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ABSTRACT

The functional correctness technique is presented and explained.

An implication of the underlying theory for the derivation of loop

" invariants is discussed. The functional verification conditions concerning

program loops are shown to be a specialization of the commonly used
inductive assertion verification conditions. The functional technique
is compared and contrasted with subgoal induction. Finally, the diffi-

culty of proving inirialized loops is examined inm light of the inductive

assertion and functional correctness theories,
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1. Introductioﬁ

The relationship betuween prograns and the mathematical
functions they compute has Long been of interest to computer
scientists [McCarthy, 1963; strachey, 19461, More vrecentty,
[Milis, 1972, 19751 has developed 2 model of functional
correctnessy, f.e. a technigque for verifying a program correct
with respect to an abstract functional specification. This
theory has been turther developed by {Basu & Misra, 1975; Misra,
19?8] and now appears as a viable alternative to the inductive
assertion verification method due to [Floyd, 1967; Hoare, 19691J.

~ In order to describe the functional correctness model, we
consider a program P with variabltes v1, v2, ses , vn, These

variables may be of any type and complexity (e.g. reals,

structures, files, etcs) 'but we assume each vi takes on values
from a set di. The set 0 = d1 x d2 x .+« x dn is the data spa2se
for P; an element of D is a data state. A data state can be
thought of as an assignment of values to program variables and is
written €cl1,c2ye0e9¢n> where each vi has been assigned the wvalue
ci in di.

The effect of a program can be described by a function
f:0=->D which maps input data states to output data states. If P
is a program, the function computed by P, written [P], is the set
of  ordered pairs {(Xx,¥) | it P begins execution in data state X,
P will terminate in final state v}, The domain of [P] ‘i thus
the set of data states for which P terminates, :

1f the specifications for a program P can be formulated as a
data state to data state function f, the correctness of a program
can be determined by comparing f with [P). Specifically, we say
that P computes f if and only if f € [(PI., That is, if f{x) = ¥
for some data states X and Y, we require that [(PI{(X) be defined
and be equal to Y. Ncte that in order for P to compute ¥, no
explicit  requirement s -made concerning the behavior of P on
inputs outside the dosain of f, ' S

~Example 1: (onsider the simple program

P shiis a > 0 deo
b *
a

a;
a -1

od

The function computed by the program can be written as

_ [PI={(<a,b>,<0sb*a'>) | a>=0) U {(<a,b>,<a,b>) | a<0).

Thus if 8 is greater than or equal to zero, the program maps a
and b to 0 and b*a! respectively, otheruwise the program performs

‘the identity mapping. AsS a notational conveniencey we often use

conditional rules ard data state to data state “assignments"
(catled gcopcurrent g;;jgnggﬂ;;) to express functions. In this

“notation we have

[pJ = (a>-0 -2 a't s O.b*a! ITRUE -> agb -
Finally, if we are given f = (a>=0 -> a,b := 0O,b*a!) as the
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function to be computed, we may say that P computes ¥, since f is
a8 subset of [P).
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2o The Ffunctional Correctness Technique

The functional <correctness method relies heavily on a
technique for verifying that a WHILE Lloop computes a given stte
to state function. We present this WHILE Lloop technigue as a
theorem and then desc¢cribe the method for general programs.

Notation: The dorain of a function f will be written as
(). The notation f o g will be used to represent the
composition of the functions g and f. We will use the shorthandg
B*Qq for the WHILE Lloop ygwhile B8 do Q@ @d. Finally, in several
examples we will use the notation SUM(a,b,c,d) for the summation
from a=b to ¢ of d.

pefinition: The loop B*Q is closed for a function f if and
only if for atl X in D(f), B(X) implies [QI(X) is in DC(F),
Intuitively, a loop i5 closed for f if the data state remains in
DCf) as it executes fcr any input in D(f),

Theprem 1: It the loop B*a is closed for a function f, then
the loop computes f if and only itf, for all X in D{(f)

(2.1) the ilocop terminates when executed in initiat state X,

(2.2 B(x) => f(x3 = f€Lal{x)), and ' ' ' '

(2.3) “BLXY => f(X) = X,

' ~Proof: Firsty sugrpose (2.1), (2.2)y and (2.3)  hold. Let
Xx{OJ be  any element of D(f). By condition (2.1) the Loop must
produce some output after a finite number of iterations. Let n
represent this number of iterations, and let Xfn) represent the
output of the toop. Furthermore, tet X[1), Xx[2), wee. X[n=11 be
the intermedifate states Qgenerated by the loops 1€+ for atl i
satisfying 0 <= 4 < n, we have B(X[1J) 8 x[i+1) = [@I(X[(i]) and
‘atso TB(x[nl). Condition (2.2) shows f{(X[01) = f{(xX[1]) = .0s =
f(Xinl)., Condition (Z2.3) indicates f{(X[nl}) = XCnl. Thus f(xI{01)
= X[n)] and the Lloop computes f.

Secondly, suppose the doop computes f, This fact would be
tontradicted if (2.1) were false. Suppose (2.2) were false, t.e.
there exists an X in p(f) for which B(X) but f(X) <> f({QJ(x)),
From the closure requirement, (G3(X) is in DbD(f) and. the \loop
produces f(LQI(X)) when given the input [@}(X)., But this implies
the loop <can distinguish between the cases where [QJ(X) is an
input and the case where [(Q1(X) §s an intermediate result from
the input X, However, this 1is impossible since the state
describes the values cf all program variables, Finally, if (2.3)
were false, there would exist an x ¥n D(f) for which 1the toop
produces X as an output, but where f{X) <> X, Thus the loop must
not compute f. - o B

An important aspect of Theorem 1 is the absence of the need
for an - inductive assertion or loop invariant. Under the
tonditions of the thecrem, a loop can be proven or disproven
directly from its function specification, ' -
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Ezample 2: using the loop P and function §f of Example 1, we
shall show P computes fo p(f) is the set of all states
satisfying 2 >= 0. Since & is prevented from turning negative by
the toop predicate, the loop is closed for { and Theorem 1 can be
applied. The termination condition (2.1) is wvalid since a is
decremented 3n the Lloop body and has a lower bound of zero.
Since [G)(<a,b>) = <a=1, b*a>, condition (2.2) is

3 > [ =-> ft€a,b>) = f{<a~1,bva>)

which is

a > [ > <0gb*a!> = <0'b‘a*(ﬂ-1)!)
which can be shoun to be valid using the identity a! = a=*(a-i}!.
Condition (2.3) is ' '

_ a = [ =->» <0,b%al> = <a,b>
which is valid using the definition Q! = 1.

The functional correctness procedure js used to verify 2
program cofrfect with respect to a function specification. Large
programs must be broken down {nto subprograss whose ‘intended
functions may be more easily derived or verifieds These results.
are then used to show the program as a whole computes its
intended function. The exact procedure used to divide the
program into subprograms is not specified in the functional
correctness theory. In the interest of simplicity, the technique
presented here d{s based on prime program decomposition [Linger,
Mitts & dirt, 19791, That i4s, correctness rules witl be
sssociated with each prime program (or equivalently, with each
statement type) in the source Language. The reader should keep
in mind, howeve py that in certain circumstances, other
decomposition strategies may lead to more efficient proofs. One
such circumstance 3s fllustrated in Section 5. '

o In our presentation of the functional correctness procedure,
e will consider simplte Algol=-like progranms consisting of
assignment, IF-THEN-ELSE, WHILE and compound statements, Before
the correctness technique may be applieds the intended function
of each lcop in the progras must be knowne. furthermore, it 1is
required that each Lloop be closed for its intended function.
These intended functicns must efther be supplied with the program
or some heuristic (not discussed here) must be employed by the
verifier in order to derive a suitzble intended function for each
ioopoe This need for intended loop functions is analogous to the
need for sufficiently strong loop invariants in an inductive
assertion proof of correctness, ' o '

_ in order to prove that a structured statement S (j.e. a
WHILEs; IF-VTHEN-ELSE., cr compound statement) computes 3 function
§, it s necessary to first derive the function(s) computed by
the component statement(s), and then to verify that § computes f
using the derived subfunctions. Consequenttly, the function
correctneéss technigue will be described by a set of - function
derivation rules and a set of function verification rules:

periye Rules =~ Used to compute (sl.
D1: 5§ = wi=e

1) Return [v:=el.

p2: S = s1;s2 ' R



A Comparative Analysis of Functional Correctness 7

1) percive (513
2) perive [52}
3) neturn [$2) o fs51d.

p3: s = jf 8 gthep SV eise S2 fij
1Y peciye (S1)
2) peciye (s2)
3) Return (B->(S1] 1 TRUE~>(S52]).
bé: S = yhile B8 do ST od
1) Let f be the intended function
(either given or derived)
2) verify that yhile B do S1 od
. computes f
3) Return f.
Verify Rules - ysed to prove S computes f,
vi: 5 = w:ize o
1) perjve (S
2) Show f(X)=Y -> {SI(%X) = Y,
ve: S = §1;s82 '
1) pecrive (s3]
: 2) Show f(X)=Y =-> [S)(x) = Y.
v3: 5 = it B then S1 else S2 {i
1) perive ([S] .
2) Show t(x)=Y => [S1(x) = v,

Ve: S = yhile B do S1 od
1) Derijye (51]
2) Apply Thegrem 1,

Before considering an example of the use of these rules, we
introduce two conventions that will simplify the proofs of larger
programs, Firsty we allow an assignment into onily a portion of
the data state in a concurrent assignment, In this case 1t ;s
understood that the other data Sstate components are unmodified.

Example 3: If a grogram has variables vi,vZ2,v3, the seguence
of assignments ' : :
vl = 4; v} = 7
performs the program function
) _ visvd = 4,7
which is shorthand for
W1pow2 V3 = byviyT.

Secondly, if a function description is followed by a List of
of variables surrounded by # characters, then the function is
intended to describe the program®s effect on these variabies
onty. Other variables are considered to have been set to an
undefined or unspetified value. ' '

Example 4: If a grogram has variables vi,vZ2,v3 that take on
values fron d1 de2sd3, respectively, the function description
t = (vl > 0 => v2,v3 = v3,v2) #v2,vi#
is equ1valent to -
vl > 0 => vl,v2,v3 = ?2,v3,v2},
uhere_’ represents an unspecified value. Note that in ~a sense,
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functions Like f are rot data state to data state functions; more
accurately they are ogeneral retations.  Es«Qe in the example,
€1;2:3> maps to €1:3,¢> as well as Chy3,2>. However, we adopt
the view that f §s a di » d2 x d3 to d2 «x d3 mapping and in this
Light, f is a functior. We call {v2,v3) the ragnge segx for f,
written RS(f). functions not using the ¥ notation are assumed to
have the entire set of varfables as their range set. Simitlarly,
if the variables vel,vr2sessvrk are the necessary inputs to &
function description ¥, we say that {vrlsver2raoesvrk} is the
domgin set for f, written pS(f), 1In Example Sy the domain set
for € 4s d{visv2,v3) wuhich happens to be the entire set of
variables, but this need not be the case. Note that some
functions (e.g. constant functions) may have an empty domain set.
Note ‘that the existence of functions with domain and range
sets that are proper subsets of the entire set of varijables has
several implications for the Derive Rules given previously, In
rule D2, we require that DS(CS23) € RSC{S11), If this s not the
case, an intended function has been given with too small a range
set, The resulting domain and range setls are given by
pSCCS1;523) = 55((S13> U pS(Ls2])
RS (£S1;52)) = RS({S2N),
In rule p3, the resul ting domain and range sets are
pS(Cif B8 fhen S glse S2 £}3) =
ps¢CE1Y U BS(LS1I) U bBS(Ls52])
RS(Cif B thep St else S2 £il) =
re(LS13) n RS(LS2D)

Example 5: Consider the following program

$1)  (n>=(Q => s

= SUMCiyl,m, iesxn)) #HsH
. a = 1;5s :=0; ' _
$2) C(p»31 => s 31T s + SUMCisasmyivxn)) #s¥
2 ghile a <= a do '
3) S § 2= 0; p o= 1;
S3) (n>=§ => U'f Hid p*a*i(n-‘i).n)
“) ghile i<n dg
5) ' i= 3+ 1;
&) £ = p * &
7 ¢d;
8) s 1= 8§ % p;
%) a sz a + 1
10 ode.

in this example, the functions labelled 51, $2 and $3 are the
jntended - functions for the program, outer WHILE loop and inner
WHILE loop respectively. We use the notation Fn-m as the derived
function for Lines n thru m of the program. ' '

Step 1) = Using D1 and D2 we get
F5-6 = i.p = it1,p*a.

" Step 2) - We must verify the inner loop computes its intended
function. The closure condition and termingtion conditjon
‘are easily verified., The other conditions are

' de<n => <praws(n-i),n> = <prarar*(n-i-1),n>
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and
1=n => <pratalp=j)y,n> = <pgo§>
which are clearly true.
Step 3) - Using D1 and D2 we derive #3-7 3s follows:
FI-7 (n>=3 => p,i ;= peass(n=-i),n) o F3=-3

(n>=3 => p,i = pravef{n=i),n) o 1,p = (0,1

(n>=C ~> pyd := asanynl, :

Step &) - Again with D1 and 02 we derive F3-9:

C F3-9 FE=9 o (n>=0 => p,i 2= asvn,n)

Sea = stpeat*l o (n>=0 => p,§f = antn,n)

(n>=C => p,oi,ssa 1= avrp,n,starnn,a3+1}),

Step 5) - Now we are ready to show the outer Loop computes its
intended functicon. Again the closure and termination cond-
itions are easily shown. The remaining conditions are

ac<=@m => 5*5"”(1.8.“,‘**") = S*B**IH+SU”('§'3’1'Q|1**“)

HHn

B

and
a*n =~> s+SUM(i,asm,ir®pn) = s,
both of which are truee.
Step 6) ~ we now derfve F1-10. Applying 02 we get -
F1=10 = (n>=1 «> s = g + sumCi,asmeinven)dlis# o Fi-1
= (n>=1 =» s := s + sum(i,a,mein®n))Ask o0 ays = 1,0
= (n>=1 => 5 := gum{i;1,m,i**n)dHsH,
Step 7) - Since the intended program function agrees with
F1-10y we conclude the program computes its intended
function. : N

The tunctional <correctness technique was devejoped by
{Mills, 1972, 19751, This verification method is compared ang
contrasted with the inductive assertion technique in (Basili &
Noonan, 1978). The presentation here emphasizes the distinction
betyeen function derivation  and function verification in the
correctness procedure. o

“In. [Basu 8% HMisra, 19751, the authors prove a result similar
to Theorem 1 for the <case where. the Loop ‘contains locatl
- wartables. .

The ¢closure requirement of Yheorem t has recieved
considerable attention. Several classes of locops which can be
proved without the strict closure restriction are discussed in
(Misra, 1978; Basu, 1580]). Results in [Wegbreit, 19773, however,
indicate that, in general, the problem of “generalizing”  a Lloop
specification in order to satisfy the closure reguirement is
NP-complete. - :
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3. The Loop Invariant f(x0) = f(X)

An tmportant implication of Theorem 1 is that a Loop  which
computes a function must maintain a particular property of the

data state across jteratfons. Specifically, after each
jteration, the function value of the current data state must be
the same as the function value of the original input. In this

section we discuss and expand on this characteristic of loops
computing functions for which they are closed.

A Ltoop assertion for the loop ®+@ is a boolean=-valued
expression which yields the value TRUE just prior to each
evaluation of the predicate B. In general, a Loop assertion I is
a function of the current values of the program variables {(which
we witl denote by X), as well as the initial values of the
program variables (oenoted by X3) . To emphasize these
dependencies we write I(XO,X) to represent the loop assertion 1.

Let D be a set of data states. A logp jnyariant for Bxd
oyer a set D is a boolean valued expression 1(x0,X) which
satijsfies the following conditions for all X0,X in D

(3.1 T (k0,20 ' ,

(3.2) . 1(X0,X) & g(X) => 1(x0,0a3(x)) & Cgl(X) in De
Thus, if I(X0:X) §s a Loop invariant for B*G over Dy then 1(x0,%)
is a Lloop assertiorn under the assumption the loop begins
execution in a data state in D, Furthermore, the valjdity of
this fact can be demonstrated by an inductive argument based on
the number of lcop iterations. T ’

. Loop assertions are of interest because they can be used to
estaplish theorems which are valid when (and if) the execution of
the loop terminates. Specifically, any assertion which can be
inferred froa . . :

(3.3 I{x0,%X) & 78(X)
will be valid immediately following the loop. .

1t should be clear that for any loop B*Q, there may be an
arbitrary number of valid lLoop assertions, Indeed, the predicate
TRUE s a trivial loop assertion for any WHILE ftoop. However,
the stronger (more restrictive) the loop assertion, the more one
canm conclude from condition (3.3). For a given state to state
function f, we say that I(X0,x) is an f-adgeguate Loop assertion
§¥F I1UXD.,Xx) 1is & loop assertion and 1(X0,X) can be uged in
verifying. that the Locp COompuUteEs the function fe more precisely,
if f is a function, the condition for a toop assertion I{(x0.X)
being an f-adequate lcop assertion is :

(3.4) (0,0 & “B(X) => x=f (M
for atl X0 in D(f). A Lloop invariant I(X0,X) over some 5set
containing D(f) for which condition (3.4) holds fs an f-adeguate

Logp invariant.

Example 6: Let P denote the program
© while ngy a in (0,1} do
if a > 0 then
a := a -2
else a 3= a + 2 fi
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od.
Consider the following predicates

19¢a0,3) iff TRUE

12¢aD,a) iff abs(a) <= abs(al)

13¢a0,a) iff ocd(a) odd(aQ) '

14Ca0,a) iff odd(a) odd(a0) & abs(a) <= abs(a0)

15¢a0ea) iff ood(a) odd(a0) | (a=3 & al=2)
where abs denotes an absolute value function, and odd returns 1
if its argument is odc and 0 otherwise. Each of the 5 predicates
is a Lloop assertion. Let D be the set of all possible data
states for P (ises D = {(<a> | & 1is an integerd). ret § =
{{<a>;<odd{a)>)}; anc consider I3. Since a in {0,1) implies
azodd{a), we can infer a=odd(al) from 13(al,a) & a in {0,1).
Thus I3 is an f-adequate Loop assertion. Similarly, 14 and 15
are f-adequate Lloop assertions, but neither 11 nor 12 s
restrictive enough to be f~adequate. Predicates 13 and I4 are.
loop invariants over [; however, since I5 fails (3.2) it is not a
loop invariant (a=3,al=2 is a counter example).

Thegrem 2: If B+@ is closed for f and B*Q computes f then
£(x0) = f(x) is an f-adeguate Ltoop fnvariant over 0{f), and
furthermore, it is the weakest such Loop invariant in the sense
that if I1(x0,X) s any f-adequate loop invariant over D(f),
1(x0,Xx) => f(X)=f{x0) for all XeX0 ¥n 0(F). ' :

Propf: First we show that f(X)=¢(XC) s a tloop invariant
over D(f). Condition (3,1) is f(x0)=f(x0), Frowm Theorem 1, for
all X in 0(¥),

: B(X) -> §¢x) = f(C@I(X)),

Thus for all X,X0 in p(f), ' e '

BCX) & F(Xx0)=f{x) ~> +(x0)=F0X)=4((GI(X))} > +(x0)=FCLQl (%)),
Adding the closure condition 8(X) =-> (el(x) in O0(f) yields
condition (3.2). Thus fOXI=f(X0) is a loop invariant over D(f).
Again-from Theorem 1, for all X in D(f}, ' :

“ai{x) => f(xX)=x,
Thus for all x0 in DCE), _

FCXY=F(XO0) & “B(X) => F(X}=F(X0) & $(XI=x => f(x0) = X
which shows f#00)=f(X0) s f-adequate. tet 1(X0yX) be any
f-adequate Lloop invariant for B#*Q  over D(f), and let 10,2 be
elements of D(f) such that I(20,2). Since B*@ computes ¥ and I
is §n D(f), there exists some sequence 2(1],2023, +oo ,Z[nl
(possibty with n=1) where 2[13=2, 1I(nl=f(2), with B(20il) &
ZCi+1) = [QI(Z(§)) for all i satisfying 1 <= { < n. By condition
(3-2) we have I(ZO.Z[‘!]), 1(20.2[2]). LX) 'I(ZO'ZEN3); thus
1€(20,$(2)) and "B(f(Z)). Since 20 is in D(f) and. I(X0,XD s
f-adequate, ' : : :

_ I€(20,FC2)) &8 "8(f(1)) => £(20)=£(2)
from condition (3.4). Thus for att 20,7 in 0($),
1¢20,2) ~> f€20) = 1(1). '

Exapple 6 {gontinuedl: In this example, 13 is of the form
fF(X)=1(X0Y. 13 is clearly weaker than the other f-adequate loop
invariant 14, It §s worth noting that 15 is weaker than 13, but
1S s not a loop invariant, and 12 is weaker than 13, but 12 is
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not f-adeaquate. This situation is illustrated in Figure 1, The
set of pairs {{al,y3)} is partjtioned into 2 sets with a8 not in
{0,1) on the left and a in {(0,1) on the right, Note that I4& (or
any other f-agdequate ioop invariant for that matter) is a subset
of 13. Furthermore, each f-adequate loop assertion is identical
where a is in (0,1}, This shaded region is precisely the set f.

’ Yy
a ¢ {0,1} I a € {0,1}
|
—> ‘ . 14
N
,w—””jg(;;1ffg;;f:j:5
_I
I
Figure 1.

Consider the proplem of usijng Hoare”s 1teration axiom

(3.5) P & B (@) P =-> P {B*@a) P &8 "8 :

“to prove the loop B*Q computes a function + for which 1§t s
closeda In our terminology, P must be a lLoop invariant over some
'set containing D(t) (otherwise X=f(X0) for all X0 in D(f) cannot
be inferred). However, using a loop invariant over a proper
superset  of p(f) is in general unnecessary, unless one is trying
to show the loop computes sowme proper superset of f. If we
choose to use a Lloop invariant P over exactly D(f), Theorem 2
tells us that f(X)=f(N0) is the weakest invariant that witl do
the jobe In a sense, the weaker an invariant is, the easier it
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s to verify that it is indeed a loop invariant (je.e. that the
antecedant to (3,5) s truej, because it says less (15 tess
restrictive, is satisified by more data States, etce) than other
toop invariants, Atong these Lines, one might conclude that if a
loop s closed for a tunction t, Theorem 2 gives a formula for
the "easiest” loop invariant over 0Cf) that can be used to verify
the toop computes f.

Let us again consider loop inveriants and functions as sets
of ordered pairs of data states. Let B*Q compute f and tet
1(X0,X) be an. f-adequate Lloop invariant. We have seen that in
this case

COX0eX) | ICXO0,X) & “B(X) & X0 in p(f))
is precisely fo That isy, f must be the portion of the set

$? Nosy since in generaly there are many f-adequate invariants
over D{(f) and the validity of some will depend on the details of
B and @ (e.ge I4 in Example 4). However, Theorem 2 gives wus a
‘technique for contructing the only f-adequate invariant over D (f)
that will be valid for any 8 and Qy provided B*Q computes f and
is closed for ¢, Specifically, this invariant couples each
element of D(f) with its tevel set in f, PpPut another way - ali
f~adequate loop invariants over p(f) describe what the toop does
(i.e. they can be used to show the Loop computes f)y and some may
also contain information about hoy the final result is achieved.
That iz, one might be able to use an f-adequate toop invariant to
make a statement about the intermediate states generated by the
toop on some inputs. The intermediate states “preditted®™ by the
weakest invariant f(x)=f(X0) is the set of atl ‘intermediate
states that could Fossibly be generated by any loop B#*Q that
computes the function correctly, Thus, the invariant f(X)=f(x0)
can be thought of as occupying a unique position in the spectrum
of all possibte loop invariants: it is strong enough to describe
the net effect of the toop on the input set D(f) and yet is
sufficiently weak that it offers no hint about the method used to
achieve the effect. '

he following program

Example 7: Consider t
whilg a > 0 dp
a := g - 9§;
€ := ¢ + b
9d. '

This loop computes the function
f = (a>=0 =-> agbyc = Ogbyc’a*b)c
From Theorem 2, we know that
I(<aO,b0,cU>,<a.b,c>) iff <0'b0'CG"’QO*bO):(ng'C*a*b)

is the weakest f-adequate invariant over D(f)={<a,byc>. | a>=g).
Consider the sample input €4,1047>. Our loop will produce the
series of states €4,70,7>y <3,10,17>, Q2410,27>, - €1410,37>,
<0,10,47>, of course, our invariant agrees with these
intermediate states (i.e., 1(€4,10,7>,<4,10,7>),
10<4,10,7>,<3,10,17>), ,,. , 10<4,10y7>9<0310,47>)), but it also
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agrees with <6,10,~13>. We conclude then, that it s possible
for some loop which computes f to produce am intermediate state
€6,1C,~13> while mapping <4,10,7> to <0,10,47>. Furthermore, no
loop which computes f could produce <6,10,~12> as an tntermediate
. state from the input <4,10,7> since the invariant would be
violated,

To emphasize this point, we define an f~adequate $nvarfant
1(x0sx) over D(f) for B*@ to be an jpterpal invarizpt if I(X0,x)
implies that B*G will generate X as an intermediate state uhen
mapping X0 to f(X0). Intuitively, an intermal invariant captures
what the |oop does as well as & great deal of how the loop works.
In our exagmpley, b=t0 & c=¢D+br(al=a) & 0<=a<=al is an internal
invariant, but I(<aQ,;b0,c0>:<a,sbsc>) as defined above is not (the
state <6,10,-13> on input <4,70,7> §s a counter example)e It
should be clear that if f has an infinite domain, no Loop exists
for which f{X)=f{(X0) s an internal invarfant, Howevery {if  we
consider non-determiristic loops and weaken the definition of an
internal invariant to one where I(x0,Xx) implies X wmay be
generated by B*Q when mapping X0 to f(Xx0); such a loop can always
be found. This loop would non-deterministically switch states so
8s to remain in the same level set of f. Our example program
coutd be modified in such a manner as follows:

while a > 0 do
t := "gome integer value greater than or. equal
to zero"”; o
C"' b #» (a~t);
t

s o4

0o n

andg corresponds t 3 “bltind search” implementation of the

function.

In fBasu & Misra, 1975), the authors - emphasize the
difference betueen locp invariants and iLoop assertions. The fact
that f(x) = {(x0) is an f-adequate loop invariant appears in
[Basu & Misra, 1975; Lingery Mills & witt, 19793, The
independence of this toop invariant from the characteristics of
the loop body is discussed in [(Basu & Misra, 197513, '
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o Comparison of the Hoare and Mills Loop Verification Rules

An alternagivye to using Theorem 1 in showing a loop computes
a function is to appty Hoare”s axiomatic verification technique.
That is, one could verify P {B2G)} R where
p if¥ x=x0 in D(t), and
R iff x=F{(X0
by demonstrating the following for some predicate I:
o et P=> I

{A2) B § 1 {Q) 1

€ a3) "R & I -> R. .
Strictty speaking, conditions Al thru Al show partial
correctness; to show total correctness, one must also prove

(As) 8*G terminates for any input state satisfying P.
Note that if B*G is closed for f, a predicate 1 that satisfies Al
and A2 is a loop Snvariant over D(f) (or some superset thereof).

We now wigh to ccmpare these verification _conditions with

the functional wverification conditions. Recalling from Theorea
1, if 8*@ is closed fer f, the functiopnal verification rules are:

(F1) 8+Q terminates for any input state in D(f) :

{F2) BeXy => §f(u) = £(LQI(X)) for alt X in D(F)

(£3) “B(X} => f(x) = X for atl % in D(f),
in the following discussion we adopt the convention that f t is
a function and X is nct in d(f), then f(X)=Z is fatse for any 1.

- nggrgg ; Let B*Q be closed for f. If F(x)=f(x0) is wused
as the Loop invariant I in A1-A3, then A1 & A2 & AJ £ AL TFf F1 &
F2 & F3., That is, the functional verification conditions F1-F3
are equivalent to the special case of the axiomatic. verification
conditions A1=A&4 which results from using f(X)=f(x0) as the loop
invariant 1. 1In particular, it 1 iff f(X)= f(X0) in the axiomatic
rulesy then : '

AT is true,

A2 iff 52 provided % in D(f) & B(X) =-> X in pC(Lcl),

AS H¢¢ F3,

AL ff F1.

Proof: We begin ty noting that the termination conditions A4

and §1 are identical, thus A4 iff F1, Secondly Al is
X=Xp in 0(§) =-> f{x)=f(x0) _

which is ctearly true for any f. Combining with our first result
yields A1 & A4 iff Fi. Condition A3 can be rewritten as
' “B(x) & f(x)={£(x0) => x=£(x0)
which is trivially true for any X,X0 outside D(f)e Thus A3 may
be reuwritten as :

(A37) For all Xex0 in D(f), “BC(X) & $0X)=t(x0) => x=f(x0).
Note that A3” => F3 by considering the <case where X=XO.
Furthermore, by adding f(Xx)=f(X0) to the antecedant of F3 we getl

F3 => ("B(X) & f{xJi=f(x(3) => f(x¥=x & fOX)=F(X0) -> +{x0Y=x),
“thus F3 => A3, Now we have A3 iff A3” iff F3 and adding this to
our result above we get A1 & A3 § A4 iff F] & F3. We next prove
A2 & AL iff F2 & F1l. This combined with the above equivalence
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yields the desired result A1 & A2 & A3 & A4 iff F1 & F2 & F3.
Note that if there exists and X in D(f) such that B(X) but faidx)
is not defined, then the loop itsetf will be undefined for X,
both A4 and F1 will be fatse and A2 & A& iff F2 & Fl. We now
consider the other case where for all X in D(f), B(X) ~> X in
D¢La)). In this situation we will show A2 iff F2; combining with
AL iff F1 yields a2 & A4 iff F2 & F1. Rule A2 may be reuritten
as . .
_ g{x) B (x> = {0 (@) f(x) = £(xD)
which again is trivially true if X or X0 is outside D(f); thus A2
is equivalent to _ S
for all XeX0 in D(F), B(X) & f0XI=Ff(XQ) {aYy F(xY=F{x0),
Since Q terminates for any input X in D{(f) such that s(X) by
hypothisis, this may be transformed to
(A2°) For atl X,X0 in DC(f), B(X) & f(x)=f(xX0) =-> F(LQICAII=F(XD0),
As before, we can show A2°=>F2 by considering the case where
X=X0, and F2=->A2" by adding f(X)=f(X0) to the antecedant of F2,
Thus A2 1ff A2° iff FZ which implies A2 iff F2. This completes
the proof. ' ' '

The purpose of Theorem 3 is to allow wus to view the
functional wverification conditions as verification ctonditions in
an inductive asseption proof. Not surprisingly, both techniques
have identical terminatjon reguirements. It the termination
condition is met, F2 amounts to a proof that f(x)=¥{xX0) g 2 loop
jnvariant. Condition F3 amounts to a "MRule  of Conseguence®,
testing that the desired result can be jmptied from the Loop
invariant FCX)=F(X0) and the negation of the predicate B. e
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Se¢ Subgoal Induction and Functional Correctness

Subgoal induction is a verificetion technique due to [Morris
& wWegbreit, 19771, 1In this section we compare subgoal d{nducticn
to Hills” functional c¢orrectness approach,

We first note that subgoal induction can be viewed as a
generaiization of the functional approach presented here ¥in that
subgoal induction c¢can be wused to prove a program ctorrect with
respect to a general finput~-output relation. A consequence of
this generalitys howevers is that the subgoal Jnduction
verification conditions are sufficient but not necessary for
correctness; that is, in general, no conclusion can be draun if
the subgoal inducticn verification conditions are invalid.
Provided the closure requirement 1{s satisfied, the functional
verification conditions (as well as the subgoal induction
verification condi tions when applied to functional
specifications) are sufficient and necessary conditions for
correctness. Results in (Misra, 1977) suggest that it is not
possible to obtain necessary verification conditions for general
input-output relations.

In order to mcre precisely compare the two techniques; we
consider the flow chart program in Figure 2 taken from [Morris &
Wegbreity, 19771, . ) :

Figure 2.
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In the figure, AsBsCe¢d 2re points of control in the flaw chart, P
ts a predicate and @, R and § are function nodes., Note that this
fiow tharg program amounts to a WHILE loop surrounded by pre and
post processings. Our goal is to prove the program computes a
function T. Morris & Wegbreit point out thst subgoal induction
uses an induction on the B8 to D path of the flow chart; that isy
one setects some relation v, inductively shows it hoids for all B’
to D pathse and then uses V to show ¥ is tomputed by atl A to D
pathss In our illustration, since T is a function, 1t witl be
required that V itself be a function. Once V has been selected,
the verification conditions are o

(51)  "P(X} => v(X) = S{X)

(S2) PX} => V(RLX)) = VIX)

(s3) TX) = vEa(Xx¥). :
Note that S1 and $2 test the validity of v; 53 checks that Vv can
be used to show To :

The functional verification theory presented here is similar
with the exception that the function S is not included 3in the
induction path. uWe select some function § and show it holds for
all B to C paths (i.e. we show the WHILE loop computes f) and
then use f to show T is computed by all A to D paths. Once f has
been selected, the verification conditions are

(F1) © Tpixy => f(x)=X
(52) PEX) => f(r(¥u)) = f(x)
(F3)  T(X) = SCHEQ(X)))o _

Note that both techniques require the invention of an
intermediate hypothesis which must be verified in a “subproof."
This hypothesgis is then used to show the program computes T. The
function S in the flow chary program s absorbed into the
intermediate hypothesis idn the subgoal induction case; it is
separate from the intermediate hypothesis in the functional case.
Indeed, the two jntermediate hypotheses are related by

. v = § ¢ fo .

It s is a null operation (identity ~ function), the
intermediate hypotheses and verification conditions of the two
technigues are fdentical. A difference - between the tuo
techniques, however, tan be seen by examining the case where Q is
a nult operation. If the Loop is ctosed for T, subgoal-induction
enjoys an advantage since T can be used as the intermediate
hypothesise. That 4s, the subgoal induction verffication
conditions are simply '

(s9°)  “P(x) => S(X) = T(X)
(s27) P(X) => T(RUX)) = T(X). - L

In the functional case, one must still derive an hypothesis
for the Loop function f. & heuristic which can be apptied here
is to restrict one”s attention to functions which are subsets of
g#%=1 o0 T. However, it is worth emphasizing that this rule need
not completely specify f since, in general, s*»=f 0o ¥ is not a
‘function relation. Once f has been selected, the verification
conditions are : : '

(FE7)  “PX) -> f(x)=X
(F2~°) PX) => f(RXII=H(X)
(F37) T(X) = SCECXI) '
The difference between the two technigues in this case is
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due to the prime pregram decomposition nature of the functional
correctness algorithas described in Section 2. A more efficient
proof is realized by treating the loop and the function S as a
whote. Accordingly, correctness rules for this program form
might be itncorporated into the prime program functional
correctness method described earlier. The validity of these
rules can be demonstrated in a manner QUite simitar to the proof
of Theorem 1.

g 8: We wish to show the program
hile nog = jn €0,1,2,3) do
if x < 0 ghep x.:= x + &
else x := x - & 1i

Examppl
]

ed;
if x > 1 then x = x = 2 §i
computes the function T={(<x>, <odd(x)>)). The subgoal induction
verification conditions are ' '
X in €0,1:293> =«> 5(x) = odd{x}, Land-
x Tin {0 1 v293) => odd(R(x)) = odd(x).‘uhere

S(x) = §if x > 1 then x~2 else.xi.and

R{x) = if x < D then atst else x=&i
Both these conditions are straightforwarde Now let us consider
the prime program functional case. Suppose we are given {(or may
derive) the intended loop function s

f = {(<u0>,<x>) | x in {0+1,2,3} & x mod & = %0 mod &Y.

We can verify that the Loop coaputes f by denonstrating F17 and
Fe~ Condition F3” uses f to complete the proof.

The difficulty with splitting up the program in this example
is that #t reguires the verifier to‘“dig out“ unnecessary details
concerning the effect of the loop. One need not determine .
explicitily the function computed by the loop in order . to prove
the program correct. The only important loop effect (as far as
the correctness of the program is concerned) is x in {0,1,2,32
and odd(xz) = odd{x0). In this example, treating the prograr as a
whole appears superfor since it only tests for the essential
characteristics of the program components.

It is worth observing that an axiomatic proof of a2 program
of this form could be accomplished by using the Loop invariant
CT(X) = 7{XQ). The verification conditions in this case would be
equivalent to the subgoad induction. _verificat1on coudit:ons.
Note thate in general (as in our exampled, T(X) = T(x0) s too
weak an dinvariant to be f- adequate for the intended Lloop function

te
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6o Initialized Loops

The preceeding section indicates that it §s occasionally
advantageous to consider a program as a whole rather than to
consider its prime pregrams individuatlly, In this -section we
attempt to apply the same phitosophy to the inftialized loop
program forme : _

We wilt again consider the program in Figure 2 with the
understanding that § is a null operation. We want to prove that
the program tomputes a function 7, i.e, that 7 holds for all A to
C pathse We have seen that prime program functional correctness
involves an induction on the 8 to € program path using an
intermediate hypothests f. An inductive assertion proof would
tnvolve an ifnduction ¢n the A to 8 path using some loop invariant
1{x0,x). This invariant differs from those discussed previously
in that it takes into account the initialization for the Lloop.
In this section we discuss briefly the difficulty of synthesizing
the intermediate hypotheses f and . '

in order for the program to compute T, we must have
@{XY=gCY) -> Y(x)=T(y)s Consequently, the relation sepresented
by T o (0**=1) is a function and is a candidate for the
intermediate hypothesis f. Unfortunately, the domain of this
function is the image of p{(V} through G, and since the purpose of
the fnitjalization s ofeten to provide a specific_"starting
point” for the loop, the loop will seldom be closed for this
function, Thus the oproblem of finding an appropriate f can be
thought of as- one of generaiizing T o (Qaw~1), :

ExgmgL_ 9: dWe want to show the program
s 3= 0; i :=0; '
whilei < n do
i == 9+ 1;
s := 5 *+ alil
od

computes s5:=SUM{k,t,n,alkl), 1f Q@ represents the ' function
perfarmed by the initialization, T o (@gan=1) is :

(s50y 120 => s:=SuUmMlk,1,ynyalki)).
Note that the Loop is not closed for this function. To vwverify
the -program using the functional method, this function must be
generalized to a function such as '
' f = $ = 5 + SUM(k,i*+iynsalkl).

We now tonsider the relative difficulties of synthesizing a
tunction f for which the loop is closed (for a functionat proot)
and synthesizing an adequate loop invariant (for an inductive
assertion proofle. if we have a satisfactory f, an appropriate
hypothesis for a loop invarfant is I(x0,X) §ff f(a(x0)I=f(X). We
now try to 9o the other way. Suppose we have 1(X0,x), can we
derive ¢rom that a function t for which the locp is closed? Ve
motivate the result as follows: we could obtain an equivalent
program= by sodifying the - initialijzation to
(non-deterministically) map X0 to X if I(X0.,X) is trues The
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modified proogrem stilli computes the same function; §f the
initialization maps XC to anything other than q(x0)y the effect
will simply be to save the Loop some number of iterations. By
the sape argument that was used to show the loop must compute T o
(@#=-1), the program must also compute T o (I(XD,X)#**=1), Note
that the Loop is necessarily closed for this function; otheruise
the {nvariant would be violated. we conclude then that the
synthesis of a function fer which the loop is cltosed and the
synthesis of a suitable invariant are eguivalent problems in the
sense that a solution to one problem implies & solution to the
other problems The translation between Loop invarfants and
intermediate hypotheses in a subgo2l induction proof is discussed
in [Morris & wegbreit, 19771,

Exapple 9 {cppiipyed): An inductive assertion proef of our
program might wuse the invariant s=SUMCk,t,i,alk]) & i<=n, Note
that this invarfant is essentially equivalent to f(a(x0))=f(X)
{wuhere € and @ are as defined previously). Using the technique
outlined above, we may derive from the invariant ‘ :
§° = (s=$UH(k'1.i'a[k]) g i<=n =-> s:=SUH(k,T,nya[k])).
Observe that this is quite different from the original f, but
that f~ 4s ‘quite satisfactory for a functional proof of

gorrectnesses It may seem puzzling that f7(Q(X0))=Ff"(X) "is the

constant ‘invariant TRUE and yet Theorem 2 states that such an
invariant must be f” -adequate. This is not a contradiction,
however, since ' : B : :

) TRUE & i>»=n -> s=$UH(k.1gn,a[k]). :

is valid for any state in D(f“)., Similarly, a functional proof
that the loop computes f° is trivial with: the exception of
verifying that the clcosure requirement is satisfiedes This 4s no
coincidence: proving closure is equivalent to demonstrating the
validity of the loop invariant, ' - B :
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7« Summary

Our purpose has been to explain the functionat wverification
technigue 1in ALlight of other program correctness theories. The
functional technique is based on Theorem 1 which provides a
method for proving/disproving a loop correct with respect to a
functional specification for which it is closed.

In Theorem 2, & loop invariant derived from a functional
specification Js shown to be the weakest invarjant over the
domain of the function which can be used to test the correctness
of the loop., Theorem 3 indicates that the functional correctness
technigue for toops is actually the special case of the axfomatic
method that results from using this particular toop invariant as

an inductive assertion. The significance of this observation is
that  functionai correctness can be viewed either as an
alternative correctness procedure to the inductive assertion
method or as a heuristic for deriving Loop invariants.

The subgoal induction technique seems quite similar to the
functional method; the two technigues often produce  identical
verification conditions. we have, however, observed an example
where the subgoal induction method appears superior to functional
correctness based on prime program decomposition. More work
appears necessary in precisely characterizing these situations
and determining if there are circumstances under which the
functional method is more advantageous than subgoat ¥nduction,

" we have examined the inductive assertion and functional
methods for dealing with initfalized tLoops. We have shown that
the problems of fincing a suitable toop invariant and finding a
function for which the lLoop is closed are identical. The result
indicates that for this class of programs the two methods are
theoretically ~equivalent; that is, there is no theoretical
justification for selecting one method over the other.
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