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ABSTRACT

This paper reports on an experiment in trying to understand an
unfamiliar program of some complexity and to record the authors' under—
standing of it. The goal was to simulate a practicing programmer in a
. program maintenance environment using thé techniques of program design
adapted to prbgram understanding and documentation; that is, given a
program, a specification and correctness proof were developed for the
program. The approach points out the value of correctness proof ideas in
guiding the discovery process. Toward this end, a variety of techniques
were used: direct cognition for smaller parts, discovering and verifying
ioop invariants for larger program parts, and functions determined by
additional analysis for larger program parts. An indeterminate bounded variable
was introduced into the pfogram documentatibn to summarize’the effect of

several program variables and simplify the proof of correctness.
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UNDERSTANDING AND DOCUMENTING PROGRAMS

I.. INTRODUCTION

Understanding programs - We report here on an experiment in trying to

understand an unfamiliar program of some complexity and to recérd our under-
standing of it. We are as much concerned with recording our understanding as
with understanding. - Every day programmers are figuring out what existing
programs do more or less accurately. But most of this effort is lost, and
repeated over and over, because of the difficulty of capturing this under—‘
standing on paper. We want to demonstrate that the very techniques of good
program design can be adapted to problems of recording hard won understandings -
aﬁqut existing programs.

In program design, we advocate the jodint devglopment of design and correct-
ness proof, as shown by Dijkstra in (Dahl, Dijkstra, and Hoare) and (Dijkstra)

and by (Lingef, Mills, and Witt), rather than a posteriori proof development.

Nevertheless, we believe that the idea of prdgram correctness provides a com-

prehensive a posteriori strategy for developing and recording an understanding

-of an existing program. 1In fact, we advocate another kind of joint develop-

ment, this time, of specification and cof:ectneSS proof. In this way, we have
2 consistent approach dealing always with three objects; namely, (1) a specifi-
cation, (2) a program, and (3) a correctness procf. In writing a program, we

are given (1) and develop (2) and (3) jointly; in reading a program, we are

.given (2) and develop (1) and (3) jeintly. 1In either case, we end up with the

same harmonious arrangement of (1) and (2) connected by (3) which contains our
understanding of the program.
In the experiment at hand, our final understanding exceeded our most

optimistic initial expectatioﬁs, even though we have seen these ideas succeed



before. One new insight from this experiment was how little we really had to
know about the program to develop a complete understanding and proof of what

it does (in contrast to how it dées it). Without tﬁe correctness proof ideas

to guide us, we simply would not have discovered how little we had to know.

In fact, we know a.great deal more than we have recorded here about how the
program works, which we chalk up to the usual.dead ends of a difficul; discovery
process. DBut the point i1s, without the focus of a correctness proof, we would
still be trying to understand and record a much larger set of logical facts
about_the program than is necessary to understand precisely what it does.

In rétrospect, we used a variety of discovery techniques. For simpler
parts of the program, we used direct cognition. In small complex looping parts,
we discovered and verified loop invariants. In the large, we organized the
effect of major program parts as functions_to be determined by additiomnal
analysis. We also discovered a new way to express the effect of a complex
program part by introducing a bounded indeterminate variable whié@&?é&iéalii;:"ﬂ;

_simplified the proof of correctness of the program part.

The experiment - We were interested in a short but complex program using

real arithmetic, and felt that more attention might be paid to the structure
and correctness of programs that deal with real arithmetic.. The program was
‘chosen by Professor James Vandergraft of the University of Maryland as a diffi-
cult program to understand. It was a FORTRAN program célled ZEROIN which |
claimed to find a zero of a func#ionlgiven by a FORTRAN subrcutine.

Ou: goal‘was to simulate a practiéing programmer in a program maintenance
environment. We were given the program and told its general functibn. The
problem then ﬁaé to understand it, verify its'correctness, and possibly
modify it, to make it more efficiént:or'exﬁend its'applicabiiity. We were not

given any more about the program than the program itself. The program given



to us is shown in Figure 1. Professor Vandergraft played the role of a user

of the program and posed four questions regarding the program:

1.

4,

I have a lot of equations, some of which might be linear. Should

I test for linearity and then solve the equation directly, or just
call ZEROIN? That is, how much work does ZEROIN ao to find a root
of a linear function?

What will happen if I call ZEROIN with FA and FB both positive?

How should the code be changed to test for this condition?

It is claimed that the inverse quadratic 1nterpolat10n saves only

.53 function evaluations on the average. To get a2 shorter program, I
would like to remove the inverse quadratic interpolation part of the
code. Can this be done easily? How?

Will ZEROIN find a triple.root?

It should be noted that the authors are not currently working in the area of

numerical analy31s, though it is not an unknown area to them.
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II. TECHNIQUES FOR UNDERSTANDING PROGRAMS

Flowcharts - Any flowchartable program can be analyzed in a way we
describe next for better understandability and documentation. For a fuller
discussion, see (Linger, Mills and Witt). We consider flowcharts as directed
graphs with nodes and lines. The lines denote flow of control and the nodes
denote tests and operations on data. Without loss of generality, we comsider

flowcharts with just three types of nodes, namely:

function node: —3 £

predicate node:

collecting nodes: gh;

where £ is any function mapping the data known to the program to new data,
.e.g., a simple FORTRAN assigmnment statement, and p is any predicate on the data
:known to the program, e.g., a simple FORTRAN test. An eqtrz line of a flowchart
program is a lime édjacent to only one node, at its head; an exit line is
adjacent to only cne node, its tail.

Functions and data assignments - Any function mapping the data known to

a program to new data can be defined in a convenient way by generalized forms
of data assignment statéments. Fof example, an assigument, dénoted
X i= e; (e.g., X ;= x + y)" . -

where x is a variable known to the program and e is an expression in variables
known to the program,'means that the value of e is assigned to x. Such an
assignment also means that no variable except x is to be altéred. The concurrent .
agsignment, denoted | |

| xl, x2, ..., %¥n = el, e2, ..., en

means that éxpressions el, e2, ..., en are evaluated independently, and their



values aésigned simultaneously to x1, x2, ..., xn, respectively. As before,
the absence of a variable on the left side means that it is unchanged by the
assignment.

The conditional assignment, denoted

(pl+ AL|p2~>4A2]|...|pn+ an)
where pl, p2, ..., pn are predicates and Al, A2, ..., An are assignments
(simple, concurrent or conditional) means that particular assignment Al
'associated with the first pi, if any, which evaloates true; otherwise, if no
pi evaluates true, then the conditional assigmment is undefined.

An expression in an assignment may contain a functlon value, e.g.

X := max (x, abs(y))

where max and abs are functions. But the function defined by the assignment

statement is different, of course, from max or abs,

We note that many programming languages permlt the possibility of so-
called side effects, which alter data not mentioned in assigmment statements
or in tests. Side effects are specifically prohibited in our definition of

assignments and tests.

Proper programs - We define a proper program to be a program whose flow-

chart has exactly one entry line, one exit line, and, further, for every node

a path from the entry through that node to the exit. For example,

£ : £
-‘éf-b," P, ’ s P .}_
_ N
g
are proper programs, but
£ £ /p | £
> = ’

are not proper programs.



Program functions - We define a program functiom of a proper program P,

denoted [P}Q to be the function computed by all possible executions of P which
start at its entry énd terminate at its exit. That is, a program function [P]
is a set of ordered pairs, the first mémber being a state of the data on entry
to P, the second Seing the resulting state of.thé data on exit. Note that
the staté of data includes input, output files which may be read froﬁ or
written to intermittently during execution. Also note that if a program does
not terminate by reaching its exit line from some initial data at its entry,
say by looping indefinitely‘or by aborting, no such pair will be determined and
no trace of ;his abnormai execution will be found in.its program function.
Proper programs are convenient units of documentation. Their program
functions abstract their éntire effect on the data known to the program.
Within a program, ény subprogram which is proper can be also abstracted'ﬁy its
program function, that is, the efféct of the subprogram can be described by a
single funcfion node whose function is the program function of the subprogram.

We say two programs are function equivalent if their program functions

OL - .
£ “p o £

—

-

have different flowcharts but are function equivalent.

Prime programs - We define a prime program to be a proper program which

contains no subprogram which is proper except for itself and function nodes.

For example,

SN W Nl W

_.are primes, while

By N Y e I 1.



are not prime (composite programs), the first (of the composites) having

subprograns
-—J_E_ g ' and g h =

Any composite program can be decomposed into a hierarchy of primes, a prime

at one level serving as a function node at the next higher level. For example,

the composite programs above can be decomposed as shown next.

- — p— p—

| 1

P — — —77 7 £ ] gT‘L
£ g h = P == .

= |

R — —— — I

In each case, a prime is identified to serve as a function node in another
prime at the next level. Note also that the first composite can also be

decomposed as

]
1 £ .Ajlg h‘—-:-%
4 fme—1

[ i

- go that the prime decomposition of proper programs is not necessarily umnique.

Prime programs in text form - There is a striking resemblance between

prime programs and prime numbers, with function nodes playing the node of
unity, and subprograms the role of divisibility. Just as for numbers, we can
enumerate the control graphs of prime prograﬁs and give a text description of

small primes as follows:




R
—> ' - if p then f fi A
P _ ' ' ) while p do f od
3 : do f umtil p od
£
—> if p then f else g fi-
- :

dol f while p do2 y od

Larger primes will go unnamed here, although the case statement of
Pascal is a sample of a useful larger prime. All of the primes above except
the last (dowhilede)} are comﬁon to many programmipng languages. Prime programs
in text form can be displayed with standard indentation to make the subprogram

structure and coantrol logic easily read, which we will illustrate for ZEROIN.



ITT. UNDERSTANDING ZEROIN

The prime program decomposition of ZEROIN - Our first step in under-

standing ZEROIN was to develop a prime program décomposipion of its flowchart.
After a little experimentation, the flowchart for ZEROIN was diagrammed as
shown in Figure 2. The numbers in the nodes of the flowchart represént
contiguous segments of the FORTRAN program of Figure 1, so all lowest level
sequence primes areralready identified and abstracted.

The flowchart program of Figure 2 was then reduced, a step at a time, by
identifying primes_thereiﬁ and replacing each such prime by a newly numbered
. function node, e.g., R.2.3 names prime 3 in reductiom 2 of the process. This
reduction is shown in Figure 3, leading to a hierarchy of 6 levels. Of all
primes shown in Figure 3, we note only two whiéh contain mdre than one predi-
cate, namely, R.3.1 and R.5.1, and each of these is easily ﬁodified into a
composite made up of primes with no more than one predicate. These modifica-
tions are shown in Figure 4. We continue the reduction of these new composite
programs to their prime decompositions in Figure 5. In each of these two cases,
a small segment of programs is duplicated to provide a new composite which
clearly executes identically to the prime. Such a modification which permits
a decomposition into one predicate primes is always possible, provided an
extra counter is used. 1In this case, it was fortunate that no such counter
was required. It was also fortunate that the.segments duﬁlicated were small;
otherwise, a program call in two places to the duplicated'sggment might be a

better strategy.

A structured design of ZEROIN - Since a prime program decomposition of a
program equivalent to ZEROIN has been found with ﬁo primes of more than one
‘predicate, we can reconstruct this'program in text form in the following way:

-The final reduced program of ZEROIN is given in Reduction 6 of Figure 3, namely,



ZEROIN

-9 1

10-11

\g.'_.

«—J100-102

Figure 2,

6468

85-86




Reduction 1

ZEROIN
|

1-9
R.1.1 R.1.
16-21
25-28 |

R.1.2

29-30 |
R.1.2

- R.1.

100-102

72-73
G
79-80]  [85-86
P
90-94
95

Figure 3 (1 of 4 pages)
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100-102

ZEROIN
R.2.1|

Reduction 2

25-28

79-80 85-86

Pigure 3 (2 of 4 pages)

R.2.1

R.2.2

R.2.3

it

16-21

29-30

41-42

R.1.3

72-73}



Reduction 3

1100-102 43-44

R.3.1 | , | )

90-94

Reduction 4

’6.

[R2T R.4.1 = |R.3.1

?G‘}_'
kN
o 19
(o]
=1

~94

{100-102|—

Figure 3 (3 of 4 pages)




Reduction 5

ZEROIN

R.2.1

ZEROIN

|

R.6.1

Reduction 6

CR.6.T =

R.2.1]

R.5.1

\

100-102

|

Figure 3 (4 of 4 pages)




R.3.1 = 48-49

i

79-80 85-86

el

R.5.1 = 25~29

=

™

P .

1 [g)

+a .
r

9

: A
(8] =
-

¢an be
modified
to

can be
modified
to

Figure 4

M.3.1 =

48-49

79-801 [80-86 85-86
et
A)
\/
25-29 25-29 f—my
A




Reduction 1

5.1.1 = 4ﬂ1’?}

79-80] 85-86 |
. 1
4
T |
5.1.1 85-86
A 4
. : Reduction 2
. M.3.1 : 5.2.1 = [R.2.3
| 48-49 >———— o E;L.l
5.2.1]  185-86
~em—
W

'Reduction 3

M.3.1 5.3.1 = <48-44

| | ' 5.2.1 85-86

—

Figure 5 (1 of 2 pages}



M.5.1 T.1.1 = 4‘%')»
|

Reduction 1

25-29 25-29

R.2.2

Reduction 2

25-

29 . T.2a = R.4.1

R.2.

2 . o ' ' T.1.1

Reduction 3

25-28] . T.3.0 =

I

7.3.1

Reduction 4

a1 T.4.1 = 25-29

~ ~Figure 5 (2 of 2 pages)
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that R.6.1 is a sequence, repeated here,

R.6.1 =

100-102

Now R.2.l can be looked up, in turn, as:

R'z.l =

ete., until all intermediate reductions have been eliminated. Recall that
R.53.1 (and R.3.1) was further reduced in Figure 5. When these intermediate
reductions have all been eliminated, we cbtain a structured program in PDL
(Process Design Language) for ZEROIN shown in Figure 6. Note there are.three
columns of statement numberings. The first column holds the PDL statement
number; the second holds the FORTRAN line numbering of Figure 1; the third
holds the FORTRAN statement numbering of Figure 1. The FORTRAN éomments have
ﬁeen kept intact in the structured program and appear within square brackets
[,]. From here on, statement numbers refer to the PDL statements of Figure 6.
The duplication of code introduced in Figure 4 can be seen in PDL 72, 73,
and PDL 96~99. It should be noted, however, that in PDL 87-91 the éecond
IF STATEMENT in FORTRAN 93 can be eliminated by use of the if-then-else. This
permits an execution time improvement to the code. A second improvement can be
seen in PDL 62-66. The use of the absoiute value function can be eliminated
and_the if-theﬁ—else can be used to trénsform the else negative p into a

positive p only in the case where p is negative.



FORTRAN

wine Stmt
afer- | #
mce ref.
: ZERQIN. PROGRAM
1 ]1-2 func zeroin (real ax, bx, £, tol, integer ip)
2 5 real a, b, ¢, d, e, eps, fa, fb, fc,
3 tol 1, =m, p, 4, I, S
5 7 [COMPUTE EPS, THE RELATIVE MACHINE PRECISION]
3 9 eps := 1.0
6 do
7 | 104 10 eps := eps/2.0
8§ | 11 tol 1 := 1.0 + eps
9 yntil
10 12 tel 1 51
11 od
12 14 [{INITIALIZATION]
13 1é if ip=1 then write ("THE INTERVALS DETERMINED BY ZEROIN ARE") fi
14 18 3 = ax
15 19 b := bx
16 | 20]. fa := £(a)
17 21 fb = £(b)
18 23 [BEGIN STEP]
19 25§ 20 C 3= a
20 26 fc = fa
21 27 d = b-a
22 28 e 1= 4
23 | ' dol
26 | 297 30 1f ip = 1 then write (b, ¢} fi
25 if
26 31 abs {(fc) < abs (£fh)
27 | then
28 32 a:=5h%
29 33 b =g
30 34 c = 3
31 35} fa := £b
32 36 £fh = f¢
33 37 fe := fa
34 | £i
© 35 39 [CONVERGENCE TEST]
36 | 41| 40 tel 1 := 2.0 * eps % abs (b) + 0.5 * ol
37 | 42 xm := .5 * (¢=~b)
38 ‘while
3s |43 abs (xm) > tol 1 and £b %
40 do2
41 [IS BISECTION NECESSARY]
42 Af
. 43 " abs (e) < tol 1 or abs (fa) < abs (fb)
44 g3 then [BISECTION] -
45 | 85} 70 T 4 1= xm
. 48 86 e = d '
47 46 else [IS QUADRATIC IVTERPOLATION ?OSSIBLE]
48 | if
49 | 48 . a#c
50 62 ) then [INVERSE QUADRATIC INTERPOLATION]

Figure 6. (1 of 2 pages)




Linte
Refer-
ence
51 64
52 65
53 66
54 67
55 68
56 55
57 57
58 58
59 59
60
61 70
62
63 72
64
&5 72
66
67
63 75
69 |
70 77
- 71 83
72.{ 85
73 86
74
75 79
78 30
77
78
79 .
80 30
81 91
82
83 g2
84
85 92
86
87
B8 93
89
90 93
91
92 94
93
94
95
96 | 25
97 26
98 27
69 | 28
100
101
102 | 98
103 J100
104 1101
105 R02

Stmt
#

ref.

30

60

70

80

20

g := fa/fc

T := fb/fc

s := fb/fa

pims* (2,0 *xm*% q* (gur) - (b-a) * (r=1.0))

q = {(q=1.0) * (r-1.0) * (s-1.0)
else [LINEAR INTERPOLATION]

s = fb/fa :

pi=2.0*xm*g

q:=1.0-35
£1
[ADJUST SIGNS]
if /* note can be *f

p> o /* if p> o then q = =q */
then [*  elsa p = -p */

[ * ’ *

fiq 1= -q 5* in PDL *§
p := abs(p)

[IS INTERPOLATION ACCEPTABLE]

if

(2.0 * p) 2 (3.0 * xm * q - abs (tol 1 * q))

then [BISECTION]
d = xm
e := 4
else
e :=d
d := p/q
£i

£

od

[COMPLETE STEP]
a = b
fa = fb
if |

abs(d) » tol 1
then

b:=b+4d
£1i -
if

abs(d) =z
then

b s= b 4+ sign (tol 1, xm)
£
fb = f(b)
if

fb * (fc/abs (fc)) >
then [BEGIN STEP] :

c = a

fe = fa

d :2abh - 2

e :=md

tol 1

£

DONE]

zeroin
return

enuf

1= b

1%

/* note 85-86 repeated */

/* in PDL “xf
/* note test done twice */
[* in FORTRAN */
/* here and - *f
*/

/* in line 88

note 25-28 */
repeated */
in PDL = */

J*
/*

Figure 6. (2 of 2 pages)
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By const;uction, the PDL program of Figure 6 is function equivalent
to the FORTRAN program of Figure 1. But the PDL program will be simpler

to study and understand.

Data references in ZEROIN - Our next step in understanding ZEROIN was to

develop a data reference table for all data identifiers. While straight-
forward and mechénical, there is still much learning value in carrying out
this step, in becoming familiar with the program in the new structured form.
The results are given in Figure 7. This familiarization led to the following
observations about the data references in ZEROIN (in no particular order of
gignificance, but as part of a chronologicél, intuitive, discovery process):
1. ax, bx,.f, ip, tol are never set, as might be expected, since
they are all input parameters (but this check would determine
initialized data if it existed, and also checks for the presence of
sidé effects by the program on its parameters if passed by referenée).
2. Zeroin is never used, but is returned as the purported zero found
for £ (since Zerodin is set to b just before the return of the program,
it appears that b may be a candidate for this zero during execution).
‘3. eps is set by the dountil loop 6-11 at the start of program execution,
then used as a constant at statement 36 from then on.
4. tollis used for two different unrelated purposes, namely, as a
'temporary in the dountil look 6-11 which sets eps, then reset at
statement 36 as part of a convergence consideration.
5._.the function f is called but three times, at 16, 17 to initilize
fa, fb, and at 92 to reset fb to £(b) (more evidence that b is the
candidate zero to be returned).
6. the identifiers a, ¢ are set to and from b, and the triple a, b, ¢
seeﬁs to be a candidate for bracketing.the zero whibh b (and zeroin)

purperts to approach.




ax

bx

eps

fa
b

- fe
ip

T

8

tol
tol 1
xm

zeroin

Set

14,28,80
15,29,85,990

19,30, 96
21,45,72,76, 98
22,46,73,75,9
5,7 |

16,31,81
17,32,92

20,33,97

54,58,67
51,55,59, 65
52

53,57

8,36
37
101

Used

16,19,21,30, 49
14
17,21,24,28, 36
15 -
29,37, 49
22,46,73,75,83
43

7,8,36
16,17, 92
20,33,43,51, 53
26,31,39,43, 52
26,32,51,52, 04
13,24
63,67,70, 76
54,55,65,70,76
54,55
54,55, 58, 59

36
10,39,43,70, 83
39,45,54, 58, 70

Figure 7.

»34,96,98

,37,54,80,85,90,92,98,103

»85,88,099

257,97
»33,57,81,94

»38
»72,90
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7. the identifierstfa; fb, fc¢ are evidently standins for £(a), f(b),._

| f(c), and serve to limit the calls on function f ﬁo a minimum.

8. the identifiers ﬁ, 4> T, s are initialized and used only in the
section of the program that the comments indicate is concerned
with interpolation. |

9. focusing on b, aside from initialization at statement 15, and as
part of a general exchange among a, b, ¢ at statement 28-29, b is
updated only in the ifthenelse 83-90, incremented by either 4 or
tol 1. |

. 10. d is set to xm or p/q (as a result of a mofe complex bisection and
interpoiation process); xm is set only at statement 37 to the haif
interval of (b, c¢) and appears to give a bisection value for b.

A function decomposition of ZEROIN - The prime program decomposition and

the fémili#rity developed by the data reference tabulation and observations
suggest the_idéntification of various intermediate prime or composite programs
in playing important roles in summing up a functional structure for ZEROIN.
Each such intermediate prime or composite program computes values of a functiom.
The inputs (function arguments) of this function a#e defined by the initial
values of all identifiers ﬁhich are inputs (fuﬁction arguments) for statements
which make up the intermediate program. The outputs (function values) of
this function are defined by the final values of all identifiers which are
outputs (function values) for statements which make ﬁp the intermédiate pro-
gram. Of course, further analysis may disclose that such a gunction is
independent of some inputs, if, in fact, sﬁch an identifier is always
initialized in the intérmediate program before its use. |

On the basis of this prime deéompositidn and data analysis, we :eformulatéd

ZEROIN of Figure 6 as zeroinl, a sequence of four intermediate programs, as
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shown in Figure 8, with function statements using the form f. n-m where n, m

are the boundary statements of the intermediate programs of ZEROIN from Figure 6.
The identifier *outfile in the output lists refers to ﬁhe fact that data is .
being transferred to an outfile by an intermediate program. The phrase (#,z,v)
projection of some function x,¥,Z,u,V,¥w = p,q,T,5,%,u means the new function

X,2,V 1T DP,T,L.

In the program descriptions which follow, all arithmetic operations
are assumed to represent machine arithmetic. However, we will occcasionally
apply normal arithmetic axioms in order to simplify expressions. We next

look at the intermediate programs.

£.5-11 - The intermediate program which computes the values of £.5-11
is a sequence,.namely, an initialized dountil, i.e.
| 5 eps := 1.0

6 do

7 - eps := eps/2.0

8 | toi.l := 1.0 + eps
o waeil |
10 tol 1 é.l
11 od

After some thinking, we determined that at PDL 6, an invariant of the form
16 = (31{.; o (eps=2-k)) Al+eps>1
must hold, since entry to PDL 6 must come from PDL 5 or PDL 10 (and in the
latter case tol 1> 1, having just been set to 1.0 + eps, SO l 0+ eps > l)
| Furthermore, at PDL 9 the invariant
= (3k>1 (EEPS? 2_k)) Atoll=14 eps
must hold, by.observing the effect of PDL 7, 8 on the invariant I6 at PDL 6.
Therefore, at exit (if.ever) from the segment PDL 5-11, we mﬁst have the
condition I9 A PDLVlO, namely |

(3k3 1 (eps =25y A1+ 2eps> LAtoll=1+epssl
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11

12

© 13

func zeroin 1 (real ax,'bx, £, tol, integer ip)
real a, b, ¢, d, e, eps, fa, fb, fec, p, q, ¥, 8, tol 1, xm
integer ip
[compute eps, the relative machine precision]
eps, tol 1 := £. 5-11
[initialize data]
a, b, ¢, d, e, fa, fb, fe, *outfile := f. 13-22 (ip, ax, bx, f)
[estimate b as.a zero of f]
a, b, ¢; 4, e, fa, fb, fe, P, 9, T, S, tol 1,xm, *outfile ;=
£f. 23-101 (2, b, ¢, d, e, £, fa, fb, fec, ip, p, q, ¢, s, tol 1, xm).
[set zeroin for return, zeroin := b]
zeroin := f. 103-103(d)
return | |

cenuf

Figure 8
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Thus we have
Lemma 5-11 Tﬁe program function of £.5-11 is the consfant function.

{(p, (eps, tol MiEe>1 {eps = Z-k)) Al+2eps> 1A tol 1 =1 + eps
gince tol 1 is reassigned (in PDL 36) before it is used again, £.5-11 can be
thought of as computiﬁg only eps. .

£.13-22 - The intermediate program which computes the value gf f.;3—22
is a sequence which can be written directly as a multiple assignment. It is
convenient to retain the gingle output statement FDL 13, and write

£.13-22 = £.13-13; £.14-22
yielding |
Lemma 13-22 The (a,b,c,d,e,*outfile) projection of £.13-22 is function
eqﬁivalent to the sequence |
£.13-13; £.14-22
where £.13-13 = if ip = i then write ('THE INTERVALS DETERMINED BY ZEROIN ARE')
£.14-22 = a,b,c,d,e = ax,bﬁ,ax,bx—ax,bx—ax

£,23-101 - The i{ntermediate program which computes the value of £.23-101
iz a bit more complicated than the previous program segments and will be broken
down into several subsegments. We begin by noticing that several of the input
and output parameters may be eliminated from the list. Specifically, as noted
earlier, ps 9s T» and & are local variables to £.23-101 since they are always
recalculated before they are used in £.23-101 and they are not used outside of
£,23-101. The saﬁe is true for xm and tol 1. £a, £b, and fc can be eliminated
since they are only used to hold the values of £(a), £(b) and £(c).

After considerable analysis and a number of false starts leading into a
great deal of detail, we discovered an amazing simplification, first as a con-
jecture, then as a more precise hypothesis, and finally aé a verified result.

This simplification concerned the main body of the jteration of zeroin, namely

3

1}



15

PDL 41~92, and obviated the need to know or check what kind of interpolation
strategylwas used, step by step. This discovery was that the new estimate
of b always lay strictly within the interval bracketed by the previous b and c.

That is, PDL 41-92, among other effects,’hgé tﬁéi(b) projection
bi=b+ale-b), forsomes, 0<a<l
so that the new b was a fraction o of the distance from the previous b to c.
With a little more thought, it became clear that the precise values of d, e
could be ignored, their effects being captured in the proper (but precisely
unknown) vaiue of «. Furthermore, this new indetérminate (but bounded) variable
@ could be used to summarize the effect of d, e in the larger program part
PDL 23~101, because d, e are never referred.to subsequently. Thus, we'may
reﬁrite £.23-~101 at this level as
a, b, ¢ #outfile := £.23-101 (a,-b, c, £, ip)
and we define it as an initialized while loop.

Lemma 23-101 The (a, b, ¢, *outfile) projection of £.23-101 is function

equivalent to

(ip = 1 » write (b, ¢) | true - I); [Lemma 24]
(| £¢e) | <] £b) |+ a, b, ¢ := b, e, b | true + I) [Lemma 25-34]
while

£(b) # 0 A| ¢e=b)/2|> 2 eps | b |+ tol/2
do |
a, b, ¢ = b, b+ a(e-b), ¢ where 0 < a < 1; | [Lemma 41-92]
(F(b)* £Q@> 0> a, b, e :=a, b, a|true~ I);  [Lemma 93-100]

(ip = 1 - write (b, c) Itrue - 1); _ ' [Lemma 24]

(£ [ <|£® |+ a, b, ¢ 1= b, ¢, b|true > I) [Lemma 25-34]

where I is the identity mapping.
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The structure of £.23-101 corresponds directly to the structure of
PﬁL 23-101 except for a duplication of segment PDL 23-34 in order to comvert
the dowhiledo into a whiledo. The proof of the correctness of the assigmments
of £.23-101 is given in separate lemmas as noted in thg comments attached to
the functions in Lemma 23—101.. The while test is obtained by direct substity-
tion of values for tol 1 and xin defined in PDLI36~37 into the test in PDL 39

using eps as defined in Lemma 5-11.

Lemma 24 PDL 24 is equivalent to (ip = 1 + write (b, @) |true > 1)

pf: By direct inspection

Lemma 25-34 The (a, b, c) projection of the program functionm of PDL 25-34

is function equivalent to
(1 £ | <] £®) |+ a, b, ¢ t= b, ¢ b] true » I)

pf: By direct inspection of PDL 25-34

Lemma 41-92 The (a, b, c) projection of the program function of PDL 41-%2

is function equivalent to

a, by, ¢ :=b, b + ae~b), c where 0 < q < 1

The proof will be done by examining the set of relationships that must
hold among the variables in PDL 41-92 and analyzing the values of p and g only.
That is, it is not necessafy to have any knowledée of which interpolation was
performed to be able to show that.the new b can be defined by

b:=b+ale~b) , 0<ac=<i

We will“ignore the test on PDL 48 since it will be immaterial to the lemma
whether linear or quadratic interpolation is performed. We will examine only
the key tests and assignments and do the proof in two basic cases--interpo-
lation and bisection——torshow that the (d) projection of the program -
function of PDL 41-78 is | -

d = (c=b) (o) where 0<a <1



Cage 1 Interpolation

If interpolation is done, an examination of Figure 6 shows that the

following set of relatioms holds at PDL 78:

* I1. tol 1 = 2 * eps * abs (b) + .5 * tol (PDL 36)
* I2. xm = {c~b)/2 (PDL. 37)
¢ I3, abs (xm) > tol 1 _ - (PDL 39)
*I4. pz2 O 3 :- _ (PDL 67)
*I5, 2, *p <3 *zxm # q - abs{tol 1 * q) (PDL 70)
*I6.d=p/ q - (PDL 76)

“17. abs(d) > tol 1 (PDL 83)
Now let's examine the set of cases on p and q

p> 0Ag< 0

We have d = p/q < 0 (by hypotheses), -

p > 3 xm+ tol 1 (by IS), and tol 1> 0 by(Il)
q .2 2 | |
xm + fol 1 < O (since p/q < O)
we have xm < 0 implying 0 > d >p>3xm> 3 (ec-b) > (c~b).
q 2 Z

Since abs(xm) > tol 1 (by I3) and %

Thus 0 > d > (c-b) yielding d = a(c-b) where 0 < a < 1
p> 0 Ag>0

Wa have d = p > 0 (by hypotheses),
q

P<3zm-toll<3zxm=3 (c=b) < (c=b) (by I5, IL, I2)
q 2 p 2 4

implying 0 < d < (e-b). Thus d = a(c~b) where 0< a < 1

R) 0Aq=0

q = 0 implies 0> 2 * p (by I5) and we know p > 0 (by hypotheses),

implying a contradiction
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p = 0 A g = anything

abs(p/q) » tol 1 (by 16, I7) and tol 132 0 (by Il) implies p cannot
be 0 | )

p<0Aq= anything

p2> 0 (by I4) implies a contradiction

Case 2 Bisectiom

If bisection is done, an examination of Figure 6 shows that the follow-

ing set of relations holds at PDL 78

Bl. xm = (c-b)/2 ~(PDL 37)
B2. abs(xm) > tol 1 - {(PDL 39)
B3. d = xm (PDL 45 or PDL 72)

Here d = xm (by B3) implies o = % (by Bl) and thus d = (ec-b)(a) where
D<a=<1
PDL 82-91 implies if [d | tol 1 (i.e., if d is too small) then

increment b by tol 1 with the sign adjuéted ap@ropriately

i.e. sét a =1{d abs(d) > tol 1
sign (tol 1, zm) otherwise

But tol 1 < abs(xm) (by I3 and B2) = abs((c-b)/2) and the sign (tol 1)
is set to the sign (xm) implying
tol 1 = a(c-b) where 0 < a < 1
Thus, in PDL 82-91 b is incremented by d or tol 1, both of which
are of the form a(c-b) where 0 < o < 1. Thus we have
b=b+oafe-b) , 0 <a<l
and since in PDL 80-81 we have a, fa := b, fb we get the statement of

the Lemma.
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Once again, the reader ié reminded that the proof of Lemma 41-92 was done
by examining cases on p and q only. No knowledge of the actual interpolations
was necessary. Only tests and key assigmments were examined. Alsd, the pro~
gram function was abstracted to only the key variables a, b, ¢ and & represénted
the effecf of all other significant variables. ‘
Lemma 93-100 The (a,b,c) projection of PDL 93-100 is function equivalent to

(£(b) * £(c) > O+ a, b, ¢ :=a, b, a lEEEE'* I)

pL: By direct inspection, PDL 93-100 is an if then statement with if
test equivalent to the condition shown above and assigﬁments which include
the assigmments above,

The last function in zeroin 1 (from Figure 8) is the single statement
PDL 103 which can be easily seen as
Lemma 103 £.103 is functionrequivalent to zeroin := b

Now that each of the pieces of zeroin 1 have been defined, the program
function of zeroin will be given. First, let us rewrite ;eroinl, all in one

place, using the appropriate functions (Figure 9)..
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func

zeroinl (real ax, bx, f, tol, integer ip)

rezl a, b, ¢, d, e, eps, fa, £b, fc, o
file *outfile

[compute eps, the relative machine precision]

eps = {xl (k> 1 (x= Z—k)) Al+2x>1 A1+ epss 1)

.[initialize datal

(ip = 1 + *outfile := 'THE INTERVALS DETERMINED BY ZEROIN
ARE' | true + I) ;

a,b,c,d,e := ax,bx,ax,bg-ax,bx-ax

[estimate b as a zero of f]

(ip = 1 » *outfile (b, c) | true = I) ;.
(abs(£(c)) < abs{f(b)} a, b, ¢ = b, ¢, b itrue -+~ 1)
while |
£(b) # 0 Al (e=b)/2|> 2 eps | b |+ tol/2
do
a, b, ¢ = b, b+ a (e-b), ¢ where 0 < a < 1;%
{£(b) * £(c) > 0> a, b, c i=a, b, aftrue -~ I} ;
(ip =1~ *outfile(ﬁ, c) lEEEE'* I '
(abs(£(c)) < abs(£(b)) + a, b, ¢ s= b, ¢, b | true + I)
od
[set zeroin for return, zeroin {= b]

zeroin = b

return

cnuf

Figure 9

% g is .an indeterminate based on the current values of a, b, ¢, d, e, £,

fa, fb, fc, tol and eps
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Theorem 1-105
func zeroin has program function [zeroin] =

(ax = bx + root := bx |

f(bx) = 0 ~ root := bxw

f(ax) = 0 + root :='éx\

f(ax) * £(bx) <0 + root := approx (f, ax, bx, tol) |

. true - (V k = l,Z,...,f(bk) * f(ck) > 0 + root := unpredictablel
Tk > 0 (E(b) * £(e) SOAY J=1,2,...k -1, £(b,) * £(c) > 0)>
root := approx.(f, bk’ ck, tol)

where |

approx (f, ax, bx, tol) is some value in the interval (ax, bx) within

4 % eps * | x |+ tol of some zero x of the function f

and

the sequence (bl, cl), (b2,.c2); ... is defined so that each

succeeding interval is a sub-interval of the preceding interval;
and in the case where abs(d)sfol 1 never occurs {bl, cl} = {ax, bxl},
} defines the half interval of fbk, ck} including b, and

by, Sk

‘bk+1 is chosen to minimize abs(f(bk+l)).

Esggi: The proof will be carried out in cases, correspondlng to the condltions
in the rule given in the Theorem, The first three cases follow directly by
inspection of zeroinl, as special cases for input valués, which

| .bypass the while loop. 'I.e.; if ax = bx, then the values of a, b, ¢ and

root can be traced in zeroin 1 as follows: .

a b c root
zeroin 1.8 bx bx bx
.11 _ bx bx bx

[condition 13 fails since e¢-b = 0]

.21 bx bx bx bx
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Cases 2 and é.prcceed in a similar fashion.
Case 4, f£(ax) * £(bx) <0, will be handled by an gnalysis of the whiledo
loop and its results will apply to the last subcase of the last case as well.
The first subcase of the last case arises when no zero of f is even bracketed
and zeroinl runs a predictable course, as will be shown.
Case 4: It will be shown that the entry condition £(ax) * f(bx) <0 leads to
the following condition at the whiletest of zeroinl:
I=(a=c#bva<b<cve<b<a)Af(b) * £(c) =0 A abs(f(b) = abs(f(c))
The proof 1s by induction. First I holds on.entry to the whiledo loop because

by direct calculation

-after zeroinl.$ a=c A £() *£(c) <0OAc#b

¢ A £(b) * £(c) <0 A abs(£(b)) < abs(f(c)) Ac #b

1

after zeroinl.ll a

¥ext, suppose the invariant I holds.at any iteration of the whiledo at
the whiletest, and the whiletest evaluates true, it can be shown that I is pre-
served by the three-—part sequence of the do part. In fact, it will appear that
the first part, in seeking a better estimate qf a zero of f may destroy this
invariant, and the last two parts do no more than to restore the invariént.
It will be shown in Lemma 15-18 that |

after zeroinl.l5 (a < b <c v e <b<a)aif(a) * £(c) <0

after zeroinl.16 (a=céb va <b<cve <b <a) A £(B) * f(c) 0

after zeroinl.18 (a=c#b Vva <b <c Ve <b<a)A£f(h) * £(c) <O A
abs(£(b}) = abs(f{c))

which is I, again. Thus, I is indeed an invariant at the whiletest.
Consider the question of termination of the whiledo. In Lemma 15-18T
it will be shown using ¢, and b, as entry values to the do part, that for

some a, O<a<l, after zeroinl.l1l8 abs{c-b) < abs(co - bo) max (o, 1-o).
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Therefore, the whiledo must finally terminate because the condition

£(b) # 0 A abs((e-b)/2) > 2 * eps * abs(b) + tol/2
must finally fail, because by the finiteness of machine précision abs(c-b)
will go to zero if not terminéted sooner.

When the whiledo terminates, the invariant I must still hold. in par-
ticular £(b) * f(¢) g 0, which combined with the negation of the whiletest gives

IT = £(b) * £(¢) £ 0 A(E(B)) = O V_abs((c—b)/Z) g 2‘* eps * abs(b) + tol/2
IT states that

1) a zero of £ is brackete& by the interval (b, c¢)

2) either ﬁhe zéro is at b 6r the zero is at most icﬂb ]from b,

i.e., the zero is within 4 * eps #| b |+ tol of b. |
This is the definition of approx (f, b, ¢, tol). |
..Now, beginning with the interval (ax, bx), every estimate of b created at

i zeroinl.1l5 remains within the interval (b,c) current at the time*. Since ¢
and’b-are initialized as ax and bx at zeroinl.8, thé final estimate of b is
given by aﬁprox (£, ax, bx, tol). The assignment zeroin := b at zeroinl.2l
provides the value required by case 4.

Case 5: part 1. We first show that in this case the condition a = ¢ will hold

‘at zeroinl.l5 if f(b) * £{ec) > 0. By the hypothesis of case 5, part 1,
f((b+c)/2) is of the same sign as'f(b) and £(c). Therefore, tﬁe first case of
zeroinl.16 will hold and the assignment ¢ := a will be executed implying a % c
when we arfive at zeroinl.l5 from within the loop. Alse, if wa.reach zeroini.lS
from outside the loop (zeroinl.8-11) we also get a = c. o

| We now apply Lemma 15.L, which states that under the abo.ve condition.the

(a, b, c) projection of zeroinl.l5 is

%
this is because £(b) * f(c) 5 0 1is part of I
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b {b + (e-b)/2, if abs(c-b)‘/btol 1} .

(£(b) f £(c} > 0> a, b, ¢ := b + tol 1, otherwise

true + a, b, ¢ := b, b + afc-b), ¢)
which is a refinement of zeroinl.lS5.
Note that zeroinl.18 may exchange b,¢ depending on abs(f(b)) and abs(f(c)).

Thus, the (b,c) projection of the function computed by zeroinl.l5-18 in this

case is

e BIE Y e et G
i.e., the new interval (b, ¢) is the half interval of the initial (b,, ¢,)
which includes b, (for increments greater than tol 1), and the new b is chosen
to minimize the value abs(f(b)). fhe result of iterating this dopart is
unpredictable unless more is known about the values of f. TFor example, if the
values of f - in (ax, bx) are of one sign and monotone i#creasing or decreasing,
'then.the Iteration will 8o to the end point ax or bx for which abs(f) is
minimum. In genéral, the iteration will tend toward a minimum for abs(f), but
due to thé bisecting behavior, no guarantees are possible.

Case 5: part 2. This covers the happy accident of some intermediate pair

b,c bracketing an odd number of zeroces of f by happening into values bk’ > such
- that f(bk) * f(ck) = 0. The tendency to move towards a minimum for abs(£(b))
may increase the chanceé for such a happening, but provide no guarantee. Once
.such a pair bk, o is found, case 4 applies and some zero will be approximated.
This completes the proof of the theorem except for the p;oofs_of the

_three lemmas used'in.the'prqqfs which follow directly.
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Lemma 15-18 The invariant I defined as

I=(a=c#b V a<b<eVe<b<a)hfd) *£(c)s0Aabs(f(b)) g abs{f(c))
is preserved by the execution of the loop body ZEROIN1.15-18.
Proof: We use the following abbreviations:

S abs(E£(b)) # 0 A abs{(e=-b)/2) > 2 * eps * abs(b) + tol/2

-
1l

‘((c<b)V(c>b))Af(b)*f(c)<0

E{a<b<cVe<b<a)dfla) * f(c) <0

=
-
1

IpS(a=c#bVac<b<eVe<b<a)fb) * f(c) 50
Note that P is the loop predicate. The validity of the Lemma is an immediate
consequence of the following conditions:

Cl:1I A P = Io

€2 : I {ZEROINI.15} I,

€3 : I; {ZEROIN1.16} I,

'C4 : I, {ZEROINI1.18} I

Condition Cl is straightforward. C2 can be seen by considering ¢ < b and
¢ > b as different input cases. Condition C3 follows from

I, A £(b) * £(c) > 0 {c := a} I, (note that setting ¢ = a changes the
sign of £(ec)) : o '

Iy A E(B) A f(e) s 0 =D I,
Similarly, C4 can be inferred from
I, A abs(f(e)) < abs(f(b)) {a, b, ¢ = b, ¢, b} I

Iz A abs(f(c)) » abs(£(b)) =» I.
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Lemma 15-18T Given b,, ¢, on entry to zeroinl.15-18 then for some &, O<a<l

after zeroinl.l5 abs(c-b)

(1-a) abs(c,~b,)

after zeroinl.lé abs(c-b) = abs{co~b,)} max (a, l-a)
after zeroinl.l8 abs(c-b) = abs(c,-b,) max (&, 1l-a)
proof: after zeroinl.15

abs{(c-b)

abs(cg=bo-a(e,~b,)} = abs(ec,-b,)(l-a) 0<a<l

il

abs(b-a) abs({b,+a(c,-b,) - b,) = abs alc,~b,) " 0<a<l
after zercinl.l6 |
abs(c-b) = max abs{c,~bs) (1-a), abs{c,-b,)a)
= abs(c,-b,) ma# (¢, l1-a)

after zeroinl.l8

abé(c-b) = abs(co-b,) max {o,l-c) since b and ¢ are unchanged or
exchanged.

£y

It should be noted that in the above discussion, zeroinl.l7 was ignored
because its effect on the calculation of the root and termination of the loop
is irrelevant. |
We have one last lemma to érove.
Lemma 15L Given a = ¢ and £(a) * £(b) >0 then zeroinl.l5 calculates the
new b using the bisection method, i.e.,
b =1 +{(b-c)/2 if abs(c-b) > tol 1}

tol 1 otherwise

proof:
From PDL 43, either abs(f(b)) < abs(f(a)) or bisection is

done (PDL 45) with d = xm = (e-h)/2. Then PDL 82-91 implies
b:=fb+d=">b+ (c=b)/2 if abs{e-b)/2> tol 1
b+ tol 1 _ otherwise

- Since by hypothesis a = ¢, PDL 49 implies inverse quadratic



26

interpolation is not done and linear interpolation (PDL 56) is

attempted. Thus

s=fb/fa and 0 <s <1 since fb * fa> 0 and abs(fb) < abs(fa)
p = (c-b) * s; using xm + (ec-b)/2
q = l-s, implying q > o in PDL 59

The proof will be done by cases on the relationship between b and c.
e> b
c¢> b implies p > O in PDL 58. Since p > O before PDL 62, PDL 65
sets q to -q, 80 q < 0. Then the test at PDL 70 is true since
2 *p=a, ¥ g ig positive, |
3.0 ¥ xm * q =-§' (e=b) * q is negative, and
~abs(tol L * q) is positive
-implying PDL 70 evaluates to true

and bisection is performed in PDL 72-73.

e < b

¢ < b implies p < O in PDL 58. Since p < O before PDL 62,
‘PDL 65 leaves q.alcne and PDL 67 sets p > O implying p = (b-c) * x.
Then the test at PﬁL 70 is trué since | (
2% p=2% (b-c) * s is positive,
3.0 * #m * g ;-%f (c-b) * g is negative, and
abs(tol 1 *q) is positive
implying PDL 70 evaluates to true

and bisection is performed in PDL 72-73.
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iv. CONCLUSTION

Answering the questions - We can now answer the questions origimally

posed by Professor Vandergraft.

Question 1:

If the equation is linear, the program will do a linear interpolation
and find the root on one pass through the loop, except in the case where the
size of the interval (a, b) is smaller than tol 1. Then it will do a bisection
(from the test at PDL 43). Note the otﬁer potential condition where it may
pass to ?DL 44 for bisection is if abs(fa) - abs(fb) (from PDL 19, 26, and 43).
However, in this case bisection is an exact solution. The case that the size
of the interval is smaller than tol 1 is unlikely, but can happen.

Question 2:

The theorem states that if f(a) and £(b) are both of the same sign, we
will get an amswer that is some point bgtween a and b even though there is.no
root in the interval (a, b) (case 5a of the Theorem). If there are an even .
number of roots in the interval (2, b) then it is possible.the program will
happen upoﬁ one of the roots and return that root as an answer (case 5b of the
Theorem). To check for this condition, we should put a test right at entry
to the program between PDL 3 and PDL 4 of the form. |

i ‘ .

£(a) * £(b) > O
then

write ('F(A) and F(B) ARE BOTH OF THE SAME SIGN, RETURN B')

elga
PDL 4~102.

i1
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Question 3:

It would be easy to remove the inverse quadratic interpolation part

of the code. We can do this simply by removing several PDL statements, i.e.,

PDL 47-55. However, this would not leave us with the best solution since
much of the code surrounding the inverse guadratic interpolation could be
better written. For example:
(1) there would be no need to keep a, b, and ¢
(2) the test in PDL 70 could be removed if we checked in the loop
that f(a) *.f(b) was always greater than zero, since bisection
and linear interpolation would never take us out of the interval.

Cleaning up the algorithm would probably require a substantial transformation.

Question &4:

Zeroin will find a triple root. It will not inform the user that it is
a triple root, but will return it as a root because once it has a root
surrounded by two points such that f(a) and £(b) are of opposite signs, it

will find that root {(case 4 of the Theorem).

Program history - Since most programs seen by practicing programmers

do not have a history in the diterature, we did not research the history of
ZEROIN until we had completed our experiment. Tﬁe complexity of the program is
partially due to the fact that it was modified over a period of time by differ-
ent authors, each modification making it more efficient, effective or robust.
The code is based on the secan£ method (Ortega and Reinboldt). The idea of
combining it with bisection had been suggested by several people. The first
careful analysis seems to have been by T. J. Dekker;(Dekker).

R. P, Brent (Breﬁt)radded to Dekker's algorithm the inverse quadratic inter-

polation optiom, and changed some of the convergence tests. The Brent book
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contains an ALGOL 60 program. The FORTRAN program of Figure 1 is found in
(Forsythe, Malcolm & Moler) and is a direct tramslation of Brent's algorithm,
with the addition of a few lines that compute the machine-rounding error.

We understand that ZEROIN is a significant and actively used program for cal-
culating the roots of a function in a specific interval to a given tolerance.

Understanding and documenting - As it turns out, we were able to answer

the questions posed and discover the program function of ZEROIN. The techniques
used included function specification, the discovery of loop inmvariants, case
analysis, and the use of.a bounded indeterminate auxiliary variable.. The
discovery process used by the authors was not as direct as it appears in the
paper. There were several side trips which included proving the correctness
of_the inverse quadratic interpolation (én interesting result but not relevant
fo the final abstraction of the questions posed).

There are some implications that the algorithm of the program was over-
designed to be correct and that the tests may be mofe limiting than necessary.
This made the'program easier to prove correct, however.

We believe.this experience shows that the areas of program specification
and program correctness have advanced enough to make them useful in understanding
and documenting existing programs, an extremely important.application today.

In our case, we are convinced that without the focus of searching for a correct-
ness proof relating the specification to the program, we would have learned a
great deal, but would have been unable to record very much of what we learned
for others.

) Haﬁming pointed out that mathematicians and sciéhtists stand on each other's
shoulders, but programmers stand on each other's toes. We believe that will
continue to be true until programmers deal with programs as mathematical objecfs,

as unlikely as they may seem to be in real life, as we have tried to do here.
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