Technical Report TR-223 January 1973
N0OOl4-67-A-0239-0021

(NR-044-431)

NGL-21-002-008

SIMPL-X
A Language for Writing
Structured Programs

by

Victor R. Basili

This research was supported in part by the Office
of Naval Research and the National Aeronautics and Space
Administration under Grant N00014-67-A-0239-0021(NR-044-431)
and Grant NGL-21-002-008, respectively.

Abstract

This report contains a description of the programming
language, SIMPL-X, which is the base language for a.family
of programming languages that will be extensions to SIMPL-X
and whose compilers will be written in SIMPL-X and its ex-
tensions. It is a transportable compiler-writing, systems
language which was developed to provide a basis for the
redefinition of the graph algorithmic language GRAAL.

SIMPL-X is a procedure-oriented, non-block structured
language with an extensive set of operators, including arith-
‘metic, relational, logical, bit manipulation, shift, indirect
reference, address reference, and partword operators. It is
designed for writing GRAAL programs that conform to the
standards of structured programming and modular design and
fof efficiently expressing and impleﬁenting algorithms writ-
ten in it. 1In addition, it appears to be a good language
. for modeling and certifying the correctness and equivalence

of programs.

Preface

Introduction

Informal Definition of SIMPL-X

Syntax and Semantics of SIMPL-X

Some Examples

Preface

The primary motivation for the development of SIMPL-X derived
from experience with the graph algorithmic language, GRAAL. A principal
objective of GRAAL was to allow for the computational solution of
applied graph problems involving a wide variety of graphs of different
types and complexity, with as little degradation in the implementation
as possible. In order to provide for this range of requirements, a
modular structure was introduced into the design of GRAAL. However,
only a limited aspect of this modularity was realizéble in the first imple-
mentation of GRAAL. This was due mainly to its definition as an exten-
sion of ALGOL, and later FORTRAN, with the inherent restrictions in.
these algebraic languages which allow neither for the desired range
of modularity nor for the flexibility in the data structures for repre-
éenting different types of graphs. Extensions of these standard languages
are cumbersome and this limits the possibilities for providing features
such as the direct definition of flexible data structures, or the imple-
mentation of complex structures, such as hierarchical graphs, etc. For
these reasons, SIMPL-X was developed to provide a new basis for the
redefinition of GRAAL and to allow the further evolution of the GRAAL
system.

The author would like to acknowledge, with thanks, many invaluable
suggestions and recommendations by Dr. R. E. Noonan, Mr..A. J. Turner,
and Dr. M. V. Zelkowitz, as well as partial‘support for this research
received from the Office of Naval Research under Grant N00014-67-A-0239-

0021 (NR-044-431).

1. Introduction

SIMPL-X is the base language for a family of programming languages

which will be extensions to SIMPL-X and whose compilers will be written

in SIMPL-X and its extensions. The language is designed for writing

programs that conform to the standards of structured programming and

modular design and for efficiently expressing and implementing algorithms

written in it.

Further design criteria for SIMPL-X were in part motivated by its

intended use for the further development of the GRAAL system. Some of

these criteria included:

1)

2)

3)

4)

5)

Support for the cohstruction of a variety of data structures.

In this way a variety of graph types and their associated data
strucﬁures‘could be easily implemented.

Modularity in design to provide flexibility of choice to the user.
In this way;GRAAL could provide the user with a flexible selec-
tion of data structureé for representing a graph along with the
corresponding graph operators.

Ease of extension. In this way the full graph language could grow
out of the basic design.

Reasonable transportability. This would allow the GRAAL system
to be implemented on a variety of computers. |

Semantic modeling of fhe language. This would provide a formal
definition for the language that would be useful as a tool for
certifying the correctness of graph algorithms or the equivalence

of such algorithms.

All of the above are actually reasonable criteria for the design of a
transportable compiler-writing or systems ianguage. Consideration of
all these criteria led to the basic design of SIMPL-X. Several of the
most salient design'features are

The main statement constructions are the assignment, while, if-then-else,
case, and call statements. There is no go-to statement.

Every program consists of a sequence of procedures which can access a
set of global variables, parameters, or local variables.

There are compound statement constructions but there are no block
constructions other than procedures.

Facilities for declaring external references and entry points are
available.

Procedures may be recursive if they are so declared. Functions do not
have side effects.

An extensive set of operations are permitted in an expression. There

are arithmetic, relational, logical, bit manipulation, shift, indirect

reference, address reference, and partword reference operators.

This last feature supports the first criteria which was the construc-
tion and manipulation of data structures. In particular, there is an operator
that yields the address of a variable, an indirect address operator, several
shift operators, several bit manipulation operators, and a partword operator
along with the standard arithmetic, logical and relational operators.

In order to meet the objective of modularity, the language and its
compiler were designed concurrently. The design of the compiler is horizontally
“and vertically modular. It is modular horizontally in that the interfaces
are well-defined and the scanner, parser, and code genrator are written as
separate units. The vertical design is also modular in that the compiler

is written in SIMPL-X which forces all segments to be written as separate

procedures. The parser is modular in that it is hierarchical. The grammar

-3 -

is partitioned into subgrammars in which the start symbol of one subgrammar
is a terminal symbol in one or more of the others. 1In this way é variety of
separately compiled syntactic and semantic routines for representing various
sublanguages could all exist in a library of routines and be called by

the main parser at different points in the same program. Since these
routines could represent different versions of similar constructs, this
design would support the user's ability to choose at compile time the data
structure for representing a graph and the corfesponding graph operators.

Because of the modular design of the compiler and the strict struc-
tural design of the language, SIMPL-X is easily extendable.

In order to make the language as transportable as possible, the com-
piler for SIMPL-X is written in itself using a relatively machine-independent
subset of the operators. A SNOBOL program exists that translates SIMPL-X
into standard FORTRAN. In order to transport SIMPL-X onto another machine,
a code generation module for the new machine must’be written in SIMPL-X.
Some minor modifications to the scanner, parser, and symbol table might also
be necessary depending upon the word size of the new machine. The SNOBOL
program can then be used to translate these SIMPL-X programs into FORTRAN.
This FORTRAN Qersion of the language can then be used as a bootstrap to get
SIMPL-X running on the new machine. (Obviously, the appropriate system
interface routines must-also be written.) Since the graph language will
be written in SIMPL-X, a compiler for the graph language would be available
on the new machine. 1In fact, any programs, including any extensions to
SIMPL-X, wfitten in SIMPL-X, could be transported onto a new machine in the

same way.

SIMPL-X has been modeled using several semantic models including the
Vienna Definition Language and hierarchical graphs. These models were used
to help in the design of the language so that the program structures would
be amenable to program certification techniques. They were alsc used to
help design a language that could be efficiently implemented and were
used to test the final design of the actual implementation.

With regard to efficiency, the language is simple in design and struc-
ture. There are no complications such as block structure with procedures
declarable at any level and no cumbersome features such as the ability to
pass procedures as parameters so that keeping track of the environment for
variables is a relatively straightforward task. Parameter passing is as
efficient as possible; simple variables are treated as called by value and
arrays are called by reference. The use of giobal variables is encouraged
to minimize the need for parameter passing in procedures. Nonrecursive
procedures are not burdened with the overhead of recursivé procedures.

Work with SIMPL-X supports its recommendation as a transportable
compiler-writing and systems language. The fact that it lends itself
easily to compiler-writing is supported by the fact that the compiler
for SIMPL-X was written in SIMPL-X for the Univac 1108 and was completed in
two man months. A partial test of its transportability is that it is being
used to cross compile code for the PDP 11. In fact, there are plans for using
SIMPL~X in part as a systems language here at the University of Maryland for
the development of an operating system for the PDP 1l. Work is also presently

underway to develop a translator-writing-system written in SIMPL-X.

Omitting the extended operator set, SIMPL-X is a useful educational
tool for teaching programming. It encourages the student to write well-
structured and modular programs. In addition, it appears to be a good
language for modeling and certifyiﬁg the correctness and equivalence of

programs.

-6 -

2. Informal Definition of SIMPL-X

This section presents an informal introduction to the language. It
is meant to give the reader an overview of the basic components of the
language.' A full syntactic and semantic definition of the language is
contained in the next section.

A. The Core of SIMPL-X

It is the core of the language which is recommended as an educational
tool for teaching programming.
" Al. Basic Data

The basic data type of the language is integer. Anvinteger,may be
written as a constant or it may be represented by a variable identifier.

A constant may be represented in integer, binary, octal hexadecimal,
or character string form. |

A variable identifier is defined as any sequence of letters or digits
‘beginning with a letter. Every integer variable must be declared. A
global integer variable may be initialized to a constant value at compile
time.

A2, Basic Operators

The basic operators act only on integer values. They are divided into

five classes:

- a) the arithmetic operators of addition (+), subtractibn (-), multi-

plication (*), division (/), and unary minus (-). The arithmetic

operators return the integer value which results from the operation.

b) the logical operators and (and), or (or), and not (nmot). The

logical operators return a 1 if the result of the operation is
true and a zero if the result of the operation is false. An
individual operand is considered true if it is nonzero and false
if it is zero.

&

c) the relational operators greater than (>), greater than or equal

to (), equal to (=), less than or equal to (=), less than (<),
and not equal to (#). The relational operators return a 1 if
the relation is true and a 0 if the relation is false.

d) The bit operators bit and (4), bit or (V), bit exclusive or (X),

and complement (C). The bit operators treat the (integer) operands
as bit strings and return the bit string result (bit by bit) of the
operation,

e) the shift operators right algebraic shift (ras), right logical

shift (rls), left logical shift (11s), and left circular shift
(lcs). The shift operators shift the bit string representation
of the left operand the number of bits specified by the right
operand.V The algebraic shift extends the sign bit, the logical
shifts are ‘end-off with zero fill and the circular shift is end-
around.

‘A3, Data Structures

The only data structure is a one—dimensional array. Arrays must be
declaredfy The bounds for an array are static. The lower bound is always
zero, and the upper bound is an integer constant specified in the declara—
tion. Arrays may be initialized to any constant value. For referencing

an array variable, the subscript may be any legal expression.

A4, Statement Structures

The choice of,statement structures was motivated by the desire to
promote structured programming. The basic statement structures of the
language are

ra) the assignment statement

<variable> := <expression>

b) the if-then-else statement

if <expression>
then <statement list>1
{else <statement list>,}
end .
which executes <statement 1ist>l if <expression> evaluates to a
nonzero value, or <statement 1ist>2 if <expression> evaluates to

zero. The else part of the statement is optiomal.

c) the while statement

while <expression> do
<statement list>
end
which executes «<statement list> followed by the while statement
1f <expression> evaluates to a nﬁnzero value. If <expression>
evaluates to zero, control passes to the statement folloWing the

while statement.

d) the case statement

case <expression> of

\Pi\ <statement list>1

\?i\\<statement 1ist>2

\n\ <statement list>
m m

{else <statement 1ist>m+l}

end

which executes only «statement list>, if <expression> evaluates

i

to n, for some 1 = 1,2,...,m, or only <statement list>m+l if
<expression> does not evaluate to n, for any i = 1,2,...,m. The
else part of the statement is optional.

e) the call statement

call <proc name>{(<argument list>)}
which invokes the execution of the procedure <proc name>. The
actual parameters (if there are any), may be'expressions or array
names. Expressions are passed by yalue and arrays are passed by
reference.v

A5, Program Structure

The choice of program structure was motivated by the desire to promote
the modular design of programs. A complete SIMPL-X program consists of a
set of global declarations, followed by a nonempty sequence of segment
definitions, followed by the symbol start, followed by a segment name.

The program begins execution by calling the named segment.

- 10 -

A6, Segment Definitions

A segment is either a procedure or a function. A procedure definition
takes the form:
{rec} proc <procname> {(<parameter list>)}
{<local declaration list>}
<statement list>
return
where <procname> is the name of a procedure (an identifier), <parameter—
list> is an optional parameter list which consists of typgd formal para-
meters, and <local declaration list> is a pbssibly empty list of local
integer variable or array declarations that may not be initialized. A
procedure is not recursive unless the symbol rec is used before the symbol
proc. The actual parameters corresponding to the simple variables are passed
by value; those corresponding to the array variables are passed by reference.
Global variables may appear anywhere in the statement seqﬁence. In fact,
procedures usually have an effect on the program by altering global variables.
A function definition takes the form:
int func <funcname> {(<parameterlist>)}
{<local declaration lisf>}

<statement list>

return (<expression>)
where <funcname> is the name of the function (an identifier), and <parameterlist>
and <local declaration list; are as defined above. <Expression> represents the

value returned by the function. Functions may not be recursive and may have

- 11 -

no side effects, i.e., they may reference giobal variables but they may not
alter them. Note that this means arrays passed as arguments may not be

altered. o,

A7. External Interfaces

Externals. To facilitate modular structure in the entire system and
permit efficient interface between separately gompiled program elements,
external references and entry points may be defined.

A program may make any of its segments or data accessible to another
program (compiled separétely) by declaring those segmenﬁs.or data as entry
points. A program may access a segment or data entry point of another program
by declaring that segment or data item as an external reference. A program
may be designated as nonexecutable, i.e., méy only be used by another program
if the segment name following the symbol start is omitted.

I1/0 1/0 commands available in the language include the basic forms of
stream and record I/0, plus specialized commands for systéms use,

Comments)

A comment is any string of characters between\/* and -*/ and méy appear
in the program wherever a blank may occur.

B. Extensions

Several of the following features have already been incorporated into

the language; others are in the process of being tested out and added. A

full description of these extensions is given in part two of the next

section.

- 12 -

Bl. Additional Statements

In order to permit an abnormal exit from a while loop, the while state-
ment may be labeled and an exit statement may be used within the while loop.
The exit statement takes the form:

exit {(<label>)}
which causes control to pass to the statement following the while statement
with the specified label. The exit statement may be nested any number of
levels inside the loop. If the label part is not specified, control passes
to the statement following the innermost while loop containing the exit
statement. |

The while statement is labeled as follows:

\<exit designator>\ while <expression> do <statement list> end

In order to perform an abnormal exit from anywhere in a segment, a
return statement may be used. In a procedure, it takes the form
return
and in a function it takes the form
return (<expression>)
where <expression> represents the expression to be returned by the function.
More than one return statement may appear in the body of a segment. |

B2, Additional Operators

There are three additional operators in the extension of the language.
They are

a) the address operator (}) which is a unary operator that returns as

its value the location of the operand to its right.

- 13 -

b) The indirect address operator (¢D which is a unary operator

that returns as its value the contents of the location speci-

fied by the low order bits of the operand to its right.

Note: The operator Tt is highly machine-dependent. In order to
make this type of operation machine-independent, a syntactic modi-
fication is planned.

c) the partword operator ([<partdesignation>]) which is a unary operator

that returns as its value the bit string (as specified by the

<partdesignation>) contained in the operand to its left.

-14 -

3. Syntax and Semantics of SIMPL-X

This section contains the syntactic and semantic definition of the
language. It is divided into three barts. Section 1 contains the
description of the core of the language. The second section contains the
extensions to the basic language. The definitions of these extensions
may be altered by further experience with the language. Section 3 con-

tains a description of the input/output commands.

1. Basic Language

The structure {...} means that the enclosed structure is optiomal.

{X} Y 1s equivalent to the BNF notation X Y|Y.

1.1 Program ~
1.1.1 Syntax

<program> ::=

{<declaration 1ist>} <segment list> start {<identifier>}

1.1.2 Semantics

A program consists of a set of declarations which are global to the
whole program, followed by a series of segment definitions which are either
procedure or function declarations followed by the symbol gtart and tﬁe
name of the segment which will act as the main program.

If no identifier appears after start, then the progrém cannot be

executed on a stand-alone basis.

- 15 -

1.1.3 Example
int X,Y
proc A
X:=1
return

proc B
call A
Y := X
return

start B

1.2 Declarations

1.2.1 Syntax

<declaration list> ::= {<declaration list>} <declarationy
<declaration> ::= <integer declaration>] <array declarations l
<external declaratiom>

<integer declaration> ::= {entry} int<integer declaration list>

<array declaration> ::= {entry} {int} array <array declaration lists
<external declaration> ::= ext int <identifier lists |

ext {int} array <identifier list> |

ext proc <identifier> (<type list>) |

ext int func <identifiers (<type lists)

<integer declaration list> ::= {<integer declaration list>,}

<integer declaration item>
<integer declaration item>‘::= <identifiery> |<identifier> = «signed constant>
<array declaration list> ::= {<array declaration listj,}

<array declaration item>

- 16 -

<array declaration item> ::= <identifier> (<constants)
<identifier> (<constant>) = (<array initialization listy)

<array initialization list> ::= {<array initialization list,}
<array initialization item>

<array initialization item> ::= <signed constant>|
<signed constant> (<constant>)

{<identifier list>,} <identifier>

<identifier 1ist> ::

i

<signed constant> ::= <constant> I— <constant>
<type list> ::= {<type list>,} <type>

<type> ::= int | {int} array

1.2.2 Semantics

The declaration list consists of all the integer variables and arrays
that are global to the program along with all of the external procedures,
functions, and variables used in the program.

All arrays begin with‘subscript 0.

Integer variables and arrays may be initialized with their values
assigned at compile time. In order to facilitate the initializing of
several elements of an array with the same value, any initialization value
may be followed by a constant in parentheses, implying that initial value
should be assigned to the next consecutive sequence‘of elements whose length
is defined by the constant in parentheses.

External declarations (those preceded by EEE) refer to procedures,
functions, and variables that are defined or declared in another program
compiled separately from the program in which the external declaration

resides. External procedure and function declarations must be followed by

- 17 -

a type list which lists the types of the formal parameters in the order
they appeér in the parameter list of their segment definition. The entry

integer and array declarations (entry int and entry int array) refer to

integers and arrays that may be referenced by separately compiled (external)

programs.

1.2.3 Example
int X, Y, Z =0
int A=1,B=2,C=3
array V(2) = (1,2,3), U(99) = (-1, 2, -3, 0(97))
ext proc scan (int,array)

ext int func lookup

entry int dog, cat = 17

1.3 Program Segments

'1.3.1 Syntax

<segment list> ::= {<segment liét>} <segment definition>

<segment definition> ::= <proc definition> |<func definition>

- <proc definition> ::= <proc heading> <segment body> return

<func definition> ::= <func heading> <segment body> return (<exprs>)

<proc heading> ::= {entry} {rec} proc <«identifiers> {(«parameter lists)}

<segment body> :: {<ioca1 declaration list>} <statement list>

<func heading> ::= {entry} int func <identifier> {(<parameter list>)}
<parameter list> ::= {<parameter list>,} <parameter>

<parameter> ::= int <identifier> | {int} array <identifiér>

<local declaration list> ::= {<local declaration list>,} <local declaration>
<ioca1 declaration> ::= <local int declaration> | |

<local array declaration> |

<external declaration>

- 18 =

<local int declaration> ::= int <local int deqlaration'list>

<local array declaration> ::= {int} array <local array declaration list>

<local int declaration lists ::= {<local int declaration lists,}

<identifiers |
<local array declaration list> ::= {<local array declaration list>,}
<identifier> (<constant>)

1.3.2 Semantics

A SIMPL-X program consists of a sequence of procedures and functions,
called program segments.
1.3.2.1 Procedure

A brocedure is a sub-program composed of a proce@ure heading followed
by a segmeht body. The procedure heading consists of the symbol proc |
followed by the name of the procedure optionally followed by a parameter
list. The parameter list is simply a sequence of typed variables (integers
or integer arrays). The set of formal parameters in the.formal parameter
list must agree in type and number with the actual parameters in the actual
parameter list of the call statement. All expressions are called by value,
and all arrays are called by reference.

The segment body consisté of an optional set of locally declared
variables followed by‘a statement list. The local declarations take on
the same form as the global declarations, except that they may noé be
initialized at compile time. Global variables may appear anywhere in the
statement list. (In fact, procedures usually have an effect on a program by
altering the contents of global variables.) Each segment body for a pro-
‘cedure terminates with the symbol return; which returns control to the

calling program at the statement following the program call.

- 19 -

Procedures may be recursive only if the symbol rec is included in the
<proc headings.
1.3.2.2 Functions

A function is composed of a function heading followed by a segment
body. The function heading consists of the symbol func which is preceded
by the type symbol int, énd followed by thé name of the function, optionally
followed by a parameter list.

The segment body for the function must be terminated by the symbol
return followed by the expression, enclosed 1n parentheses, whose value
is to be returned as the result of the function.

Functions may not be recursive, and may have no side effects (i.e.,
they may reference global variables, but may not alter them.) Thus, arrays
passed as arguments may not be altered.

External identifiers declared locally by a procédufe or function are
treated as global variables during execution of the procedure or function.
Identifiers may be declared locally to override(a global identifier with
the same name.

1.3.3 Example

proc add (int X, int Y)
Z = X+Y+1 /*Z is a global*/

return

int func sum(int X, int Y)

int 2
Z 1= X+Y
return (Z+1)

- 20 -

1.4 Statements

1.4.1 Syntax
<statement list> ::= {<statement list>,} <statement>
<statement> ::= <assign stmt> |<if stmt> |<while stmt>

<case stmt> | <call stmt>

<assign stmt> ::= <variable> := <expr>
<if stmt> ::= if <expr> then <then clause> {else <else clause>} end
<then clause> ::= <statement list>
<else clause> ::= <statement list>
<while stmt> ::= while <expr> do <while clause> gggl
<while clause> ::= <statement list>

<case stmt> ::= case <expr> of <case list> {else <else clause>} end

<case list> ::= {<case list>,} <case form>
<case form> ::= <case designator> <statement list>
<case designator> ::= {<case designator>}\\<integer§\\
<call stmt> ::= call <identifier> {(<actual parameter listy)}
<actual parameter list> ::= {<actual parameter list>,} <actual parameter>
<actual parameter> ::= <expr> | <array identifier>
1.4.2 éemantics

A statement list is a sequence of statements.

1.4.2.1 Assignment Statement
Assignment statements serve for assigning the value of an expression to
a variable. The order of evaluation of the elements of an assignment state-

ment is unspecified.

- 21 -

1.4.2.2 If Statement

The if statement causes certain statements to be executed or skipped
depending upon the valués of the specified expression. If the specified
expression evaluates to a nonzero value at runtime, then the then clause
is executed, and the else clause, if any, is skipped. If the specified
expression evaluates to zero at run time then the then clause is skipped,
and the else clause, if any, is executed.

1.4.2.3 While Statement

The while statement permits the repeated execution of a set of state-
ments depending upon the vaiue of the specified_expression. When control
passes to the while statement, the expression is evaluated. If the expres-—
sion evaluates to a nonzero vélue, then the while clause is executed.

After the while clause, control passes to the re-evaluation of the expres-—
sion, and the process is repeated. If the expression evaluates to zero, then
the while clause is skipped and control passes to the stafement following

the symbol end of the while statement.

1.4.2.4 Case Statement

The purpose of the case statement is to allow the execution of only
one particular set of statements from among many sets of statements depend-
ing upon the evaluation of an expression which yields an index into the sets
of statements. Each set of statements has oné or more integer values
associated with it. If the specified expression evaluates at runtime to an
integer which is associated with one of. the statements, then that statement

set is_executed and all other statement sets are skipped. Control then

- 22 -

passes to the statement following the symbol end associated with the case
statement. If the specified expression does not evaluate to any integer
associated with one of the statement sets, all of the statement sets are
skipped, and the else clause, if ény, is executed. Control then passes to
the statement following the case statement.

1.4.2.5 Call Statement

The call statement is used to invoke the execution of a procedure body.
There may or may not be an actual parameter list. If there is an actual
parameter list, it must ha?e the same number of entries as the formal
parameter list of the procedure declaration heading of the procedure being
called. The correspondence is obtained by taking the entries in those two
lists in the same order. The entries in the actual parameter list may be
expressions or array identifiers. Expressions are passed by value; arrays
are passed by reference. The corresponding actual and formal parameters

must agree in type, i.e., if the formal parameter is int or array, the

corresponding actual parameter must be int or array, respectively.

1.4.3 Examples

if X
then
Y :=X
else
Y :=2

end

while Y do
AX) :=X
X := X-1
if X=Y

then

call procl(X)

end

end

case X+Y-7 of

N3\

X =2
ANENR-N

X =7
N7\

X =19
else

X = 22
end

1.5 Expressions
1.5.1 Syntax

<expr> ::= {<expr> or} <logical product>

<logical product> ::= {<logical product> and} <relation>
<relation> ::= {<relation> <relational op>} <simple expr>
<simple expr> §:= {<simple expr> <add op>} <ﬁerm>

<term> ::= {<term>'<mu1t op>} <bit sums

<bit sum> ::= {<bit sum> <bit or op>} <bit products -

<bit product> ::= {<bit product> A} <shift>

- 23 -

- 24 -

<shift> ::= {<shift> <shift op>} <factor>

<factor> ::= {<unary op>} <primary>

<primarys ::= <constant> |<var1ab1e> | <function designator>] (<expr>)
<relational op> :i==|# | > | < | > | ¢

- <add op> :1:= + | -

<mult op> ::= * | /

<bit or op> ::=V | X

<shift op> ::= ras | rls | 1lls | lecs

<unary op> ::= - | not | C

<function designator> ::= <identifier>{(<actual parameter list>)}

<variable> ::= <identifier> {(<expr>)}

<constant> ::= <integer> | <binary> | <octal> | <hexadecimal> |
<character string> |

<integer> ::= {<integer>} <digit?

<digit> ::=0 |1 | 2 |3 |4 |56 |7]8]9

<binary> ::= B' <binary form> {<trailing zeros>}'

<binary form> ::= {<binary form>} <binary character>

<binary character> ::= 0 | 1 |

<octal> ::= 0'<octal form>{<trailing zeros>}'

<octal form> ::= {<octal form>} <octal character>

<octal character> ::=0 |1 |2 |3 |4 |5]6]|7

<hexadecimal> ::= H'<hexadecimal form> {<trailing zeros>}'

- 25 -

<hexadecimal form> ::= {<hexadecimal form>} <hex character>

l1|l23]4]5]6]7]|8]9]

I
o

<hex character>

A|B|C|D|E]|F

'<character form>'

<character string> ::

{<character form>} <character>

- <character form> ::

<trailing zeros> ::= Z<integer>

<identifier> ::= {<identifier>} <letter> | <identifier> <digit>

<letter>::=A |B|C|D|[E|Fle|u|T]I |R|L |[M]

vlolzlelrls|rlulv]wlx|y|z

1.5.2 Semantics

An expression is a rule for computing a numerical value. A primary
is either a constant, variable, function, or an expression enclosed in
parentheses. The operators have the following meanings associated with
them. Note that several of the operations are machine dependent.
1.5.2.1 Unary Minus (=)

Returns the negative of the primary it precedes.

1.5.2.2 Logical Not (not)

Returns a 1 if the value of the primary it precedes is zero, and
returns a 0 if the value of the primary is nonzero.
1.5.2.3 Complement (C)

Returns the complement of the bits in the primary it precedes.

1.5.2.4 Right Algebraic Shift (ras)

The <shift> is shifted right by the number of bits specified by the

<factor>,.with sign bit extension.

- 26 -

1.5.2.5 Other Shifts

Right logical shift (rls), left logical shift (11s), and left‘circu~
lar shift (lcs) function similarly to ras. A logical shiff is a zero-fill
shift.
1.5.2.6 Bit And (4)

Returns the result of bit by bit anding the bit product with the shift.
1.5.2.7 Bit Or (W)

Retufns the bit by bit oring of the bit sum and bit product.

1.5.2.8 Bit Exclusive Or (X)

Returns the bit By bit exclusive or of the bit sum and bit product.

1.5.2.9 Multiplication (*)

Returns the product of the term and bit sum.
1.5.2,10 Divisiorn (/)
Returns the quotient of the term and the bit sum.
1.5.2.11 Addition (4)
Returns the sum of the simple expression and the term.
1.5.2.12 Subtraction (-)
Returns the result of subtracting the term from the simple expression.
1.5.2.13 Equal (=)
Returns a 1 if the relation and the simple expression are equal, and

0 otherwise.

1.5.2.14 Other Relations

Not equal (#), greater than (>), less than (<), greater than or equal

to (3), and less than or equal to (g) are similar to equal (=).

- 27 =

1.5.2.15 Logical And (and)

Returns a 1 if the logical product and the relation are non-zero
and a 0 otherwise.

1.5.2.16 Logical Or (or)

Returns a 1 if either or both of the expression and logical product
are nonzero, and a 0 otherwise.
1.5.2.17 Precedence

The precedence of the operators is as follows:

T EEE’.Q

ras, rls, lls, lcs

I=
jd

1.5.2.18 Character String

A character string constant normally occupies one machine word. The
constant is padded on the right with blanks or truncated on the right as
needed to fit it into one word. Note that this is machine deﬁendent to the
extent of both word size and internal character representation.

The exception to the one word per character string rule occurs in the

initialization of an array. In this case as many consecutive array elements

- 28 -

as needed are used to contain the character string (provided enough
elements exist in the array), padded on the right with blanks as needed
to fill an integral number of words.

1.5.3 Examples

X+Y*Z/U-2

A lcs 6 A maskl V mask2 X mask3

A and B<C

-.not X rls 1

int array cat (9)=('char string 1','str2') /* initializes cat(0) to

cat([%g] + [%]) where X = number of characters per word and [Y]
denotes the least integer greater than or equal to Y. */
1.6 Blanks
One or more blanks may appear anywhere except within a symbol,
identifier, or operand.
1.7 Comments
Comments are any string of characters between /* and */. A comment
has no effect on the program and may appear anywhere that blanks may.

appear.

- 29 -
2. Extensions

2.1 Additional Statements

2.1.1 Syntax

add to <statement> :

<statement> ::= ... [\<exit designator>\ <while statement>
<exit statement> |<return statement>

<exit statement> ::= exit {(<exit designator>)}

<exit designator> ::= <identifier>

<return statement> ::= return {(<expr>)}

2.1.2 Semantics

2.1.2.1 Exit Statement

The exit statement permits an abnormal exit from a while loop. In
the form exit, without an exit designator, control passes to the state-
ment following the symbol end associated with the innermost while loop
containing the exit statement. |

If the exit statement appears in the form exit (<exit‘designator>),
control passes to the statement following the symbol end associated with

 the while loop which is labeled by that exit designator. The exit state-
ment must be a stateﬁent in the while clause of the while loop that it is
exiting. If it is nét, or if no such designator exists, an error occurs.

2.1.2.2 Return Statement

A return statement must appear somewhere in the segment body of a
procedure definition and function definition. In a procedure it appears in

the form return, while in a function it appears in the form return (<expr>).

- 30 -

Note that no return is required at the end of a segment but is assumed
if needed. More than one return statement may appear in the statement

list of a segment.

2.2 Additional Operators

2.2.1 Syntax

<assign stmty ::= ¢left variable> := <expr>
<factor> ::= <part primary> l <unary op»> <part primarys

<part primary> ::= <primary> | <primarys> <part designators

<primary> ::= <constant>] <extended variable>
<function designator> | (<expr>) |-
l<constant> l l(<expr>) |
i}function designator>
<extended variable> ::= <variable> I\L<variab1¢> |'T<variable>
<part designator> ::= [<first bit>, <bit count>] |
[<partword identifier>]
<first bit> ::= <integer>
<bit count> ::= <integer>
<part word identifier> ::= <identifier>
<left variable> ::= <variable> | <part var> | l<variable>] 1ﬁpart var>
<part var> :!:= <variable> <part designator> -
2.2.2 Semantics
Three new operators have been introduced into an expression. The
definitions of these are as follows:
2.2.2.1%
This operator returns the location of the variable that it precedes.

It is effectively an immediate operator.

- 31 -

2.2.2.2 4

This operator returns as its value the contents of the location speci-
fied by the low order bits of the variable, constant, or expression that
it precedes. It is in effect an indirect addressing operator.

2.2.2.3 Part Variable 4

This operator returns as its value the bit string contained in the
partword specified by the fields F1l, F2, or F.
If it is of the form [F1,F2], then the part of the word is designed
as F2 bits wide and starting with bit Fl. Bits are numbered from left to
right starting with O.
If it is of the form [F], then F has been specified in the implementa-
tion as some specific designator for some specific partword.
2.2.2.4 Precedence
The precedence of the new operators is indicated by
part variable operators

T 1

. previous operators

That is, the new operators have higher precedence than any of the initially
defined operators, and the partword operators have higher precedence than

the indirect and immediate operators.

- 32 -

2.2.3 Example
A := TB+I assigns to A the address of the location I locations after B.

X := B[5,3] assigns bits 5, 6, and 7 to the rightmost positions of
X with zero fill.
Y[0,2] := C assigns the two low-order bits of C to the two high-

order bits of Y with the remaining bits of Y unchanged.

- 33 -

3. 1/o

3.1 Read Card Input File

3.1.1 read (<inlist>)
The syntax 1s explained by
<inlist> ::= {<inlist>,} <inlist item>
~<inlist item> ::= <variable> | <skip>

<skip> ::= skip | skipQ | skipl | ... | skip9

This is essentially PL/I stream input. The variables read are separated
by commas or blanks. Additional blanks between items are not significant.
The skipN subcommand causes N records to be skipped. skiE is the same as

skipl. skip0O causes realignment at the beginning (column 1) of the current

card image. Cards are assumed to be end-to-end so that a variable may
cross a card boundary. read(skip,X) will read the first variable on each
card.
3.1.2 readc (<inlistc>)

<inlistc> ::= {<skiplist>,} <variable> l <gkiplist>

<skiplist> ::= {<skiplist>,} <skip>

This causes the character image of the card to be placed in successive
words beginning at <variable>. The image is padded with blanks to the
number of words needed to contain one card image.

The <skip> subcommands cause alignment at the beginning of the appro-
priate card image. skipO has no effect if alignment is already at the
beginning of a card. Successive readc(skip,<variable>...) commands will

read every other card.

- 34 -

3.1.3 eol

eol is a function call that returns a 1 if no more data can be
obtained by read, and a 0 otherwise.
3.1.4 eoic

eoic is similar to eoi, but applied to read¢, rather than to read.

3.2 Printed Output

3.2.1 write (<outlist>)

<outlist> ::= {<outlist>,} <outlist item> ’

<outlist item> ::= <expression> | <skip> Ivgiggg

This functiqns similarly to PL/I stream output. It is essentially
a free-form output with the values of expressions printed at installatidn
defined tab settings.

The subcommands <skip> and eject apply to line and page alignment,
respectively.
3.2.2 writel (<outlisti>)

<outlist®> ::= {<outcontrol list>,} <variable> {,<variable>}

<outcontrol list> ::= {<outcontrol 1list>,} <skip> |

{<outcontrol 1list>,} eject

Here, the first <variable> specifies the beginning of a character
line to be printed, and the second gives the length, in words, of the
line. 1If the second <variable> is omitted, the installation defined line

size 1s assumed.

- 35 -

3.3 Other Files
3.3.1 readf (<id>,<variable list>)

This reads one word from file <id> into each successive <variable> in
<variable list>. The file name <id> may be used to access an external
file. A file is viewed as one continuous stream of words.

3.3.2 writef (<id>,<variable list>)
This operation is the inverse of readf.
3.3.3 eoif (<id>)

This functions in a manner similar to that of eoi and eoic.

3.3.4 endfile (<id>), rewind (<id>), backspace (<id>)

These function similarly to the analogous Fortran commands.

©3.3.5 File Declaration

A file <id> must be declared as a global or external identifier.

The syntax is specified by

<file decl> ::= {ext} file <identifier 1ist> | {entry} file
<identifier list>

" 3.4 Machine Code (Relocatable) Output

These commands are highly installation dependent. However, any local
implementation should be reasonably close to the examples given below for
the Univac 1108.

3.4.1 wrtxt
The syntax is given by

wrtxt (<textword>,<%cl>,<offset>{,<%c2>{,<seqno>}})

- 36 -

This causes the word at 'textword' to be written into the relocatable
output file. The location ¢f this word in the relocatable output is at
location counter 'fel', offset 'offset'. The address bits are relocated
with respect to location counter 'fc2', if there are four parameters.

If there are five parameters, then relocation is with respect to external
reference number 'seqno'. Relocation is positive or negative depending
on whether fc2 is positive or negative (+0 or-0 for external reference).
3.4.2 wrend (<fc>,<offset>)

This specifies the end of the relocatable output, and the start
addrgss of the generated program. wrend (0) denotes a nonexecutable
relocatable element;

3.4.3 wrtbl (<preamble>,<length>)

This writes out the information necessary for systems interface, such
as the entry point and external reference tables. This information must
be formatted by the user. q |

3.4.4 Runtime Options

Again, this command is installation dependent and may be either a
function or procedure. The purpose of the command is to make available to
the program any options specified at runtime via normal system interface.
The syntax on the Univac 1}08 is given by

OPTIONS

which is a function returning the Exec 8 options word.

- 37 -

4. Some Examples

This section contains three examples to demonstrate the use of

- SIMPL~X as a programming language.

Example 1

/* This is a procedure which may be called by a separately compiled program.
The procedure sorts the n element array a using a bubble sort tech-
nique. */

entry proc bsort (int array a, int n)

int i, /* array index */
temp, /* storage temporary */
switch /* switch for re-execution */
switch = 1
while switch do
switch := 0
n := n-1
i:=20
while i < n do
if a(i) > a(i+l)
then switch :=1
temp := a(i)
a(l) := a(i+l)
a(i+l) := temp

i = 141
end
end
end
return

start

- 38 -

Example 2

/* This is a recursive descent algorithm for parsing strings generated by
the grammar
<assign> ::= var := <expr>;
<expr> ::= <term> | <expr> + <term>
<term> ::= <factor> | <term> * <factor>
<factor> ::= var I const | (<expr>)
The terminal symbols are tokenized in the form (class, address) by the

external procedure scan according to the following table:

type ’ class name
var 'i' actual identifier
const 'n' actual constant
any other the symbol 0]
symbol

The external procedure output can be defined to output the string in some
semantic form. */
ext proc scan /* reads the next token placing the class intb the variable
'symbol' and the name into the variable 'value' */
ext proc output (int) /* outputs the operatbr or operand as a postfix form
stack */
entry int symbol, /* contains the class of the last token created by the
scanner */
value, /* contains the actual identifier or constant if the token is
a variable or constant, otherwise it is set to zero */
error, /* set to 1 if improper statement terminator,
2 if impfoper assign operator,
3 if no right parenthesis after an expression,

4 if improper factor */

proc assign
call scan

call scan
if symbol

then

else
end

return

rec proc expr
call term

- 39 -

1.t

call scan

call expr

call output (':=')

if symbol # ';'

' then error :=1
end

error := 2

while symbol = '+' do

call
call
call
end

return

rec proc term

scan
term
output ('+')

call factor

while symbol = '*' do

call
call

call

end

scan
factor
output ('*')

- 40 -

rec proc factor
case symbol of
\'i?\\'n'\ga_ll output (symbol)
call scan
\'('\ call scan
call expr
if symbol # ')'
then error := 3
end
call scan
else error := 4
end

return

start assign

- 41 -

Example 3
/* This is a program which symbolically differentiates an expression f

involving a "symbol" (i.e., variable) x, real constants, and the operators
+ and * and’produces an expression which is the derivative of £ with
respect to the variable x. The expression to be differentiated is stored
in tree form with each node three words long. The contents of the first
word is the type of operation and the contents of words 2 and 3 are point-

ers to the left and right operands, if they exist. The set of possible

nodes are
word 1 word 2 word 3
+ ptr to left operand ptr to right operand
. ptr to left operand pPtr to right operand
ptr to the constant 0
v ptr to the symbol x ' 0 */

int free, /* contains a pointer to a list of free storage nodes */
value, /* contains a pointer to the present node */
error = 0, /* is a switch which results in a 1 if there is no more free
storage, and a 2 if a derivative of an unknown operation
is attempted. */

zero = 0, one = 1, two = 2

(plus any other global variables in the program)

proc next /* sets the next free node into value */
if free = 0
then write ('no more free storage')
value = 0
else value := free
free := |free
end

return

- 42 -

proc setnode (int op, int opl, int op2, int node)

/* sets up a new node with the trip (op, opl, op2) and returns the
address of the node */
call next
if value # 0
glg_rlivalue t= op

J (value +1) := opl

d (value +2) := op2

\Lnode :

else error :

value
1

Jdnode := Tone

end

return

proc deriv (int f, int result) _

/* £ 1s the address of the root node of the expression to be differen-
tiated, result receives the address of the resulting differentiated
tree */

int rl, r2, nl, n2

case | f of

\c'\‘loresult :=% zero
\v'\‘Lresult :=" one
N'+'\ call deriv (| (£+1),trl)
call deriv (lf+2),7r2)
call setnode ('+', rl1, r2, result)
NN call deriv ({(£+1),Trl)
call deriv (}(£+2),Tr2)
"call setnode ('.',l(f+1),r2,tnl)
call setnode ('.',rl,l(f+2),tn2)

call setnode ('+',nl,n2, result)

- 43 -

else write ('no such operator')
call setnode (0, 0, 0, result)
error := 2
end
return
(plus any other segments such as those that read and write the expressions)

10.

11.

Bibliography

Basili, V. R., Mesztenyi, C. K., and Rheinboldt, W. C., "FGRAAL,
Fortran-Extended Graph Algorithmic Language', University of Maryland,
Computer Science Center, Technical Report TR-179, 1972.

Dijkstra, E. W., Letter to the Editor, CACM, March-August, 1968,

Dijkstra, E. W., "Notes on Structured Programming", Technische
Hogeschool Eindhoven (THE), 1969.

Good, D. I., and Ragland, L. C., "NUCLEUS, A Language for Provable
Programs', The University of Texas at Austin, 1972.

Lucas, P., Lauver, P., and Stigleitner, H., '"Method and Notation for
the Formal Definition of Programming Languages', IBM Laboratory
Vienna, Technical Report TR 25. 087 1968.

Mesztenyi, C. K., Breitenlohner, and Yeh, J. C., "FGRAAL, Technical
Documentation", University of Maryland, Computer Science Center,
Technical Report TR-200, 1972.

Mills, H. D., "Mathematical Foundations for Structured Programming',
IBM Federal Systems Division, Gaithersburg, Md., 1972.

Pratt, T. W., "A Hierarchical Graph Model of the Semantics of Pro-
grams', SJCC 34, 1969, 813-825.

Rheinboldt, W. C., Basili, V. R., and Mesztenyi, C. K., "GRAAL, A
Graph Algorithmic Language', in Sparse Matrices and Their Applicationms,

D. J. Rose and R. A. Willoughby, Editors, Plenum Publishing Corp.,
New York, 1972, 167-176.

Rheinboldt, W. C., Basili, V. R., and Mesztenyi, C. K., "On a Pro-
gramming Language for Graph Algorithms'", BIT 12, 1972, 220-241.

Wulf, W. A., Russell, D. B., and Habermann, A. W., "BLISS, A Language
for Systems Programming", CACM 14, 1971, 780-790.

UNCLASSI FIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
_ Unclassified
Computer Science Center - 2b. GROUP
University of Maryland

3. REPORT TITLE

SIMPL-X, A Language for Writing Structured Programs

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report

5. AUTHORI(S) (First name, middle initial, last name)

Victor R. Basili

6. REPORT DATE . 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
January 1973 : 44 ' 11
8a. CONTRACT OR GRANT NO. 98, ORIGINATOR'S REPORT NUMBERI(S)
NGL~21-002-008 and N00014-67-A-0239-0021
" b. PROJECT NO. Technical Report TR-223
NR~-044-431 '
c. : 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
’ this report) .
d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES . 12. SPONSORING MILITARY ACTIVITY
Mathematics Program
Office of Naval Research
Arlington, Virginia 22217

13. ABSTRACT

This report contains a description of the programming -language,
SIMPL-X, which is the base language for a family of programming languages
that will be extensions to SIMPL-X and whose compilers will be written in
SIMPL-X and its extensions. It is a transportable compiler-writing,
systems language which was developed to provide a basis for the redefini-
tion of the graph algorithmic language GRAAL.

SIMPL-X is a procedure-oriented, non-block structured language with
an extensive set of operators, including arithmetic, relational, logical,
bit manipulation, shift, indirect reference, address reference, and part-
‘word operators. It is designed for writing GRAAL programs that conform to
the standards of structured programming and modular design and for effi-
clently expressing and implementing algorithms written in it. In addi-
tion, it appears to be a good language for modeling and certifying the
correctness and equivalence of programs. ‘

D !FNOOR\"551 473 axn§gaAmMU : . UNCLASSIFIED

S/N 0101-807-6801 : ' Security Classification

UNCLASSIFIED

Security Classification

LINK A LINK B LINK ¢
KEY WORDS
ROLE wWT ROLE wT ROLE wT
_ programming language
‘systems language
compiler-writing
structured programming
modular design -
1
DD /501473 (sacx) UNCLASSTFIED

(PAGE: 2)°

Security Classification

