for
input~output) than either the individuals (AI) or the
disciplined teams (pT).

Adcording to the STATEMENT TYPE COUNTS\RETURN aspect, thé ad
hoc teams (AT) had a noticeably ltarger number of RETURN
statements than either the individuals (AI) or the
disciplined teams (DT).

According to the DECISIONS aspect, both the individuals (AI)
and the disciplined téams (DT) tended to code fewer decisions
(i.e., IF, WHILE, or CASE statements) than the ad hoc teams
(AT). |

A trend existéd for the ad hoc teams (AT) to have more calls
to intrinsic procedures, with a2 noticeably larger number of
calté to intrinsic routines (je.eey BUILL=in language—-provided
procedures and functions, primarily for input-output and type

conversion), than either the jndividuals (AL} or the

_disciplined.teams (bT), according to the INVOCATIONS\A

PROCEDUREMVINTRINSIC and INVOCATIONSVINTRINSIC aspects,
reSpectiveLy;' :

According to the (SEG}GLOBAL,SEG) DATA BINDINGS\POSSIBLE
aspect, there was a slight trend for both the individuals
(A1) and the disciptined teams (DT) to have fewer possible

data bindings [Stevens, Myers, and Constantine 741 (i.ea.,

cccurrences of the situation where a global variable r is

~ both potentially modified by a segment p and potentially

{183

19y

accessed by a segment q, with p different from g) than the ad
hoc teams (AT).

Rccording to the COMPUTER JQB'STEPS aspect, the disciplinecd
teams (DT) required very naticeably fewer computer job steps
(i.e., module compilations, program executionsy or
miscellaneocus job steps) than both the individuals (AI) ang
the ad hoc teams (AT). |

This same difference was definitely'apparenf_in the total
number of module compilations, the number of unigque (J.€e,
not an identical recompilation ¢f a previously compiled

module) module compilations, the number of program

TR=4688 Appendix 2 101

(20>

(21)

executions, and the number of essential job steps (i.ee,
unique module compilations plus program executions)},
according to the COMPUTER JOB STEPS\MODULE COMPILATIONS,
COMPUTER JOB STEPS\MODULE COMPILATIONS\UNIGQUE, COMPUTER JOEB
STEPS\PROGRAM EXECUTIGONS, and ESSENTIAL JOB STEPS aspects,
respectively.

A trend existed for both the individuals (AI) and the ad hoc
teams (AT) to have required more miscellanecus'job steps
(ieesy auxiliary compilations or executions of something
other than the final software product) than the disciplined
teams (0T}, according to the COMPUTER J0OB STEPS\MISCELLANEOUS
aspect.

According to the AVERAGE UNIQUE COMPILATIONS PER MODULE and
MAX UNIQUE COMPILATIONS FeAaOao MODULE aspects, respectively,

- the disciplined teams (DT} reguired fewer unique compilations

e e —

(22)

(22)

(24)

per module on the average, with a definite trend toward fewer
unique compilations for any one module in the worst case,
than either the individuals (A} or the ad hoc teams (AT).
According to the LINES aspect, there was a definite trend for

the individuals (AI) to have produced fewer total symbolic

lines (includes comments, compiler directives, statements,
declarations, etc.) than the disciptined teams (bT) who
produced fewer than the ad hot teams (AT).

A definite trend existed for the individuals (AI) to have 3
Larser relative percentage of segment-globat usage pairs for
entry globals and for entry globats which could be modified
during.execufion than the disciplined teams (DT) who had a
Larger still percentage than the ad hoc teams (AT)y according
te (SEG,GLOBAL) USAGE RELATIVE PERCENTAGES\ENTRY and
(SEG,GLOBAL) USAGE RELATIVE PEQC‘NTAGES\ENTRY\MODIFIED
aspectsy respectively.

According to the PROGRAM CHANGES aspect, there existed a
trend for the disciplined teams (bT) to require fewer textual

revisions to build and debug the software than the

_1nd1v1dua£s (AI) who requ1red fewer revisicns than the ad hoc

teams (AT,

TR-4688 Appendix 2 102

The following numbered sentences simply provide Engtish
translations for the non=-null dispersion conclusions presented in
symbolic equaticn form in Table Z.2. They may be skimmed by the
reader since they do not add tc the information appearing in the

tablie,.

(1) The individuals (AI) displayed noticeably less variation in
the number of formal parameters passed by reference than both
the ad hoc teams (AT) and the disciplined teams (DT), with a
similar trend in the percentage of reference parameters
compared to the total number of declared data variable,
according to the DATA VARIABLE SCOPE COUNTSANONGLOBALN
PARAMETER\REFERENCE and DATA VARIARLE SCOPE PERCENTAGES\
NONGLOBAL\PARAMETER\REFERENCE asbects. o

(2) According to the PARAMETER PASSAGE TYPE PERCENTAGES\VALUE and
?ARAMETER PASSAGE TYPE PERCENTAGES\REFERENCE aspetts, both
the ad hoc teams (AT) and the disciplined teams (0T) tended
to have more variation in the percentage of value parameters
and reference paramgters compared u1th the total number of
formal parameters declared than the individuals (AI).

(3) The individuals (Al) had less variation in the number of
possible segment-global usage pairs (i.e., potential access
of a global variable by a routine) involving nonentry glabals
than either the ad hoc teams (AT) or the disciplined teams
(DT), according to the (SEG,GLOBAL) POSSIBLE USAGE PAIRS\

-NONENTRY aspect.

(&) According to the (SEG,GLOB#L,SEB) DATA BiNDINGS\ACTUAL\

| INDEPENDENT aspecty there was a very slight trend for the
individuals (AI) to have less variation in the number of
actual data bindings [Stevens, Myers, and (onstantine 743
(iees, occurrences of the situation where a gleobal variable r
is both actually modiffed by a segment p and actuatly
atcessed by 8 segment gy with p different from q) in which
the two routines were "independent® (i.es, neither segment
can invoke the other, directly or indirectly) than both the
ad hoc teams (AT) and the discfplined teams (DT).

(5} The individuals (AI) exhibited noticeably greater variation

TR-6&3 Appendix 2 103

than either the ad hoc teams (AT) or the disciplined teams
(dT) in the number of miscellaneous job steps (fecey
auxiliary compilations or executions of something other than
the final socftware project), according to the COMPUTER J 0B
STEPS\MISCELLANEQUS aspect.

(63 In the number of calls in generat and of calls to

programmer—-defined routines in particular, the individuatls

- (A1) displayed noticeably greater variation than both the ad

hoc teams (AT) and the disciplined teams (DT), according to
the INVOCATIONS and INVOCATIONS\NONINTRINSIC aspects.

(7} According to the STATEMENTS aspect, a very slight trend

existed for the ad hoc teams (AT) to show less variability
than either the disciplined teams (DT) or the individuals

(AI} in the number of executable statements.

(8 A trend existed for both the individuals (AI) and the

d1sc1pt1ned teams (DT) to have greater variability than the
ad hoc teams (AT) in the average (per function) number of
calls to programmer~defined functions, according to the AVG
INVOCATiONS PER (CALLED) SEGMENT\FUNCTION aspect.

(9) According to the (SEG,GLOBSAL) ACTUAL USAGE PAIRS\MODIFIED

(103

1

e

1

aspect, a definite trend existed for the ad hoc teams (AT) to
have less variability ihan either - the individuals (AI) or the
disciplined teams (DT) in the number of actual segment-global
usage pairs (i.e., actual access of a8 global variable by a3
routine) 1nvolv1ng globals which were modified during

execution.,

According to the AVERAGE SEGMENTS PER MODULE aspect, the

individuals (AI) and the disciplined teams {(DT) both
exhibited noticeably less var1at10n in the average number of
routines per modute than the ad hoc teams (AT).

The ad hoc teams (AT) were noticeably more variabtie than

'.either the disciplined teams (DT) or the individuals (AI) in

the'percentage of coded RETURN statements compared with the
total number of statementé, according'to the STATEMENY TYPE
PERCENTAGES\RETURN aspects _

According to the AVERAGE GLCOBAL VARIABLE PER MODULE\MGEBIFIED

'aspect, the ad hoc teamS'(AI} disglayed a definite trend

TR=35

(13>

(14>

(152

&8 Appendix 2 | 104

toward greater varfability than both the individuals (AI) and
the disciplined teams (DPT) in the average number of globals
per module which were modified during execution.

The individuals (AI) and the disciplined teams (DT) were both
noticeably less variable than the ad hoc teams (AT) in the
number of possible segment~global usage pairs where the
global variable was nonentry and modified during execution,
according to the (SEG, GLOBAL) POSSIBLE USAGE PAIRSANONENTRY\
MODIFIED aspecte '

According to the (SEG,GLOSAL,SEG) DATA BINDINGS\PQSSIBLE
aspects fhe ad hoc teams (AT) tended toward greater

variability than either the individuals (AI) or the

disciplined teams (dT) in the number of possible data

bindings.. .
According to the STATEMENT TYPE COUNTS‘(PRGC)CALL, STATEMENT

- TYPE COUNTSM(PROC)CALL\NONINTRINSIC, INVOCATIONS\PROCEDURE,

and INVOCATIONS\PROCEDURE\NGHINTRINSIC aspects, both the

(163

(17)

€18)

€1%)

1nd1v1duais (AI) and the ad hoc teams (AT) were notvceabiy
more variable than the disciplined teams (DT) in the number

ot calls to intrinsic and nonintrinsic proceduresy with a
similar trend for caLLs to - nonintrinsic procedures slone.

This same difference appeared in the average number of
intrinsic procedure calls per calling segment, accérding to
the AVG INVOCATIONS PER (CALLING) SEGMENT\PRGCEDURE\INTRINSIC
aspecta

According to the DATA VARIABLES SCOPE PERCENTAGES\GLOBAL\
NONENTRY\MDDIFIED aspect, the disciplined teams (DT) gisplayed

noticeably smaller variation than either the individuals (AL}

‘or the ad hoc teams (AT) in the percentage of nonentry global

variables that were modified during execution compared tec the
total number of data variables declared.

According to the AVERAGE TOKENS PER STATEMENT aspect, @a
definite trend existed for the disciplined teams (DT) to
exhibit greater variabitity in the average number of tokens
(ies2ay basic symbol1c units) per statement than both the
individuals (AI) and the ad hoc teams (AT).

The trend toward less variaticon among both the individuals

TR-6E8 Appendix 2 103

(A1) and the ad hoc teams (AT).than among the disciplined
teams (DT) existed in the number of global variables and in
the number of format parametersy, according to the DATA
VARIABLE SCOPE COUNTSAGLOSAL and bHATA VARIABLE SCOPE COUNTS\
NONGLOBAL\PARAMETER aspects, respectively,

(20> A similar difference in variability existed noticeably in the
percentages, compared to the total number of declared data
variables, of globalts, of nonglobals, of formal parameters,
and of format parameters passed by value, according to the
DATA VARIABLE SCOPE PERCENTAGES\GLOBAL, DATA VARIABLE SCOPE
FERCENTAGES\NGNGLOBAL, DATA VARIABLE S$COP: PERCENTAGES\

2 NONGLOBAL\PARAMETER,. and DATA VARIABLE SCOPE PERCENTAGES\Y

i NONGLOBAL\PARAMETER\VALUE aspects, respectively.

(21) According to the (SEG,GLOBAL) POSSIBLE USAGE PAIRS and

' (SEG,GLOBAL) PQOSSIBLE USAGE PAIRS\NONENTRY\UNMODIFIED

~aspects, there was a noticeable difference in variability,
with the individuals (AI) tess than the disciplined teams
(0T less than the ad hoc teams (AT), for the total number of

. possible segment-global usage pairs, with a sitmilar trend for
| possible usage pairs in which the global variable was

nNonentry and not modified during execution.

(22) There was a noticeable difference in variability, with the
disciplined teams (pT) Less than. the individuals (AI) tess
than the a2d hot teams (AT), in the maximum number of un1que

compilations for any one module, according to the MAX UNIQUE
COMPILATIONS F,A.0. MODULE aspect.,

(22) According to the STATEMENT TYPE COUNTS\RETURN aspecty, there
was a difference in variability, with the disciplined teams
(0T) less than the individuéls (AI) tess than the ad hoc

teams (A7), for the number of RETURN statements coded. -

TR-4EE Appendix 3 104

Appendix IZ. English Paraphrase of Relaxed

—— e - o —— o T e i e O

o ——— o —

The following two paragraphs simply provide an English
paraphrase of the "relaxed differentiation” details presented in

Tables 4.1 and 4.2, respectively.

_ On location comparisons, four progfamming aspects yielded

completely diffebentiated conclusions, They are "relaxeg"® to

partially differentiated conclusions as follows:

T From DT < AT < AT on PROGRAM (CHANGES, the DT < AI = AT
conclusion overwhelmingly dwarfs the pT = AI < AT conclusien

2e The DT < AT difference is more pronounced than the Al < pT

- difference from AI < DT < AT on LINES o |

3¢ AT < DT < Al on (SEG,GLOBAL) USAGE RELATIVE PERCENTAGES\ENTRY
is more significantly "relaxed™ to AT < DT = AI than to
AT = bT < A1 . S .w -

4e The AT < DT and DT < Al differences from AT < DT < AI on

' (5EG,GLOBAL) USAGE RELATIVE PERCENTAGES\ENTRY\MODIFIED are
both exactly equally strong

On dispersion comparisons, three programming aspects yielded
completely differentiated conclusions. They are “relaxed®™ to
partially differentiated conclusions as follows:
i+ The DT < AI difference is much more pronocunced ihan the
Al < AT difference from DT < AI < AT on MAX UNIQUE
COMPILATIONS F.A.O0+ MGDULE |
2e From DT < AI < AT on STATEMENT TYPE COUNTS\RETURN, the
DT = AI ? AT conclusion overwhelmingly dwarfs the
DT < AI = AT conclusion '
2. AI < DT < AT on.(SEG,GLOBAL) POSSIBLE USAGE PAIRS is more
significantly “relaxed™ to Al < AT = DT than to DT = AI < AT
4« The Al < 07 difference is more pronounced than the DPT < AT
difference from AI < DT < AT on (SEG,GLOSAL) POSSIBLE USAGE
PAIRS\NONENTRY\UNMODIFIED |

TR=-682 Appendix 4 107

Appendix 4. Epglish Cstegorization of Directionless bistinctions

TESSTSesmes emam mmeSasdasmennE amilliomsaxli3

The following two paragraphs provide a complete itemization
of directionless distinctionse The information contained in
Tables 2 and 4 has simply been reorganized and presented in

English to support a directionless view of the study”s results.

Specifically, for the study”s ngggigg comparisons:
(1) The distinction

AL (individuals) # AT (ad hoc teams) = DT (disciplined teams)
was observed for popne of the process aspects and for several
product aspects, including _ '

= the raw count of programmer-defined segments (is€a,
routines),

- the raw count of programmer-defined dats variables,

- several raw counts and relative percentages of data
.variables according to their scope (i.e«y global,
parameter, or Locall,

- the raw count of potential segment—-global usage pairs
(which is strongly dependent on the raw counts of
segments and globals, both of which are also in this
category}), and

- several "per segment™ averages of other raw counts (f.e.,

formal parameters, executable statements, and. ...
nonintrinsic calls). |
(2) The distinction
AT (ad hoc teams) # bT (disciplined teams) = AI (individuals)
w2s observed for none of the process aspects and for several
preduct aspects, including
= the raw count of lines of symbolic source code,
~ both the raw count and relative percentage cf IF
| statements,
- the raw count of progcrammed decisions (i.e., total numbe r
of IF, CASE, and WHILE statements), '
= the raw count of RETURN statements,

= the raw counts ¢f calls to intrinsic routines and intrinsic

TR-CEE Appendix 4 108

procedures,
- one ratio of actual to possiblie accessibility of globals by
segments, and
- the raw count of possible communication paths between
seghents via clobals.
(3) The distinction
DT (disciplined teams) # Al (individuals) = AT (ad hoc teams)
was observed for nearty all the process aspects, including
- nearly all the raw counts of computer job steps, including
beth the total count and all the subclassification
counts (i.e., compilations, executions, miscellaneous),
except for identicali;ompilations,
- both "per module"” counts of unigue ;ompiles, the average
and the (worst case) maximum, and
- the amount of revision and change made to the source code
during development,

but for pgne cof the product aspectse

—— e e

(1) The distinction
AL (individuals) # AT (ad hoc teams}) = DT (diSciptined teams)
was observed for one process aspect, namely
- the raw count cf miscellaneous computer job steps (i.€.,
guxiliary compilations or executions of something other
than the final product),
and for several product aspects, including
=~ the raw count and several relative percentages of reference
parameters,
- a few raw counts of potential segment—global usage pairs,
=~ the raw count of tctal invocations and invocations of
programmer—-defined routines, and
- the raw count of actuatl segment-global-segment data
bindings in which neither segment could invoke the
'other. '
(2) The cistinction
AT (ad hoc teams) # DT (disciplined teams) = AI (incividuals)

was observed for none of the process aspects and for several

TR-4E8 Appendix &4 109

prceuduct aspects, including
- two "per module"™ averages of other raw counts, (fece,
segments and global variables which were modified during
execution),
- the raw count of executable statements,
- both the raw count and relative percentage of RETURN
statements,
~ the average number of calls made to programmer—defined
| segments which were functions rather than procedures,
- the raw count of actual segment—global usage pairs in which
the global variazble is modified dufing execution,
- the raw count of potential segment-glaobal usage pairs in
~which the global variable is not accessible across
modules and is modified, and
- the raw count of potential segment-global-segment data
bindings.
(3) The distinction S o e
DT (disciplined teams) # Al (individuals) = AT (ad hoc teams)

‘was observed for one process aspecty, namely
' - the (worst case) maximum count of unigue compiles for any
_ "one module,
and for several product aspects, including
= several raw counts and relative percentages of data
variables according to their scope (i.es., global,
.~ parameter, or local),
- the raw counts of calls to procedures and to
programmer-defined procedures,
= the aﬁerage number of calls to built-in procedures per
 ca{ting segment, and

~ the average number of tokens per statement.

