Technical Repori TR~

Ther

Douglas D

Department of

Octghpug 1234

ABE20-5!

A Heuristic For
iving Loop Functions®

Dunlop and Vichor R.

University of Ma
College Park, MD

*Thig work wag supported in part bj
Scientific Research Contract AFOS
sity of Marvland. The material
become part of & digsertation to
School, University of Marvland,
fulfillment of the reguirements
Science.

D.D. bunlop and

Computer Scie

ryland

For the Ph

V.

20742

the A

2~-FA9620-80-C-001 Lo
Contalned in this
be
by Douglas D.
«Da

R.

0-c-001

Bagili

nece

ir TForc

S.4fL L

submitted to r
bunlon,
degree

asili

martlal
Computer

ABSTRACY

The problem of analyzing an initialized loop and verifving
B] i e bl
that the program computes some particular functicn of its inputs

igs addressed. A heuristic technigue for solving these problems

is proposed which appears to work well in many commonly occurring

cases. The uge of the technique is illustrated with a number of

applications. A hierarchy of initialized loope is suggeste

2}

N

]

b

which ig based on the "effort" required to apply this methodolog

in a deterministic (i.e. guaranteed to succeed) manner. It is

-
D
3
[
0
o]
O
®
@
pi)
o
@
=
=
I-—J
mn
r
}_q
0

lained that in any case, the success of ths

0]
bg

o
!...-.J

relies on the loop exhibiting a “"reascnable" form of behavior.
An informal categorization of such programs is made which is
based on two opposing problem sclving strategies. It is sug-
gested that cur heuristic is naturally =zuited for use on programs

in one of these categories.

KEYWORDS and PHRASES: program verification, initialized loop pro-
grams, loop functions, constraint functions, BU programs, TH Dro-

grams

CR CATEGORIES: 5.24

Loon Functions

N
=
el
D
e
fd
frtn
n
o
-
9]
|
O
e
’:?
D]
[
ot
<
i
=
[Ew]

In this report, we will consider programs of the following

<INITTIALTZATION STATEMENTS>

wnile <LCOP PREDICATE> QO
<LOQOP BODY STATREMENTS>
Q0.

These programs tend to occur freguently in programming in order
to accomplish some specific task, e.g. sort a table, traverse a
data structure, calculate some arithmetic function, eto. More
precisely, the intended purpose of such a program is often to

ic func-

o
i
9!
Jede
i

compute, in some particular output variable(s), pe

[SLE]
n

tion of the program inputs. In this paper, we address the prob-
lem of anzlvzing a program of the above form in order to prove

its correctness relative to this intended funciion.

Cne common strategy taken to solve this problem is o Theu-
ristically synthesize a sufficiently strong inductive assertion
{i.e. loop invariant [Hoare 691} for proving the correctness of

the program. A large number of techniques to aid in the discovery

[}

of these agsertions have appeared in the literature (see, for
examnple, [Wegbreit 74, Katz & Manna 76]). It is our view, how-
ever, that these techniques seem to be more ‘machine oriented"®
than "people oriented." That ig, they seem geared toward use in
an assertion generator for an automatic program verification sys-—
tem. Furthermore, a sizable portion of the complexity of these

techniques is due to their general purpose nature. The methodol-~

i

Deriving Loop Functions

3 L] 1

Cgy¥ pPropesed here iz intended to be used by programmers in the

process of reading {(i.e. understanding, documenting, verifving,

mmonly occurring verifi-

O

ete.} programs and is tailored to the ¢

cation problem discussed above.

An alternative to the inductive assertion avproach which is
taken in this paper is to invent an hypot!
general input/output behavior of the WHIILE loop. Once this has
been done, the loop can be proven/disproven correct with respect
to the hypothesis using standard techniques [Mills 72, Mills 75,
Basu & Misra 75, Morris & Weghbreit 77, Weghreit 77, Misra 78].

e be valid, the

-
ey

If the nypothesis is shown
correctness/incorrectness of the program in guestion follows
immediately. It has been shown [Basu & Misra 76, Misra 78, disra
7%, Basu 801 that this loop hypothesis can be generated in a

deterministic manner (i.e. one that is guaranteed to succeed) for

971

two restricted classes of programs. The approach suggested here

is similar to this method in that the same type of loop hehavior
seems to be exploited in order to obtain the hyvpothesis. Our
appreoach is not deterministic in general, hut as a result, is

intended to be more widely applicable and easier to use than

those previcusly proposed in the literature.

One view of the problem of discovering the general
input/output behavior of the WHILE loop under consideration might
be to study it and make a guess about what it does. One might go

s by "executing"™ the loop by hand on several sam-

Fmda

about doing th

ple inputs and then guessing some general expression for the

A Meuristic FPor Deriving Loop Functions

input/output behavior of the loop based on these results. Deci-

53]
N
[
9]
s
)
(-J
I
jod
o]
3
Q
—
o
h
0]

sions that need to be made when using such
how many sample inputs te use, how should these inputs be
selected, and how should the general expression be inferred.
Ancther consgideration 1is that hand execution can be a difficult
and an error prone task. Indeed, it geems that the loops for
which hand execution can be carried out in a straightforward
manner are the ones that are least in need of verification orx

some other type of formal analvysis.

Our methodology is similar to this technique in that we
attenpt to infer the general behavior of the loop from several
sample loop behaviors. In contrast to this techrnigue, however,
the sample behavicrs are not obtained from hand execution, rather
they are obtained from the specification for the initialized loop
program. In many of the cases we have studied, the general
behavicr of the loop in guesticn is guite easy to guess f£rom
thege sampleg. This is not to say that the loop computes a "sim-
ple® function of its inputg oy that the loop necessgsarily operates
in a "simple® manner. Much more accurately, the ease with which
the general behavior can be inferred from the samples is due to a
"simple" connection between a change in the input value of an

initialized variable and the corresponding change caused in the

result produced by the loop. We will expand on thig idea in what

A Heuristic For Deriving Loop Tunctions

2. The Technigue

D
o1
Pl
P}
'

In order to describe the proposed technigues, we repr

the verification problem discussed above as follows:

{x e n(ey}

Z o= E(X):

while B() do
X o= H{X)
o0

In this notation, ¥ represents the <data state of the program. The
symbols E and H are data state ¢ data state functions
corresponding to the effects of the initialization and locop body
respectively. 7The funcition B ig a predicate over the data state.

The program is specified to produce in the variable v a function

h

of the input data state ¥0. The notation D(f) appearing in the
program brecondition ig the domain of the function £, i.e. the

set of states for which £ is defined,

If D is the set of all possible program data gtates and 7 is
the set of values that the variable v may assume, the specifica-
tion function f has the functionality £ : H —> T, In order Lo

verify a program of this form, we choose to £find a function g : D

Ul

~> T which describes the input/output characteristics of the

&1

WHILE

A

loop over a suitably general input domain. Specifically,
this input domain must be large enough to contain all the inter-~
mediate data states generated as the loop iterates. If this is
the case, the loop is said to be closed [Basu & Misra 75, Misra

78] for the domain of g.

For Deriving Loop Puncitions

=
e
o
{D
o
5
I
N
o
-
0

We briefly consider twe alternative approaches to svnthesiz-

ing this loop function ¢g. The alternatives correspond to the

Ttop down" and "bottom up® approaches to creating inductive

o

danna 73, ¥Bllozy 81l]. In the

——
B
[¢}}
i
~
el
e
Za
b

assertiong discussed in
"top down®™ alternative, the hvpothesis g answers the guestion
"what would the general behavior of the loop have to be in order
for the program to be correct?" If such an hypothesis c¢an be
found and wverified, the correctness of the program is esta-
blished. If the program is incorrect, no such valid hypothesis
xists. In the "bottom up" alternative, the hypothesis ¢ answers

the dguestion "what is the general behavior of the loop?" In this

case, a valid hypothesis always exists. Once it has been found

n

and verified, the program is correct 1f and only if the initiali-~

zation followed by g is equivalent to the Ffunction

The advantage of a "top down®™ approach is that it is usually
easier to apply in practice because the verifier hag more infor-
mation to work with when synthesizing the hypothesis. The
vantage of such an approach isg that it may not be as well-suited

5,

to digproving the correctness of programs. 7Th s Pbecause to

it
i

)
disprove a program, the verifier must employ an argument which
shows that there doeg not exist a valid hypothesis. The method
described in this paper is based on the “top down" approach. We

will return to a discussion of this advantage and disadvantage

later.

We begin by assuming the program in question is correct with

respect to its specification. We then consider several properties

-5

A Heuristic For Deriving Loop Functions
of the {function g which result from this assumption. TFirst, the
correctness of the program implies
(1) 20 € D(f) -> £(X0) =g (X (X])).
That is, for inputs satisfving the program precondition, the ini-

tialization followed by the loop vyields the desired result.
Secondly, since the loop computes g,
B(X0) ~> g({X0)=g (H(X0})
holds by the "iteration condition® {Misra_ 781 of the standard
technique for showing the loop computes g. This implies
BR(XO)) =-> g (K(XC))=g (H(K{(X0))).
Combining with (1} vields
(2) X0 & D(f), B(R(XD)) -> £(X0)=g(H(K(X0))).
At this point we cheoose to introduce an additional universally

quantified state variable X into each of (1) and (2). The

results are the eguivalent conditions
(17} 20 & D(f), X=K(X0) -> g (X)=Ff(20)

and
{27} X0 € D(E), B{K(X0)), X=H(R(X0)) ~-> g (X)=Ff(X0).
We summarize by saying that if the program is correct with

respect to itg specification, conditions (17) and (27) hold,

Suppose now that the specification (f), and the input/output
behavior of the initialization (K), loop predicate (B) and loop
body (H) are known. Given this, (17) and (2°) can be used to
solve for the loop hypothesis g on a certain set of inputs assum-
ing the correctness of the program. Indeed, (1°) and (2°) can bhe

thought of as defining portions of the unknown loop function g we

are seeking. Specifically, cach of {(17) and (27) can be viewed
as devining a function ¢ with a restricted domain. 1In this

Light, for exanple, (17) defines the function {i.e. sget of

g = {(x,2) | T8 %0 € D(F) ST (X=K(X0) & Z=£(x0))].

3
5

We call (17) and (27} constraint functions since they are func-

!
.

tions and serve as constraints (i.e. reguirementg) on the general

loop function. HMore precisely put, the constraint functions are

=3

subsets of the general loop function. The hope is that if these

D

subsets are representative of the whole, the general loop func-
tion may Dbe inferred through analysisz of the constraint func-

tions.

In what follows we describe a 4 gtep process for construct-
ing a general loop function g from these constraint functions.
We suggest that the reader not be taken aback by what may appear
to be considerable complexity in the description of cur tech-
nigue. We intentionally have attempted to describe the procedure

I

in a careful, precise manner. Furthermore, the techn:

0]
e

i

que

T

18

have bhean

o7
a

)]
in

hased on a few gsimple ideas and, once those id

learned, we feel it can be applied with a considerable amount of

SUCCesS8 .

Zxample 1 - As we describe these steps, we will illustrate
their application on the following trivial program to compute

multivlication:

L

=
o]

& Feuristic TFor riving Loop Functions

s

We proceed with the example analvsis as follows,

Step 1 : RECORD -~ The first step consists of recording the
constraint functions (copied from (17} and (27)}
Cl: X0 € D(£), ¥=R{(X0)} -> g ()=£(X0)

C2: X0 € D{f}, B(R{X0)), X=H{R{X0)) -> g(X)=Ff(xX0)

pan

As a notational convenience, we dispense witl the data state
notation and use program variables {possibly subscrivnted by 0 %o
denote their initial values) in these function definitions. The
terms X0 € D(F) and £{30) come from the pre and post conditions

for the initialized loop respectivelv. The term M=K (¥X0) is based

on the input/output behavior of the initialization, and the terms

B(X(X0)) and ¥X=H{K(X0})) together describe the input/output
behavier of the initialization followed by exactly 1 loop itera-

ieas with the multiplication program

Lt

ticn. We illustrate these i

r

in Bxample 1. The constraint functiong for thisg program are as
follows:

Cle v0>¥0, v=v0, z2=0 -> g{z,v,k)=v0¥k

C2: v0>0, v=vi~-1l, z=k -> g{z,v,k)=vi*k.
We make the following comments LODCPIPIHQ these function Jdefini-
tions. Pirst, in the interest of gimplicity, we do not RECORD
the "effect" of the initialization or loop body on the constant k

-

(i.e. we dispense with k=k0 and t

3,

he need for a gymbol kO}.

n ree s . i R .
A Heuristic For Deriving Loop Funchtions

Secondly, ¢ is defined as a function of each ©wnrogram variab
which occurs in the loop predicate or loon body. That is, g ig a
function of the variahles on which the behavior o¢f the loop
directly depends, Furthermore, note that in €2, the term v0>0
captures both X0 2 D(F) (i.e. v0>=0) and B(E{X}) (i.e. v0#0). As

a final remark, in constraint function we will use the phrase

domain reguirement to refer to the collection of terms to the

left o©f the "->" gymbol and function expression to refer to the

expression which defines the value of g (e.g. v0*k in both Cl and

02 above).

Step

HS)

: SIMPLIFY -~ All variables which appear in the func-

T

ion definition but not in the parameter list for ¢ must eventu-

h

ally be eliminated from the definition. On occasion, it is pos-

sible to solve for the value of such a variable in the domain
requirement and substitute the eguivalent expression for it
throughout +the definition. To illustrate, in the definition C1
above, v0 ig a candidate for elimination. We know its value as a
function of v (i.e. vU=v}, hence we can SIMPLIFY this definition
te

Cl: wv>=0, z=0 ~> g({z,v,k)=v*k.
Note that the term v=v0 has disappeared since with the substitu-
tion it is equivalent to TRUE In a similar manner, the second
éonstraint function can bhe SIMPLIFIED to (uging vi=v+l)

C2: wv>»=0, z=k -> g{(z,v,k)=(v+1l)*k.
Although applying this simplifving heuristic 1is most often a

straightforward ©process, care mnust be taken to insure that the

A Heuristic Tor Deriving Loopr Functions

)

Le

-
{

domain of the constraint function is not mistakenly extende

For example, if ¢ and 40 are integer varisbles, the definition
d0>0, 3=d0*2 -> g(d)=7d0%8

does not SIMPLITY to

>0 => g (d)=a%4

J,‘

nce the first function defineg a value of g only for positive,

2o

S

i

e

even values of & while the second definition defines a value of g
for all pogitive d. The first function does SIMPLIFY to
a>0, BVEN(d} -> g(d)=d*4

where EVEN(d) is a predicate which is TRUE iff d is even.

Step 3 : REWRITE - Variables which appear in the parameter

list for g but not in the function expression of its definition

are candidates to be introduced into the function expression.

fach of these wvariables will be bound to a term in the domain

pa—y

requirement of the definition. The purpose of this step is to
rewrite the function axpression of C2 (based on the properties of
the operation(s) invelved) in order to introduce these terms into
the Ffunction expression. To illustrate, consider the above SIM-
PLIFIED CZ definition. The variable 2z 1is a candidate fo be
introduced inte the function expression {v+1l)*k. It is bound to
the term k in the dJdomain requirement. Thus we need to introduce
an additional term k into this function expressicn. One way to
do this is to translate the expression to v¥k+k. Based on this,
we REWRITE C2Z as

C2: wv>=0, z=k -> glz,v,k)=v¥k+k.

-10w

A Feuristic For Beriving Loop Functions

Step 4 : SUBSTITUTE -~ In steps 2 and 3, the constraint funo-
tions are massaged into equivalent definitions in order to facil-
itate step 4. The purpose of this step is to attempt to infer a

general loop function from these constraints. We motivate the
process as follows. Suppose we are searching for a particular
ship between several duantities, say E, m and ¢. Furth-
ermore, suppose that through some form of analysis we have detsr-
mined that when m has the value 17, the relationship E=17%(c¥**2)
holds. A reasonable guess, then, for a general relationship
between E, m and ¢ would be E=m*(c¥%2). This would be particu-
larly true if we had reason to suspect that there was a rela-
tively simple connection Dbetween the gquantities = and E. UWe
arrived at the general relationship by substituting the guantity
m for 17 in the relationship which is known to hold when m has
the value 17. Viewed in this light, the purpose of the con-

straint function C2Z is to obtain a relationsghip which holds for a

=3

specific value of m {e.g. 17). The step REWRITE exposes the term
17 in this relationship. Finally, SUBSTITUTE substitutes m for

17 in the relationship and proposes the result as a general rela-

_Ql

tionghip between , m and ¢. In terms of the multiplication pro-
gram being considered, the SUBSTITUTE step c¢alls for replacing
one of the terms K in the above rewritten function expression
with the term 2. The two posgible substitutions lead to the fol-

lowing general functions:

ve=0 ~> g{z,v,k)=vik+z

~

and

—1l-

3

A Heurilstic For Deriving Loop Functions

fix

R

Both of these (necessarily) are generalizations (i.e. supersets)
of ©C2, however, only the first is also a generalization of l.
Hence this function is hypothesized as a description of the gen-

eral behavior of the above WHILE loop.

We have applied the above 4 steps to obtain an hypothesis
for the behavior of the loop in guestion. 8Since this description
is sufficiently general (specifically, since the locp is closed
for the domain of the Ffunction), we can prove/disprove the
correctness of the hypothesis using standard verification tech-
nigues {Mills 75, Misra 78]. Specifically, the hypothesis is
valid if and only 1f each of

- the loop terminates for all v>=0,

- v={ -> z=z + v¥*k, and

- Z 4+ v¥%k is a loop constant (i.e. v0*kO=z + v¥k is a loop

invariant)
hold. We remark that the loop hypcthesis i1s selected in such a
way that i1f it holds (i.e. the loop does compute this general

function), the initialized loop 18 necegsarily correct with

respect toc f.

We emphasize that there are usually an infinite number of

generalizations of the constraint functions Cl and €2, and that,
lepending on how REWRITE and SUBSTITUTE are applied, the tech-
nigue is capable of generating any one of these generalizations.
For example, REWRITE and SUBSTITUTE applied to the multiplication

mple could have produced

C2: wv>»=0, z=k ~> g(z2,v,k)=

or Deriving Loop functions

sy
s
)
ot
[
-
n
-t
1
2
v

vEK b 3FE o kRkE(v-T) /(4%k) + k¥k¥Fk/(k*k)

R*¥R¥FR*(v-T) /(4%k*k) ~ K¥R¥R*3/(k¥*K)

vr=0 -> g(z,v,k)=

zrz¥ (v-T) /(4%K) + z¥z¥z/(k*k)

<
*
=
+
w
*
™
+

- z¥z*z¥ (v-T7) /(4%K*K) - z*z¥z*3/(k¥%k)
respectively, where "/" denoktes an integer division (with trunca-
tion) infix operator which yvields 0 when its denominator ig 0.

This last function is alsc a generalization of Cl and C2.

It has been our experience, however, that man initialized
= i

oons occur in which there exists some relatively simple connec-—

(Rt

tion between different input values of the variables constrained
Ly initialization and the corresponding result produced by the
WHILE loop. Most often in practice, these variables are bound to
values in the domain reguirement of C2 which suggest an applica-
tion of REWRITE that uncovers this relationship and leads to a
correct hypothesis concerning the general loop behavior. In the

following section we illustrate a number of example applications

of this technique.

3. Applications

Bxample 2 - The following program computes integer exponen-—
tiation. This example serves to illustrate the use of the tech-

nigue when the loop body contains several maths:

-13-

A Teuristic For Deriving Loop Functions

wewle
while & # 0 do
if odd(d) then w := w * ¢ fi;
c¥*ce d 1= 4d/2 T

The infiz operator ~ appearing in the ©postcondition represents
integer exponentiation. The first constraint Function is easily
obtained:
al>=0, c=cG, d=a0, w=l -> g(w,c,d)=c0"a
and SIMPLIFIES to

Cl: 4>=0, w=L -> g(w,c,d)=c"d.
Since there exist two paths through the loop bodv, we will obtain
two second constraint functions. The first of these deals with
the path which updates the value of w and is executed when the
input value of & is odd. The function is

d0>0, odd(d0), w=cl, c=cl*c0, d=40/2 -> g(w,c,d)=c0"d0
which SIMPLIFIES to

C2a: d>=0, c=w¥y -> g(w,c,&)=w“(d*2+l).
The fuﬁction corresponding to the other loop body path is

ab>0, even(dl), w=i, c=c0%c0, 4=40/2 -> g(w,c,d)=c07d0
and SIMPLIFIES to

a>=0, w=l, SQUARE(c) -> g(w,c,d)=SQRT{c)"(d*2)

C2b: d>=0, w=1, SQUARE(c) -> g(w,c,d)=c"d
where SQUARE(x) is a predicate which is TRUE iff % is a perfect
square and SQORT(x) is the sguare root of the perfect sguare X.

This term 1s necessary in the domain requirement since the unSIM-

}
=
iy

t

n

A Heuristic For Deriving Loop Function

PLIFIED function 1s only dafined for values of ¢ which are per-
fect scuares. Note that C2b is a subset of C1 and hence is of no

zing the deneral loop function. The

[

additional help in character
heuristic suggested in REWRITE is to rewrite the function expres-
sion w™(d*2+1) of C2a in terms of w, w¥w (so as to introduce)
and d. The peculiar nature of the exponent in this expression
leads one to the eguivalent formula w* ((w*w) "d). Applving SUBR-
STITUTE in C2a yields
a>=0 -> g{w,c,d)=w*(c”d).
This function is in agreement with (i.e. is a superset of) ¢l and

thus is a reasonable hypothesis for the general loop function.

In this example, the portion of C2 corresgponding to the loop
body path which bypasses the updating of the initialized data is
redundant with Cl. Based on this, one might conclude that such

ider-

6]

loop bedy paths should be ignored when constructing 2. Con
ing 211 loop body paths, however, does have the advantage that an
incorrect program could posgibly be disgproved (at the time the
general loop function is being constructed) by observing an
inconsistency between constraint functions €l and C2. For
instance, in the example, if the assignment to ¢ had been written
"ci=c*2", the above analysis would have detected an inconsistency
in the constraints on the general leoop functicon. Such an incon-
sistency implies that the hypothesis being sought for the general
behavior of the loop does not exist, and hence, that the program

is not correct with respect to its specification.

o
]
D
ot
4
Jad
U
s
‘..J.
Q
fae
Q
]
]
¢
i
o)
[to]
i
O
O
[
]
{2
r
O
v
U

In the previous section, the reader may recall that awkward-

ness in disproving programs was offered as a disadvantage of a

"top down" approach to synthesizing g. It has been our experi-

ence, however, that, as in the above instance, an error in the

hat}
)

program being considered often manifests itself as an incon-

atween Cl and C2Z. 3uch an inconsistency is usually

0y
‘LJ -
n
(%3
]
b
0
g
o

"easy" to detect and hence the program is Teasy" to disprove.
While it is difficult to give a precise characterization of when
this will occur, intuitively, it will be the case provided that
the "error® {e.g. c*2 for c*g¢) can be "executed" on the first

iteration of the loop.

Example 3 - The following program counts the number of nodes
in a nonempty bhinary tree using a set variable s. It differs
from the previous examplie in that more than 1 vwvariable 1is ini-
tialized. The tree variable t igs the input tree whose nodes are
to be counted. We use the notation left(t) and right(t) for the
Lleft and right subtrees of & respectively. The »predicate

empty (t) is TRUE iff t is the empty tree (i.e. contains 0 nodes).

{“empty (t) }

n = 0: g = {t};

while s # {} do
select and remove some element e from s
n = n + 1l;
if Tempty(left(e)) then s := s U {left (e)l £i;
if Tempty(right(e)) then s := s U {right(e)] Ti
od

{n=NODES (t) }

The notation NODES(t) appearing in the postcondition stands Ffor

the number of nodes in binary tree t. The first constraint func-

-16-

A Heuristic For Deriving Loop Functions

Cl: “empty(t), n=0, s={t} -> g(n,s)=NODES(t).
Rather than considering each of the 4 posgsible paths through the
loop body individually, we abstract the combined effect of the
two IF statements as the assignment

= g U SONS{e),

in

e

where SOMNS(x) is the set of 0, 1 or 2 nonempty subtrees of =x.

e

Applying thig, the second constraint function is

€3]

C2: Tempty({t), n=1, s=SONS(t) ~> g{n,s)=NODES(t).
We choose to REWRITE the function expression for €2 using the
recursive definition that NODES(%) for a nonempty tree % is 1
pPlus the MNODES value of each of the 0, 1 or 2 ~nonempty subtrees
0of X. Specifically, this would be

1+5UM (%, 80N (L) ,NODES (%))
where SUM{A,B,() stands for the summation of ¢ over all A £

Applying SUBSTITUTE in the obviocus way yields

“empty (t) -> gi{n,;g)=n+SUM(%,s5,NODES {x))

[#3]
&3}

which is in agreement with Cl and is thus a reasonable guess for

the general loop function g.

Two remarks are in order concerning this example. The first
deals with the condition “empty(t) appearing in the domain
requirement of the obtained function. 'The reader may wonder, if
t is not referenced in the loop (it is not in the parameter list
for g), how can the loop behavior depend on empity(t)? The answer
ig that it obviously cannot; the above function is simply

eguivalent to

~17-

A Heuristic For Deriving Loon Functiocns

gin,s)=n+s80M{x,s,MODES{(x)).
For the remainder of the examples of this section, we assume theat
these unnecessary conditions are removed from the domain reguire-

ment of the constraint function as part of the SUBSTITUTE sten.

=

As a second point, in Example 3 we encounter the case where

¥

the obtained function is, strictly speaking, too general, in that
its demain includes "unusual® inputs for which the behavier of
the loop does not agree with the function. For instance, in the
example, the loop computes the function
Jgn,s}=n+5UM{x,s,NODES (X))

only under the provision that the set s goes not contain the
enpty tree. This is normally not a serious problem in practice.
One proceeds as before, i.e. attempts to nush through a proof of
correctness using the inferred function. If the droof is suc-
cessful, the program has been verified; otherwise, +the charac-
teristics of the input data which cause the verification
condition(s) to fail (e.g. & contains an empty btree) suggest an
appropriate restriction of the input domain (e.g. s containg only
nonempty trees) and the program can then be verified wusing this

new, restricted function.

Example 4 [Gries 79] - Ackermann”s function A(m,n) can be
defined as follows for all natural numbers wm and n:
A(C,n) = n+l

Alm+1l,0) A{m,1)
A+l n+l) A{m,A{m+1I,n)).

i

The following program computes Ackermann®s fFfunction using a

~18~

seguenge variaile s of natural numbers.,

rightmost element of s and s(2) is

The sequence s{..3) is s with s{2)

< and > to construct sequences, i.e. a

in

elements will be written <s{n), ... ,

:= <m,n>

while size(s) # 1 do
if s8(2) = 0 then g:=35{..3)
clseif s{1)=0 then s:=s5(..3)
alse s:=s{..3)

For this program, the first constraint

n>=0, s=<m,n>

"he second constraint functions

the

and s{1)

seguence s

The not

second

(Z2) ;s (1)y>.

<q(l}+1>
(2\—3 1>
<s(2) L,s(2

function is

Y=<A (m-1,1}>

-> g (s)=<a{m,n)>

goryresponding to

=<A{m,n)>

~> g(s)=<A{m,n)>

g{g)=<n+l>

-> g{g)=<s{l}>

=<A (s
=< (5 (3)

conn Functions

ation s

repoved.

)

We will

the

(2} r5(1})>
PA{s(2) ,s(1)))>.

3

rightmost,

g{s)=<A{m-1,A{m,n=-1))1>.

through the loop body are
C2a: m=0, n>=0, s=<nt+l> -> a{s)
C2b: m>0, n =0, s=<m-1,1>
C2c: m>»C, n >0, s=<m-1l,m,n~1> -> g(s)=<A(m,n)>.
REWRITING these 3 based on the above definition of & vields
n=0, n>=0, s=<n+l1> ->
m>0, n =0, g=<m-1,1> -> g(s
m>0, n >0, s=<mn-1,m,n~-1> —->
SUBSTITUTING here yields
g=<g (1} >
s=<g (2),s(1)> ~> g (s)
s=<8(3) ,8(2},s(1)> => g (s)
Note that the second of these functions

.

implies CL.

The

3

use

congisting of n

;s (l)-1> £i

paths

seem

A Heuristic Tor Deriving Loon Functions

to suggest the general leoop behavior (where n>l)
gi{<ag(n),s(n-1),; ... ;s{l}>) =

<A{s(n) A{s(n~-1), ... Afs{2),s(1)) ...))>.

We remark that in the Ffirst 3 ezamples, the heuristic

jde

resulted in a loop function which was sufficiently general (i.e.
the Joop was closed for the domain of the inferred Ffunction).
Example 4 illustrates that this does not alwayvs occur. The loop
function heuristic is helpful in the example in that it suggests
a behavicr of the loocp Ffor general seguences of length 1, 2 and

3. Based on these results, verifier is left to infer a behavior

for a sequence of arbitrary length.

Axample 5 - Let v be a cne dimensional array of length n>0
which contains natural numbers. The following program finds the

maxipnunm element in the array:

m = 0; I := 1;

while 1 <= n do
if m < v[i] then m := v[i] fi:
I =i+ 1 T

=

The notation BIGGEST(v) appearing in the postcondition stands for
the largest element of v. The following constraint functions are
obtained

cl: m=0, i=1 -> g(m,1,v,n)=RBIGGEST(v)

C2: m=v[1l], i=2 m>.q(m,i,v,n)=BIGGEST{v).

Noticing the appearance of vI[l] and 2 in €2, we REWRITE

BIGGEST(v) in €2 as MAX(v[1],BIGBEST(v[2..n])), where MAX returns

~20-

A Heurlstic TFor Deriving Loop Funchtions
-t a

the largest of its two arguments, and vi2..n] is a notation
the subarray of v within the indicated bounds. The generaliza-
ticn which suggests itself,

gim,i,v,n)=MAX (m,BIGGRST(v[i..n]}),

agrees with Cl.

Example 6 ~ If p is a pointer to a node in & Dbinary tree,
ilet POST(r) be the sequence of pointers which point te the nodes
in a postorder traversal of the binarv tree pointed to by p. The
following program constructs POST(p) in a seguence variable vs

using a stack variable stk. We use the notation 1{p) and 1(p)
for the pointers to the left and right subtrees of the tree
pointed to by p. If p has the value NIL, POST(p) is the empty
seguence. The variable rt points to the root of the input rree

to be traversed.

D = rt; stk = EMPTY: vs 1= <>
while ~(p=NIL & stk=FMPTY) d
T if p#NIL then _ﬁ
" stk <= p /% push p onto stk */

els
n» <= gtk /* pop stk */
vs 1= vs || <p>;
P = r{p) fi

od

{vs™= pos7(rt)}.

Up until now, we have attempted to infer a general loop Ffunction
from two constraint functions. Of courge, there is nothing spe-
cial about the number two. In this example, the "connection®

iables and the function values is not

[

between the initialized va

clear from the first two constraint functions and it proves help-

-21-

A Heurilstic For Deriving Loop Functions

ful to obtain a third constraint function. Functions C1 and 2

correspond to 0 and 1 loop body executions, respectively. The
third constraint function €3 will correspond to 2 loop hody exa-

cutions. We will use the notation (el, ... ,en) for & atack con-
taining the elements el, ... ;en from top to bottom. The con-
straint functions for this program are
Tl o=, stk=FMPTY, ve=<> -
gi{p,stk,vs)=P0ST(rt)

2 rE#ENIL, va=<> -

g
a—
o
-
5]
T
=
[t
[
o}
-

g{p,stk,vs)=P0OST(rt)
C3a: rt#NIL, I{rt)#NIL, p=21(Y(rt}), stk=(Ll(rt),ct), vs=<> -2
g{p,stk,vs)=POST(rt)
C3b: re#NIn, 1(rt)=NIL, p=r{rt), stk=EMPTY, ve=<rt> ->
g(p,stk,vs)=POST(rt) . |
Note that there are two third constraint functions. ¢3a and C3b
correspond to executions of the first and second loop body paths
{on the second iteration), respectively. There is only 1 second
constraint function since only the first loop body path can be
executed on the first iteration. Using the recursive definition
of POST, we REWRITE C2, C3a and C3b as follows:
C27: rtANIL, o=1{rt), stk=(rt), vg=<> -
gl{psstk,vs)=POST(1(rt)) ||<rt>]|]| POST(r(rt))
C3a”: rt#NIL, 1(rt}#NIiL, p=1(1l(rt)), stk={(l(rt),rt), ve=<> ->
g(P,stk,vs)=POST(1(1{rt))) ||<i(ze)>|]| POST(r(1(rt)))

| [<re>|| POST(r(rt))

C3b”": rt#NIL, 1(rt)=NIL, p=r(rt), stk=FMPTYVY, ve=m<rt> >
g{p,stk,vs)=<zt> || POST(r(rt))

DD

A Yeuristic ¥or Deriving Loop Funchtions

Applying SUBSTITUTE to esach of 27, 232”7 and C3b7 suggests
stk=(el), vs=<> ~> g(p,stk,vs)=P0ST(n) |[<el>|| POST(r(el))
stk=(el,e2), vs=<> -> g(p,stk,vs)=POST(p) |!<el>|| 208T{r{el))

| I<e2>1| POST(r(e2))
Sthk=EMPTY ~> g{p,atk,va)=vs || POST(p)

respectively. The first 2 of these functions imply the follewing

hehavior for an arbitrary stack where ve has the value <>:
stk=(el, ..., en), ve=<> ~> g(p,stk,vs) =

POST(p) || (<el>]]| PosT(el) || ... ||<en>|| POST(en))

and in combination with the last function, the general behavior
stk=(el, ..., en) -> gi{p,stk,vg) =

ve || POST(p) || (<el>|] PosT(el) || ... |]<en>]| PosT(en))

is suggested.

In this section we have illustrated the use of our technique
on a number of example programs. The reader hasg seen that the
success of the method hinges largely on the way REWRITE is per-
formed. What guidelines can be used in deciding how to apply
this step? The general rule given above is to identify the vari-
ables that need to be introduced into the expression and then to
rewrite the expression using the terms to which these variables
are hound. For instance 1in Example 3, HODES(t) was rewritten
using the terms 1 and SONS{t). Bevond this rule, however, the
reader may have noticed an additional similarity in the way
REWRITE was applied in these examplegs. If f is the fFfunction or
operation the initialized loop program is intended to compute,

each REWRITE step involved decomposing an application of £ in

A Heuristic For Deriving Loop Funchions
SOme was In Example 1, for instance, a multiplication operation
k= 4 F

was decomposed into an addition and multiplication operation: in
Oxample 3, & NODES operation was decompesed into a summation and
a number of NODHES operations; in Example 5, a RICERST operation
was aecompoged into a MAX and a BIGCEST operatinn. In Section 6

we will characterize this idea of decomposing the intended opera-

.

tion of the initialized loop program and Aiscuss several implica-

tions of the characterization for the proposed technique.

In Bzample &, we saw that the technigque generalizes to the

use of 3 {and indeed an arbitrary number of) constraint func-
tions. We have seen that each of these functions defines a sub-
get of the general loop function g being sought. If the con-
straint functions themselves are sufficiently general, it may be
that the first sgeveral of these Ffunctions, taken collectively,
constitute a complete description of g. We consider this situa-

tion in the following section.

E, Complete Constraints

The technique described above for obtaining a general loop

function is "nondeterministic™ in that the constraint functions
do not precisely identify the desired function; rather they serve
as a formal basis from which intelligent guesses can be made con-
cerning the general behavior of the loop. 0Qur belief is that it
i often easy for a human being to fill in the remaining "pisces"

of the locp function "picture® once this bhasis has been esta-

blished.

% Meuristic For Deriving Loop Punctions

There exist, however, circumstances when the constraints do

constitute a complete description of an adequate loop Function.

5

Specifically, this description may be complete through the use o

+
Al Fs

[]

or more of the constraint functions. The significancenof
these situations is that no guesging or "£illing in the picture®
is necessary; the program can be proven/disproven correct using
the constraints as the general loop function. In this section we

give a formal characterization of this circumstance.

Definition ~ For some N > 0, an initialized loop is N-closed

with respect to its gpecification £ iff the union of the con-
straint functions C1,C2, ... ,CN is a function g such that the
loop is closed for the domain of g. In this case, the con-

‘straints CL,C2, ... CN are complete.

Thus if a loop is N-closed for some N>C, the union of the
first N constraint functions constitutes an adequate loop func-
tion for the loop under consideration. Intuitively., the value W
is a measure of how quickly (in terms of the number of loop
iterations) the variables constrained by initialization take on

"general" values.

hrample 7 - The following program

A

a
la=al + b0 + 1}

25—

A Heuristic For Deviwving Loop Functions

3]

(¥

ig l-closed since the first constraint function is
Cl: DO>=0, a=al0+l, b=b0 -> g(a,h)=ald+hi+1
which SIMPLIFIES to
b>=0 ~> g(a,b)=a+bh

and the loop is closed for the domain of this function. Thus 1

by itself defines an adequate loop function.

Initialized loops which are l-closed seem to occur rarely in
practice. Somewhat more freguently, an initialized loop will be

Z-closed. For these programs, the loop Ffunction synthesis tech-
nigque described above ({(using 2 constraint functions) is deter-

ministic.
Txample 8a ~ Consider the program

gum =:= J:

while seg # EMPTY do
sum := sum + head{seq):
geqg := tail(seq)
od

{sum=5IGMA (seqD) }.

The notation SIGMA({segl) appearing in the postcondition stands
for the sum of the elements in the seguence seqgl. The program is
2-closed since the second constraint function is

c2 seqO#EMPTY, sum=head({segd), seg=tail(segld) ->

LX)

g (sum,seq)=53IGMA (segl)
which SIMPLIFIES to
g(sum,seq)=oum+SIGMA(seq)?

The loop is trivially closed for the domain of this function.

A Heuristic For Deriving Loop Functions

Zxample 8b -~ As a second illustration of a 2-closed initial-
ized loop, the following program tests whether a particular key

appears in an ordered binary tree.

success := FALSE:
whlln ftae ¥ NULL & “success do
if name (tree} = key then success := TRUE
elaelf name{tree) < key then tree := right{tree)
else tree := left(tree) fi
od

The notation IN(key,treel) is a predicate which is true iff key
occurs in ordered binary tree treel. This program is alsc 2-
closed. Note that the first constraint function
Cl: success=FAL3E, tree=treel ->
g{succesg . trea,keyv)=IN{kev,treel)
SIMPLIFIES to
success=FALSE -> g{success,tree,key)=IN(key,tree).
If we consider the first path through the loop body, the second
constraint function is
C2: success=TRURE, treel#NII, tree=treel, key=name (tree) ->
g (success,tree, key)=IN(key,treeld)
which SIMPLIFIES to
success=TRUE, tree#NTL, key=name (tree) ->
g{success,tree,key)=IN(kev,tree) .
Although the domain of the union of these two functions is som
what restricted, i.e.
{<success,tree,key> |
({"success) OR (treefNIL & key=namé(tree)))},

the loop is nevertheless closed for this domain and hence the

s B o

A Feuristic Por Deriving Loop Functions

of dnitialized loops

initialized loop ig 2-closed.
Example 3¢ - Consider the seguence
P1,PZ2,P3 ... defined as follows Ffor esach I>0:
PI : {x>=0}
¥ os= % % T3
while x > 0 do
X o= 3 - 13
¥y o=y + k
od
{y=y0 - xO*I*k}.

For any I»0, the first I constraint functions for nrogram PI are

9

1: x0>=0, X=g0*T, v=y0

1

Z2: x%0>=1, x=x0*1-1, y=y 04k

=> g{z,y,k)=y0+x0*I%k

=> g(z,y,k)=y0+z0%I%k

CI: x20>=I-1, x=x0*I~(I-1), y=y0+k*(I-1) -> g(x,v,k)=y0+x0*1%k,
These SIMPLIFY to
®¥>=0, MI(x) -> g (x,v,k)=y+x*k
®x>=0, MI(x+l1) -> g(%,v,k)=y+x*k
x>=0, MI{x+(I-1)) ~> g(z,y,k)=y+x*k
where MI is a predicate which is TRUE iff its argument is a mul-
tiple of I. Since the union of these is the function
x>=0 ~> g (%,v,k)=y+x*k,
and the loop is closed for the domain of this function, we c¢on-

~28~

A Heuristic For RDeriving Loon Functions

O

clude that for each I>8, program PI is I-closed.

.] .

For many initialized loops which seem to occur in practice,
however, there dJdoes not exist an I such that they are N-closed
with resgpect to their specifications, This means that no finite
number of constraint functions will pinpoint the appropriate gen-
eralization exactly; i.e. when applying the above technigque in
these situations, some amount of inferring or guessing will
always be necessary. A case in point is the integer multinlica-
tion program from Example 1. The constraint functions C1,C2,03,
<.+ define the general loop behavior for 2=0, =z=k, z=2%k, ...
etc. The program cannot bhe N-closed for any ¥ since with input
v=N+l, the last value of z will be (N+1)}*k which is not in the

domain of any of these constraint functions.

As a final comment Concerning M-closed initialized loopsg, it
may be instructive to consider the following intuitive view of
these programs. All l-closed and 2-closed initialized loops
share the characteristic that they are "forgetful", i.e. they
soon lose track of how "long" they have been executing and lack
the necessary data to recover this information. This is due to
the fact that intermediate data states which occur after an arbi-

trary number of iterations are indistinguishable from data states

which occur after 0 (or 1) loop iterations. To illustrate, con-
sider the 2-closed initialized loop of Example 8a which sums the

elements contained in a sequence. After some arbitrary number of

iterations i an execution of this program, suppose we stop it

3

~and inspect the values of the program variables sum and seq.

- 26

A Heuristic For Deriving Loop Functions

Based on thesge valueg, what can we tell asbhout the hi
execution? The answer is not too much; about all we can say is
that 1if sum is not zZero then we know we have previously executed
at least 1 leoop iteration, but the exact number of these itera-

tions may be 1, 10 or 10000,

By way of contrast, again consider the integer multiplica-
tion program of Example 1, an initialized loop we know not to be
N-clesed for any N. Suppose we stop the program after an arbi-
trary number of iterations in.its execution. Based on the values
of the program variables z, v and k, what can we tell about the
history of the execution? This information tells us a great
deal; for example, we know the loop has iterated exactly z/k

times and we can reconstruct each previous value of the variable

A

Initialized loops which have the information available to
reconstruct their past have the potential to behave in a "tricky"
manner. By "tricky" here, we mean performing in such a wayvy that
depends unexpectedly on the history of the execution of the loop
(i.e. on the effect achieved by previous loop iterations). The
result of this loop behavior would be a loop function which was
"inconsistent® across all values of the loop inputs and which
could only be inferred from the constraint functions with consid-
erable difficulty. We consider this phenomenon more carefully in
the following section; for now we emphasize that it is precisely
the potential to behave in this unpleasant manner that is lacking

in l-closed and 2-closed initialized loops and which allows their

—30-

general behavior to be degcribed completely by the first 1 or 2

constraint functions.

5. “Pricky”® Programs

The above heuristic suggests inferring ¢ from 2 gsubsets of
that function, C1l and C2. <Constraint function €2 is of particu-
lar importance since REWRITE and SUBSTITUTE are applied to this
function and it, conseguently, serves to guide the generalization
process. €2 is based on the program specification Ff, the ini-
tialization and the input/output behavior of the loop body on itsg
first execution. In any problem of inferring data concerning
some wpopulation based on samples from that population, the accu-
racy of the results depends largely on how representative the
samples are of the population as a whole. The degree to which
the sample defined in C2 is ig representative of the unknown gen-

eral function we are seeking depends entirely on how representa-

tive the input/output behavior of the loop bhody on the first loop

iteration is of the input/output behavior of the loop body on an

arbitrary subsequent loop iteration.

To give the reader the general idea of what we have in mind,
consider the program to count the nodes in a binary tree in Exam-
ple 3. 1If the loop body did something peculiar when, for exam-
ple, the set s contained 2 nodes with the same parent node, or
when n had the value 15, the behavior of the loop body on its
first execution would not be representative of its general

oy

behavior. By "peculiar"™ here, we mean something that would not

-31-

have Dbeen anticipated based solelv on input/output observations
of 1ts initial execution. An application of our heuristic on
programs of this nature would almost certainly fall since

(apparently) vital information would be missing from Cl and C2.

he technigue to the following

i

Example Y - Consider applying

program which 1is an alternative implementation of the integer

multiplication program presented in Fxample 1l

-

{v>=0}
z = 0;
while v # 0 do
if z=0 then Z 1= Kk
elseif z=k then =z :1= z * 2 % y
else z 1=z — k fi:
v 1= v — 1 o
od
{z=%0%k}.
The constraint functions Cl and C2 are identical to those for the

pProgram in Example 1 and we have no reason to infer a different

function ¢. Yet this function 1is not only an incorrect

LIS |

hypothesis, it does not even come close to describing the general

behavior of the loop. The difficulty is that the behavior of the

loop body on its first execution is in no way typical of its gen-

i""‘

s due to the high dependence of the oop

I~

eral behavicr. 7This

b

body behavior on the input value of the initialized variable z.

We make the following remarks concerning programs of this
nature. First, our experience indicates that they occur very
rarely in practice. Secondly, because they tend to be quite dif-
ficult to analyze and understand, we consider them "tricky" or

pocrly structured programs. Thirdly, the guestion of whether the

-37-

tions

un

O

g

A HMeuristic Tor Deriving Loop

1,

(input/output) behavior of the loop body on the first iteration
representative of its behavior on an arbitrary subseguent

]
s

iteracion 1is vreally a guestion of whether its behavior when the

<5

initialized variables have their initial values is representative

"

:havior when the initialized variables have "arbitrary
values. Put still another way, the guestion is whether the loop
body hehaves in a "uniform® manner across the gspectrum of posgi-

ble values of the initialized datas.

-

In practice, a consequence of a loop body exhibiting thi

-

uniform behavior ig that there exists a simply expressed connec-

@

tion between different input values of the initialized data and
the correspending result produced by the WHILE loop. It is the
xistence of such a connection which motivates <the SUBSTITUTE
step above and which 1s thus a necessary precondition for a suc-
cessful application of the technigue. This explains its failure
in dealing with programs such as that in FExample %. We make no
further mention of these "tricky" programsg, and in the following
section discuss an informal categorization of "reasonable® pro-

grams and consider its implications for our loop function syn-

thesis technigue.

©. BU and TD Loops

In this section, we discuss general characteristics of many
commonly occurring iterative programs. These characteristics are
used to suggest two categories of these programs. This categori-

zation is of interesgt since the above heuristic for synthesizing

33

A Heuristic For Deriving Loop Functions

loop functions is particularly useful when applied to initialized

In sclving any particular problem, it often ma
congider certain instances of the problem as being
"harder® to solve than cother instances. For example, with the
problem of sorting a table, an instance of the problem for a
table containing ¥ elements might be harder to solve than an
instance of the problem for a table containing N-1 elements.
Similarly, if the problem is multiplving natural nunbsrs, a*b
might be easier to sclve than {(a+l)*h. This notion of Yeasgier®
and "harder" instances of a problem is particularly apparent for
problems with natural recursive solutions. These solutions solve
complex instances in terms of less complex instances and hence

support the idea of one problem instance being easier to solve
Iy -

than another.

For the purpose of this discussion, we divide the data modi-

fied Dby the initialized loop under consideration into two sec-
tions: the accumulating data and the contrcl data. The accumu-

lating data is the specified output variable(s) of the loop. The
remaining modified data is the control data and often serves to
"guide" the execution of the loop and determine the point at
which the loop should terminate. Both the accumulating data and
the control data are typically (but not always) constrained by

initialization in front of the loop.

)

A Heurilstic For Deriving Loop Funchions

-
J

Ezample 1da ~ In the program

{q>m0}

Zozm Lo o= QO

whille © # n do
t o= &t + 1
T os= 7% L
od

{z=nT]

the variable z ig the specified output of the loop and is hence
the accumulating data. The other modified variable, t, is used

to control the termination of the loop and is the control data.

In many cases, the control data can be viewed as represent-
ing an instance (or ©perhaps several instances) of the problem
being solved. As the loop executes and the control data changes,

the control data represents different instances of this problem.

ot

To illustrate, we can think of the contrel data t in the previous
examplea as a variable describing a particular instance of the
factorial problem. As the loop executes, the variable t takes on

the wvalues 0, 1, ces, N, and these values can be thought to

correspond to the problems 0!, 1!, ... nl.

Based on these informal observations, we characterize a B@
(from the Bottom Upward) loop as one where the control data prob-
lem instances are generated in order of increasing complexity,
beginning with a simple instance and ending with the input prob-

lem instance to be solved. In the execution of a BU loop, the

control data can be viewed as representing the "work"™ that has

been accomplished "so far." We consider the factorial program

above to be a BU loop. At any point in time, the "work" so far

- —35-

accomplished is ©! and t wmoves from 0 (a simple factorial

instance) to n (the input Ffactorial instance).

loop as one where the control data problem instances are gen-
erated in order of decreasging complexity, beginning with the
input problem instance and ending with a simple nroblem instance.

In the execution of a TD loop, the contrel data can be viewed as

representing the "work” that remains to be done.

Bxample 10b - We consider the following alternative imple-

mentation of factorial to bs a Th loop:

{n>=0}

Z := 1l; © = ng

while © # 0 do
Z s= oz K te
L o=t - 1
od

{z=nT1}.

As before z and t are the accumulating and control dJdata respec-

tively. The wvariable t moves f£fxrom n (the input factorial
instance) and ends with 0 (& simple factorial instance). After

any idteration, the product n*(n~-1}* ... *(t+1) has been accumu-

lated,; leaving t! as the "work" that remains to be done.

Example 11 - As an additicnal {llustration, consider the
following 3 initialized loops which compute integer exponentia-

.

tion:

A Heuristic For Neriving Loop Functicns

r-- i~
Ar {y>=0} B oy fy>=0}
we=le Lo=(: we=le Ca1s¥: Lemyy
while t#y do while t#0 do
WorE W if odd(t) then
o= L+l w o= wre f£i;
ol cem=gFoe Lamt/2
2 .
{tg::;{ \‘Z} leln]
=
{x?——.’?& y}

As Dbefore, the symbol © is used as an infix exponentiation opera-
tor. Ye consider program A to be a BU loop. The conktrol data t

moves from 0 to y and corresponds to the problem instances x70,

eeer XV On the other hand, B is Th since the control data t
moves from ¥ to 0 and corresponds to the problem instances x7v,

cewy XD, Program C (similar to that in Examnple 2) ig slightly
more difficult to analyze. The control data is the pair <c,t>.
The pair is initialized to <x,y> and ends with the value <c¢”,0>,
where ¢’ is some complex function of x and v. It seems reason-
able to consider <c,t> as representing the problem ¢™t. Hence we
conclude C is also TR. This conclusion also makes sense in light

cf the fact that C 1is really an optimized version of B which

saves iterations by exploiting the binary decomposition of v.

O

jo7]
o
D

[t

®

[

e}
-

The characterization of BYU and 'Th loops describe
of course, an informal one and depends largely on one’s interpre-
tation of the meaning or purpose of the control data. We classi-
f£i the above programs by using what we considered to be the
most “natural® or intuitive interpretation; other interpretations
are always possible. Occasionally, two different interpretations

of the control data seem egually valid and hence the program may

ve considered as either BU or TD, depending on one’s point of

53]

A Heuristic For Deriving Loop Function:

view. For example, consider the following program which adds up

-

the elements in a subarray between indices pl and p2:

sum = 0; i = pl;
while t <= p2 do
sum := sum + alil:
1= 4+ 1
od

{sum=asUm(alnl..np21) }.

The notation A8UM(alpl..p2]) amvpearing in the postcondition
stands for the summation of the elements in the indicated subar-
ray. The guestion which arises in attempting to classify this
program is as follows: as the control data i moves through the
values pl, pI+l, ..., P2, i3 it most appropriate to think of it
as representing the nroblem instance which has been solved (i.e.
AsuM(aipi..i])) or as representing the problem instance which
remains to be solved (i.e. ASUM{ali..p2])). Both views seem
sgually intuitive, that is, the program seems to be ag much BU as

it is TD.

Ag a final example, we refer back to the program in Example
3 which counts the nodes in a binary tree. It ig clear n and the
set variabkle s are the accumulating and control data reswpec-
tively. Initially, s c¢ontaing the tree whose nodes are to be
counted; when the program terminates s is emptv. In between, s
contains various subitrees of the original tree. It seems natural

to view the set as containing progressively simpler and simpler

e

nstances of the NODES problem gince the trees in s consist o

[
('D

wer and fewer nodes as the loop executes. Thus we ¢lagsify the

program as a Th loop.

—3 B

A Heuristic TFor Deriving Leon Functions

flea nave seen that the problem solving method taken by a BU
the general problem ingtance from sone

simple preblem instance. Of course, this »reoblem solving method

cF

D’G

ists some technigue whereby one

is reasonable only when there
is guaranteed to "run into™ the geﬂe1a1 pvroblem instance. Jur
view is that in many cases, such a convergence technigue either
does not exist or requires so much support that the BU approach

s not practical. This appears to be particularly true for pro-

puts

jgrams dealing with sophisticated data types (i.e. something other

I"'h

than integers) and for programs requiring a high degree of effi-

ciency in their number of iterations.

T

To help see this point of view, again consider the NODES

cusly we argued that this was a TD

s

program of Exanple 3. Prev
program. What would a BU program which computed the same fung-

ticn look like? fThe following program skeleton suggests itself:

n := 0; tl1 := "an empty tree:
while tl1 # t do
"add a node to tl to make it look more like "

n o= n o4+ 1

Here, the tree variable tl is the control data and it represents
the problem NODES(t1l). The difficulty with this attempt at a
program solution is the implementation of the modification of tl.
Such a medification reguires close inspection {(i.e. a traversal)
of t in order to move tl toward t. In light of *this, it seens

more reasonable to count the nodez of t while it is being

inspected and to dispense altogether with the variable tl.

~39~

A Heuristic Tor Deriving Loon Functions

s ol

As an illustration of another circumstance where the BRI
appreach seems unreasonable, the reader is encouraged to imagine
a BU inplementation of integer exponentiation which operates as
efficiently as the exponentiation program ¢ from Example 11.

Again, a program skeleton suggests itself:

{y>=0}
w o= 1l © = ?2; 4 = 0:
while <c¢,d>» # <xz,v> do
C 1= sgrt{c) T
if ? then
d o= d % 2 4 1w o= w ¥ o
glge @& = g % 2 fi
od -

Here, we are attempting to move the control data <c,d> toward
<x,y> as fast as we moved it away from <x,v> in TD program C. As
with the BU NODES program, the problem here is how to complete

the program 80 as to achieve the desired effect. Qur conclusion

ng this program is that supplving an appropriate initial

[

concern
value for ¢ and determining the proper looo body path to be exe-
cuted reguires such complexity that this approach is not a feasi-

ble alternative to program C.

In this section we have suggested two informal categories of
initialized Jloop programs. We offered the opinion that the
approach taken in a BU program solution has rather limited appli-

cability and that TD programs tend to occur more fregquently in

practice. We feel that this characterization ig ugeful as a
study of opposing problem solving philosophies but our main

source of motivaticn is to investigate the kinds @ of commonly

.

A Heuristic Por Deriving Loeop Functions

ot

occurring programs on whnich the loop functieon synthesis technigue

described above works well.

his technigque to & general T »rogram.

r

Congider applvin
In the second constraint function, the control data is bound to a

the

iy
O
h

value which represents a slightly legs complex instanc

general problem being solved by the initialized loop. In prac-

tice, the appearance of this value in the constraint Ffunction

suggests the problem decompogition being expleoitad by the pro-

grammer in crder to achieve the program result. 2Applving this
decomposition in REWRITE leads quite naturally to the desired

general loop function.

Example 12 -~ Consider the TD factorial program from Example

10b. The second constraint function is

C2: n>C, z=n, t=n-1 -> g(z,t)=n!
The control data t being bound to n-1 suggests REWRITTING n! as
n*¥{n-1)1, This leads to the correct general loop function. On
the other hand, consider the second constraint function for the
BlJ Factorial program from Example 10a:

CZ2: n>0, z=1, t=1 -> g{z,t,n)=n!
How can the expression n! be rewritten in terms of 1, 1 and n?
To obtain the correct general function, the expression would have
to be rewritten as (1#%n!)/(l!) which seems much lesg intuitive
than that required for the "D vergion. As another point of com-

-

arison; congider the second constraint Ffunction for the TD

.

exponentiation program B from BExample 1l:

Cz: y»0, w=x, t=y=-1 -> g(w,t,x)=x"y

A Heuristic Tor Deriving Loop Funciions

and the second constraint function for the BU exponentiation Dro-

r..J
’D
e
W
B
[
i

3
U

in both cases, the proper leoop function mav be obtain
the REEWRITE rule x"y = x*(x"{(y-1)); however, this particular rule
seems more strondgly suagested in the constraint function for the

™D program.

We remark that the same general phenomenon occurs with TD

programs in the event the control data has been SIMPLIFIED out of

I+t

the domain requirement for C2. In this case, the fact fthat the
control data represents a slightly less complex instance of the
general problem being solved manifests itself in the function
expresgion for the SIMPLIFIRD C2 being a slightly more complex
instance of the problem being sclved. For example, the con-
straint function C2 above For the TD exponentiation program B of
Example 11 can be SIMPLIFIED to
t>=0, w=x -> g(w,t,x)=x"(t+1).

Before, the appearance of y-1 in the domain requirement suggested
rewritting x"y as x*{(x"(v-1)). Here, the appearance of t+l in

the function expression suggests rewritting x"(t+l) as x*{x"t)

(see also Examples 1 and 2).

ig the operation or function the initialized loop

"'l
“d
h

program is intended to compute. In Section 3 we observed that
each REWRITE in the examples of that section involved "decompos-
ing"™ an application of £. This decomposition corresponds to

rewritting that problem instance in terms of a slightly less

—42~

A Heuristic ¥o Functions

"3
!
L,{
;
s}
W
L_-ﬁ
%)
O
3

complex problem instance (oy instances). In general, of course,

there are many ways this dJdecomposition can be performed. In the

3

examples of that section, however, as with all 7D programs, the

o

nature of the control data guides this decomposition and thus

ite straightforward in practice.

[

tends to make the REWRITE sten g
ko B

2

The reader may have noticed that the general loop functions
for the BU factorial and expdnentiation programs contain more
program variables and operations on those variables than their Th
counterparts. for instance, the general loeop functions for the
BU and TD factorial programs are

/

i

1)

O<=t<=n -> g(z,t,n)=z%(n
and

D<=t ~> g(z,t)=z*t1
regpectively. This fact, by itself, hélps explain why the
REWRITE step seems more difficult for the BY progranms. It would
be a mistake, howevef; to assume that the BU programs are more
Tcomplex" or are more difficult to analvzZe or prove. We consider
™D loops to be somewhat more susceptible to the form of induction

employed in functional loop verification. More precisely, the

fa—

inductive hypothesis reguired in this type of proof {i.e. a gern-
eral statement concerning the loop input/output behavior) seems
to be more easily stated for TD programs than for BU programs.
On the other hand, BU programs seem somewhat more susceptible to
an inductive assertion proof. The inductive hypothesis reguired

in this tyve of proof (i.e. a sufficiently strong loop invariant)

involves fewer program variables and operations on those vari-

b

A Heuristic For Deriving Loop Functions

aoles than the same type of hypothasis For the correspoading TD

loop. As an example, the BU and TD factorial programs have ade-

*:

uate loop invariants 0O<=t & z=t! and J<=t<=n & z=n!l/t! respec~

i

In [Manna & Waldinger 70)], the authors describe a program
synthesis technigue and point out that their method produces
elther of the above factorial programs depending upon which type

induction rule the synthesizer is given to employ.

7. Related Work

In [Basu & Misra 76, Misra 78, Migsra 79], the authors

describe w0 classes of "naturally provable" programs for which

generalized loop specifications can be obtained in a determinis-
tic manner. Qur technique sacrifices determinism in favor of
wide applicability and ease of use. It handles iIn a fairly

straightforward manner typical programs in these two program
classes (e.g. Examples 1-3) as well as a number of prosrams

which do not fit in either of the classes (e.g. Examplss 4-5).

Due to the close relationship between loop functions and

loop invariants (see, for example, [Morris & Wegbreit 77]), any

U}

technigue for synthesizing loop invariants can be viewed as
technique for synthesizing general loop functions (and vice
versa). In this light, our method bears an interesting resem~
blance to a loop invariant synthesis technigque described in [Weg-
breit 74, Katz & Manna 76]. In this technicue stronger and

i

streonger Mapproximations” to an adeguate loop invariant are made

..

A Heuristic For Deriving Loop Functions

ny pushing the previous approzimation back through the lcop once,

.
twice, et

0

By way of illustration, consider the exponentiation program
of Dxample 2. The loop exift condition can be used to obtain an
initial loop invariant approximation

d=0 ~> w=c0740.

This approximation can be strengthened bv pushing it back through
the loop to vield

(=0 -> w=c07d0) & (d=1 -> w*c=c0™d0).

In the analysis presented in Exam?le 2, we obtained a wvalue for
the generalized function specification for each of two different
values of the initialized variahle w (i.e. 1 and SORT(c})): here
we have cbtained a "value" for the loop invariant we are seeking
for each of two different values of the variable which controls
the termination of the loop d. Applving the analysis in [Morris
& Wegbreit 77}, these loopn invariant Yvalues" can be translated
to constraint functions as follows:

d=0 -> g(w,;c,d)=w,

A=l -> g{w,c,d)=w*c,.

Of course, the function expression w¥c in the second congtraint
can be rewritten w*{(c”l); SUBSTITUTING as usual suggests the gen-
eral loop function

g(w,c,d)=w*{c"d).
If we then add the program precondition as a domain restriction
on this function, the result is the same génexal loop function

digcovered in BExample 2.

A HTeuristic For Deriving Loop Functions

We summarize the relationship hetween these two technicues
as follows. As the initialized loon in fquestion operates on some

particular input, let %[0}, x[11, .. ,X[¥] be the sequence of

i

states on which the loop predicate is evaluated {i.e. the loop
body executes M-1 times). OFf course, in ¥I01, <the initialized

variables have their initialized values, and
predicate evaluates to FALSE. The method proposed in this paper
suggests inferring the unknown loop function g from X[0}, %[1],

g(Xx[0}) and g(X[1]). The loop invariant technigue described

above, when viewed as a loop function technigue, suggests infer-

ring g from ¥[wl, X[¥-11, g(xiv}) and o(z[H-11). Speaking
roughly then, one technigque uses the first several executions of
the loop, the other uses the last several execubtions. One

lgnores the information that the loop must compute the identity

unction on inputs where the loop predicate is FALSE, the other

1

ignores the information that the loop must compute like the ini-
tialized loop when initialized variables have their initialized

values.

Earlier we discussed "top down" and "bottom up" approaches
to synthesizing g and indicated that our technique fit in the
"top down" category. The technigue based on the last several
iterations 1s a "bottom up" approach. It is difficult to care-
fully state the relative merits of these two opposing techniques.
In our view, however, there are a number of circumstances under

which the technique based on the first several loop executions

-

seems . more "natural" and easily applied. These examples include

—-A 6

A Heuristic For Deriving Loop Punctions

and the Th factorial program Jdiscussed above. The reason ig that
& critical aspect of the general loop function is the function
computed' by the initialized loop program (e.g. exponentiation in
the above illustration). 1In the technigque based on the Ffirst
several iterations, this funchtion appears explicitly in the con-
straint functions. In the other technique, this information must
somehow Dbe inferred from the corresponding constraint Ffunctions
(e.g. by loocking for a pattern in these functions, etc.). Thig

difficulty is inherent in any "bottom up" approach to synthesiz-~

8. Concluding Remarks

In this paper we have proposed a technigue for Jderiving
functions which describe the general behavior of a loop which is
preceded by initialization. Thege functions can be used in a
functional [Mills 75] or subgeal induction [Morris & Weghreit 77]
proof of correctness of the initialized loop program. It is not
our intention to imply that verification should occur after the
programming process has been completed. There are, however, a
large number of existing programs which must be read, understood,
modified and verified by "maintenance" personnel. We of!

heuristic as a tool which is intended to facilitate these tasks.

Tt has been argued [Misra 78] that the notion of closure of
a loop with respect to an input domain is fundamental in analyz-

to initialized

.L‘.h

ing the loop. In Section 4, this idea is applief

~47-

A Heuristic For Deriving Loop Functions

1oop programs. The result is that a loop function ¢ for a loop
which is N-closed {for some W>0) can be gynthesized in a deter-~

ministic manner by considering the first N constraint functions.

P
v
0]

Hence this catevgorization can be viewed as one wmeasure of
"degree of 4difficulty” involved in verifying initialized loop

programs.

An interesting direction for future research is the develop-
ment of a precise characterization of programs which are not
"tricky"™ (as discussed in Section 5). Preliminary results along

this 1line are described in [Dunlop & Basili 81l] (see also [Basu

In Section & we discussed on an informal level the opposing
BU and ™D problem solving strategies and their corresponding ini-
tialized loop realizations. We argued that the TD approach
appeared to he more widely applicable and that, in practice, %D
programs seem to occur more freguently. We explained the success
of the proposed loop function creation technique on these pro-
grams in terms of an eagily applied REWRITE step. These results

are offered to help support our view that the technicue may be

successfully applied in & wide range of applications.

~ 48—

A Feuristic For Deriving Loop Functions

“—l

Basu, 8 A MNote on 8Synthesi
ng on Software Fnag

s of Inductive Asgertions, IEBER
ineering, S5EBE-% (January, 1880).

[Basu & Misra 75]
Basu, S. and Misra, J Proving Loop Programs, ITDER

tions on Software Pngineering, SE-1 {March, 1975).

T

o

ransale-

=

[Rasu & Misra 76]
Basu, 8. K. and Misra, J. Some Classeg cf Naturally Prove
able Programs, Proc. 2nd International Conf. on Software
Engg., San Francisco, Oct. 1976, T

[Dunlop & Basili 81]

Dunlop, B. and Basili, V. Geﬂmta1i?$ng Specifications for
Uniformly Implemented Loops, University of Marvland Computer
Science Center Technical Report TR-1116, September 1931.

. The Determination of Loop Invariants for Pro-
ith qrrnvu, IEEE Transactions on Software Engineer-
{March 1281}, ppr. 127-200C.

lGries 791
Gries, D. 1Is Sometime Bver Better Than Alway?, Transactions
on Programming Languages and Systems, Vol. 1, No. Z, Oct
1879,

Hoare 6%)
are, C. A. RBR. Aan Axiomatic Basis fo
ming, CACHM, 12 (Octobher 198%), pn., 576-

oy Computer Program-

583,

[Katz & Manna 73]
Ratz, 8. and Manna, 4. A Heuristic Approach
Verificaticon, Proc. 3rd Int. Joint Conf. Artifici
Stanford, CA 1973, pp. 500-512.

to Program
al Intell..,

[Eatz & Manna 761
Ratz, 5. and Manna, %Z. Logical Analyvsis of Programs, CACM
12 (April 1978), pp. 188-206.

{Manna & Waldinger 70}
Manna, %Z. and Waldinger, R. Towards Automatic Program Syn=-
thesis, Stanford Artificial Intelligence Project, Memo AIM-
127, July 1970C.

[Mills 72]
Mills, H. D. Mathematical Foundations for Structured Pro-
gramming, IBM Federal Systems Division, FSC 72 6012 (1e72).

A Nezuristic For Deriving Loon Functions

?}

. D. The New Math of Computer Programming,

[#isra 731
Misra, J. SHome Aspects of the Verification of Loop Computa-
tions, IBER Transactione on Software FEnoineering, &8E-4

(November 1878), po. A478-485.

[Misra 79]
Misra, J. Systematic Verification of Simple Loops, Univer-
sity of Texas Technical Report TR-87, March 1279,

[Morris & Wegbreit 77}
Horris, J. #. and We
(April 1977), ovp. 20

eghreit, B. Subgeoal Inducticn, CACM 20
9-222.

[Wegbreit 74]
Wegbreit, B. The Svnthesi of Loop Predicates, CACM 17
)

(February 1974), op. lOL—lld.

h

[Wegbreit 77]

Wegbreit, B. Complexity of Synthesizing Inductive Asser-
tions, JACM, Vol. 24 (July 1977), pp. 504-~512,

-

S :
SECURITY 4 ASSIFICATION OF THIS PAGE {When Data‘En!ered')’

' READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE CgMgEIEJTING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) . 5. TYPE OF REPCORT & PERICD COVERED

A HEURISTIC FOR DERIVING LOOP FUNCTIONS Technical Report

6. PERFORMING ORG. REPCRT NUMBER
: TR-1115

7. AUTHOR(=) 8. CONTRACT QR GRANT NUMBER(s)

Douglas D. Dunlop and Victor R. Basili AFQSR-F49620-80-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Department of Computer Science
University of Maryland

College Park, Maryland 20742

11, CONTROLLING OFFICE NAME AND ADDRESS] 12. REPORT DATE
Math & Info Sciences, AFOSR October 1981
Bolling AFB . 13. NUMBER OF PAGES _
- Washington, D. C. 20332 ‘ 50 plus title & abstract pgs.

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE .

16. DISTRIBUTION STATEMENT {of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18, SUPPLEMENTARY NOTES

19. KEY WORDS (Contiriue on reverse side if necessary and identify by black number)
program verification, initialized loop programs, loop functions,
constraint functions, BU programs, TD programs

20. ABSTRACT (Continue on reverse side if necessary and ideatify by block number} The problem of analyz ing an
initialized loop and verifying that the program computes some particular function
of its inputs 1s addressed. A heuristic techmique for solving these problems
is proposed which appears to work well in many commonly occurring cases. The
use of the technique is illustrated with a number of applicatioms. A hierarchy
of initialized loops is suggested which is based on the "effort" required to
apply this methodology in a deterministic (i.e. guaranteed to succeed) manner.
It is explained that in any case, the success of the proposed heuristic relies on
the loop exhibiting a "reasonable" form of behavior. An informal categorization

JAN 73

' FORM
DD , 1473 EDITION.OF. 1 NOV.65 IS OBSOLETE UNCLASSTFIED 65

 SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entered)

UNCLASSIEIED SN Y
SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered) ‘ '

of such programs is made which is based on two opposing problem solving
strategies. It is suggested that our heruistic is naturally suited for
use on programs in one of these categories.

UNCLASSIFIED Sl LT S s

" SECURITY CLASSIFICATION OF Tirs PAGE(When Data Entered)

