Technical Report TR-1228 November 1982
NSG-5123
AFOSR-F49620-80~C-001

METRIC ANALYSIS AND DATA VALIDATION
ACROSS FORTRAN PROJECTS *

Victor R. Basili, Richard W. Selby, Jr.
and Tsai-Yun Phillips

Department of Computer Science
University of Maryland
College Park, MD 20742

*Research supported in part by the National Aeronautics and Space
Administration Grant NSG-5123 and the Air Force Office of Scientific
Research Contract AFOSR-F49620-80-C-001 to the University of Maryland.
Computer support provided in part by the facilities of NASA/Goddard
Space Flight Center and the Computer Science Center at the University
of Maryland.

ABSTRACT

The desire to predict the effort in developing or egplain the
quality of software has led to the proposal of several metrics in
the literature. As a step toward validating these metries, the
Software Engineering Laboratory has'énalyzéd.the Software Sclence
metries, cyclomatiec complexity and various standard program meas-
ures for their relation to 1) effort (including design through
acceptance testing), 2) development errors (both diserete and
weighted according to the amount of time to locate and fix) and
3) one another. The data investigated are collected from a . pro-
duction FORTRAN environménz and examined across several projgcts
at once, within individual ﬁ;ojects and by 1ndividua1 programmers
across projects, with three effort reporting accuracy checks
demonstrating the need to validate a- database. When the data
come from "individual programmers og,certain validated projects,
the metrics”’ correlations with actual effort seem to be strongz-
est. For modules developed entirely by individual programners,
the validity ratios induce a statistically significant §rdering
of several of the metrics’ correlations. When comparing the
strongest correlations, neither Software Science's E metrie,
 cyc1omatic complexity nor source lines_of éode appears to rglate

convineingly better with effort than the others.

I. Introduction

Several metrics based on characteristies of the softwape
product have appeared in the 1iterature,_ These metr;cs attempt
to predict the effort in developing or explain the quality ‘6:
that software {111, 0173, (191, [23]. Studies have applied them
to data from various organizations to determine their validity
and appropriateness [1], . [13], [15]. However, the question of
how well the various metries really measure or predict effort or
quality is still an ‘issue. in need of confirmation. Since
develobmént.environments and types of software” vary, .individual
studies within organizations are confoun¢ed by variations in the
. predictive powers of the metries. Studies across different
environments will be needed before this question can be answered

with any degfee_of confidence.

Among the most'popular'metrics have been the Software Sci-
ence metrics 0? Halstead [19]‘ and the cyclomatic complexity
metric of MecCabe [23]. The Software Sciende E metric attempts to
.qﬁantify the complexity of © understanding an _élgorithm.
Cyclomatic complexity has been appiied te estabiish guality
threéhoids for programs. Whether these metrics relaﬁe‘to the con=
cepts of effort and quality depends on how theae factors are
defined and measured. The definition of effort employed in this
paper is the amount of time required to produce the software pro-
duct (the number of man-hours programmers and managers spent from
the.beginning of functioﬁal design to the end of acceptance test-

ing). One aspect of ‘software quality is the number‘of errors

reported during the product’s development, and this is the meas-

ure associated with quality for this study.

~ngarding a metric evaluation, there are several issues that
neéd%%o be addressed. How well do the various metrics predict or
explaﬁh these measures of effort and quality? Does the correspon-
dence increase with greater accuracy of effort and error report-
ing? How do these metrics compafe in predictive power to simpler
and more standard metrics, such as lines of source code or the
number of executable statements? These questions deal with the
external validabién of the metrics.'Mqre fundamental questions
exist dealing wifh the 1ntern§1 validation or consisﬁency of the
métrics; How well do thelésE}mators defined actuallj belaté to
the Software Science _metrics% How do the Software Science
metrics,: the eyciomatié complexity metric'aﬁd the more tradi-
tional metries reiate’to‘one aﬁoﬁher? In thié paper, .both seté
of 1issues are addreséed. The analysis.examines‘whether the given
family of metrics is 1nterhailf consistent and attempts to detér-'
mine how well these metrics really measure the quantities ﬁhat

they theoretically describe.

One goal of the Software Engineering Laboratory [631, [71],
{81, [10], a Jjoint venture betwéen the University of Maryland,
NASA/Goddard Space Flight Center and Computer Sciences Corpora-
tion, has been to pfovide an expetiﬁental'database for exaﬁining
these relationships and providing insights into the answering of

such questions.

The software comprising the‘ database is ground support
software for satellites. The systems analyzed consist of 51,000
to 112,000 lines of FORTRAN source code and took between 6900 and
22,300 man-hours to develop over a period of ¢ to 21 months.
There are from 200 to 600 modules (e.g., subroutines) in each
system and the staff size ranges from 8 to 23 péople, inecluding
the support personnel. While anywhere from 10 to 61 percent of
the source code is modified from previous projectﬁ, this analysis

focuses on Jjust the newly developed modules.

The next section diseusses the data collection process and
some of the potential problems invoived. The third section
defines the ﬁetrics and inte?preté the counting procédure used in
their caleulation. In the fourth section, the Software Science
metrics are correlated with their estimators and related to more
primitive program measures. finally, the fifth section deter-
mine§ how well this collection of volume and complexity metrics

corresponds to actual effort and developmental errors.

II. The Data

The Software.Engineering Laboratory collects data that deal
“with many aspects of the development procéss and product. Among
these dﬁta are the effort to design, code and test the various
modules of the systems as well as the errors committed during
their develcopment. The collected data are analyzed ¢to pfovide
insights into software deve1opment “and ﬁo studﬁ the effect of

various factors on the process and product. Unlike the typical

controlled experiments where the projects tend to be smaller and
the data collection process dominates the development process,
the major concern here is the-software development process, and
the data collectors must affect nminimal interference to the

developers.

This ereates potential problems with the validity c¢f the
data. For example, suppose .we are 1interested in the effort
expended on a particular module and one programmer forgets to
turn in his keekly effort report. This can cause erroneous data
for all @odules the prﬁgrammer may have worked on that week,
Another problem 1is how does a programmer report time on the
integration testing of three modulesa? Does he charge the time to
the parent module of all three, even though that module may be
Just a small driver? That is clearly easier to do thanm to propor-
tion the efforﬁ between all three modules he has worked on.
Another issue is how to count errors; An error that is.iimited to
one module is easy to assign. What about an error that fequired
‘the analysis of ten modules to determine that it affects qhanges‘
in three modules? Does the programmer associate one error with
all ten modules, an error with just the three modules or one

third of an error with each of the three?” The larger the aystem

“ Efforts [18], [21] have attempted to make this assignment
acheme more precise by the explanation: a "fault" is a specifie
manifestation in the source code of a programmer "error®™; due to
a misconception or document discerepancy, a programmer commits an
Rerror®” that can result in several "faults" in the program. With
this interpretation, whaﬁ'are referred to as errors in this study
should probably be called faults. In the interest of consiatency
with previous work and clarity, however, the.term error will be
used throughout the paper.’ : '

the more complicated the association. All this assumes that all
the errors are reportéd. It is common for programmers not to
report clerical errors because the time to fill out the error
report form might take longer than the time to fix the error.
These subtleties exist in most observation processes and nust be
addresse#lin a fashion that is consistént apd appropriate for the

envirgnment.

The data discussed in this paper'are extracted from several
sources. Effort data were obtained from a Component Status
Report that is filled out weekly by each programmer on the. pro-
jeet. They report ﬁhe time they spepd on eaéh module in the sys-
tem partitioned into the phases of design, code and test, as kell
as any other time fhey spend on work related to the project,
e 2.y doddmenfation,'meétings, ete. A module is: defined as any
named object in the system; that is, a module is either a main
'prbcedure, block data, subroutine or function. The Resource Sum-
ﬁary ?orm, filled out weekly by 'the project management,
repreéents accounting data and records all time charged to the
project for the various‘persdnnel, but does not break effort down
on a module basis. Both of these effort reports are -utilized in
Section V of this paper'to validate the effort reporting on the
quuleg. The_errors are_collected_from the Changé Repdrt Forms
that are completed by a programmer'each time a change is made to
the system. While the collection of effort and error data is a
subjective proce;é “and "done manually, the bemainder .of the

software measures are objective and their ealeculation is

automated.

A statie code analyzing program called SAP [25] automati-
cally computes several of the metrics examined in this analysis.
On a module basis, the SAP program determines the number Qf
source and.executable statements, the cyclomatic complexity, the
primitive Software Science metrics and various other volume and
complexity related measures. Computer Sciences Corporation
developed SAP specifically for the Software BEngineering Labora-
tory and the program has been récently updated (18] to incor-
porate a more consistent and thorough counting scheme of the
Software Scilence parameters. In an earlier study, Basil; and
?hillips [3] employed the preliminary version of SAP in a related
 ana1ysis. The next~‘section explains the revised counting pro-

cedure and defines the variocus metrics.

III. Metric Definition

In the application of each of the metrics, there exist vari-
ous ways to count each of the entities. .This section interprets
the counting procedure used by the updéted version of SAP and
defines each of the metrics examined in the analysis. These
definitions are given relative to the FORTRAN language, since
that is the language used in all the projeéts studied here. The
counting scheme depends on the syntactic analysis performed by
SAP and 1is, therefore, not necessarily chosen to coincide exactly

with other definitions of the various counts.

Primitive Software Science metrics Sof'tware Science

defines the vocabulary metric n as the sum of the number of
unique operators ni and the number of unique operands n2. The
operators fall into thbee classeé.

i) Basic operators include

+ ~ ® , #% - (Y & ,// LNE. .EQ. .LE. LLT.
.GE. .GT. .AND. .OR. .XOR. .NOT. .EQV. .NEQV.

ii) Keyword operators include

IF() THEN . /% logical if #/ :
IF() THEN ELSE /% logical if-then-else #/
ir() , , 7 /% arithmetic if #*/
IF({) THEN ENDIF /% block if #/
IF() THEN ELSE ENDIF /% block if-then-else %/
IF() THEN
ELSEIF() THEN

.o ENDIF /® case if #/
po . - /% do loop ¥/
DOWHILE /* while loop #*/
GOTO <target> _ /% unconditional goto: distinet

_ targets imply different operators */
GOTO (T1...Tn) <expr> /% computed goto: different number of
' targets imply different operators %/
GOTO <ident>, (T1...Tn) /* assigned goto: distinct identifiers
, imply different operators #/
{subr>(, ,%#<target>) /% alternate return #/

END= _ /% read/write option #/
ERR= ' /* read/write option %/
ASSIGNTO /% target assignment #/
E0QS . /% implicit statement delimiter #*/

ii1) Special operators consist of the names of subroutines,
functions and entry points.

Operands consist of the all variable names and constants. Note

that the major differeﬁces of this counting scheme from that used
by Basili and Phillips [3] are in the way goto and if statements

are counted,’

The metric n* represents the potential vocabulary, and

Software Science defines it as the sum of the minimum number of

operators n1* and the minimum number of operands n2%®. The poten-
tial operator count n1*® is equal to two; that is, n1* equals one
grouping operator plus one subroutine/function designator. In
this paper, the potential operand count n2* is equal to the sum
of the number Bf variables referenced from common blocks, the
number of formal parameters in the subroutine and the number of

additional arguments in entry points.

Source lines This is the total number of source lines that

appear in the module, including comments and any data statements

while excluding blank lines.

Scurce lines - comments This is the difference between the

number of source lines and the number of comment lines.

Executable stﬁtemgnts This is the number of FORTRAN exe~

cutable statements that appear in the progran.

Cyclomatic‘complexity Cyclomatic complexity is defined as

being _the number of partitioﬁs of the space in a module’s
control-flow graph. For programs with uniqué entry and exit
nodes, this metric is equivalent to one plus the number of deci-
sions and in this work, is equal to the one plus sum of the fol-
lowing constructs: 1logical if’s, if-then-else’s, block-if’s,
block if-then—élse's, do léops, while loops, AND’s, OR"s, XOR's,
EQV°s, NEQV’'s, twice ﬁhe number of arithhétic if‘s, n - 1 deci-

sion counts for a computed goto with n statement 1labels and n

8.

decision counts for a case if with n predicates.

A variation on this definition excludes the counts of AND's,
OR's, XOR ‘s, EQV’'s and NEQV s (l1ater referred to as

Cyclo_cmplx_2).

Calls This i1s the ﬁumber of subroutine and function invo-

cations in the module.

Calls and jumps This is the total number. of calls and

decisions as they are defined above.

Revisions This is the number of versions of the module

that are generated in the program library.

Changes This i3 the total number of changes to the system
that affected this module. Changes are cleseifled into the fol-
lowing types (a single change can be of more than one type):

a. error correction

b. planned enhancement

e. implement requirements change

d. improve c¢larity

e. improve user service

f. debug statement insertion/deletion
g. optimization

h. adapt to environment change

i. other

Weighted changes This is a measure of the tetal'amount of
effort spent maklng ehanges to the module. A programmer reports

the amount of effort to actually implement a given change by

indicating either

a. less than one hour,

b. one hour to a day,

¢. one day to three days or

d. over three days.
The respective means of these durations, 0.5, 4.5, 16 and 32
hours, are divided equally among all modules affected by the
change. The sum of thgge effort portions over all changes

involving a given module defines the weighted changes for the

module.

Errors This is the total number of errors reported by pfo-
grammers; i.e., the number of system changes that listed this
module as involved in an error correction. (See the footnote at

the bottom of page 4 regarding the usage of the term "error".)

Weighted errors This is a measure of the total amount of

effort spent isolating and fixing errors in a module. For error
corrections, a programmer also reports the amount of effort spent
isolating the error by indicating either

2. less than one hour,

b. one hour to one day,

¢. more than one day or

d. never found.
The representative amounts of time for these durations, 0.5, 4.5,
16 and 32 hours, are combined with the effort teo implement the
correction (as calculated earlier) and divided equally among the
modules c¢hanged. The sum of these effort portions over all error

corrections involving a given module defines the weighted errors

for the module.

10

IV. Internal Validation of the Software Science Metrics

The purpose of this section is to briefly define the
Software Science metrics, to see how these metriecs relate to
‘standard program measures and to determine if the metrics are
internally consistent. That 1is, Software Science hypothesizes
that certain estimators of the basic parameters, such as progran
length N and program level L, can be approximated by formulas
written totally in terms of the number of unique operators and
operands. Initially, an attempt is made to find correlations
between various definitions of 'these quantities based on the
interpretations of operators and operands given in the previous
section. Then, the family of metrics that Software Science pro--

poses 13 correlated with traditional measures of software.

Program length Program length N is defined as the sum of

the total number of bperators N1 and the total number of.operands
N2; i.e.4 N = N1 + N2. Software Science hypothesizes that this
can be approximated by an estimator N© that is a function of the
vocabulary, defined as ' P
N® = n1log2(nt) + n2log2(n2).

The scatter plot appearing in Figure 1 and Pearson correlation
coefficient of .899 (p < .001; 1794 modules)”™ show the relation-
ship.'between N and N* (polynomial regression rejects includihg a
second degree term at p = .05). Several sources [12], [16],

E26], [27] have observed that the length estimator tends to be

“ The symbol p will be used to stand for significance 1eve;.

11

high for small programs and low for large programs. The correla-
tions and significancedlevels for the pairwise Wilcoxon statistie
{20], broken down : by eﬁeeutable statements and length, are
displayed in Table 1. In our environment, either measure of size
demonstrates that N” significantly overestimates N in the first
and second quartiles and underestimates 1t (most significantly)
in the fourth quartileQ Feuer and Fowlkes [15] assert that the
acceuracy of the ‘relation between the nratural 1ogarithms of
estimated and observéd iength changes less with program sizé; The
scatter ‘piot appearing in Figure 2 and correlation coefficient
for 1n N vs. 1n N” of .927 (p < .001; 1794 modules) show moderate

improvement.

<< Figure 1 >>

Table 1. Observed vs. estimated 1§n5th broken down by program size.

a. N vs. N° broken down by executable statments.
XQT STMTS MODS R™ ESTIMATION WILCOXON SIGNIF
0.~ 19 N4us .601 over - 1€£.0001
20 - 40 “jy2 511 over ©££.0001
41 - 78 457 .478 under .0367
79 <= hyg . 751 under <<.0001
b. N vs. N" broken down by N. :
Length N . MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 114 49 «T50 ‘ over . <<.0001
115 - 243 - 4is5 . B87 . over £<£.0001
244 - 512 453 ,348 under L0010
513 <= ay7 «.T31 - under - ££.0001

~ (p < .001)

<< Figure 2 >)>

12

Program volume A program volume metric V defined as N

log2 n represents tﬁe size of an implementation, which can be
thought of as thernumﬁér of bits necessary to express it. The
potential volume Vﬁ" of an algoriﬁhm reflects the minimum
representation of that algorithm in a language where the required
operation 1is already defined or implemented. The parameter v* is
a function of tﬁe number of input and output argumenta of the
algorithm and ;s méant to be a measure of its specification. The
metric V# is defined as
V® = (2 + n2%*) log2 (2 + n2#%),

The correlation coefficient for V vs. V¥ of .670 (p < .001; 179§
modules) shows a reasonable relationship between a program’s

necessary volume and its specification.

Program level The program level L for an algorithm 1is

defined as the ratio of its potential volume to the size of its
implementation, expresséd as '
L = VY&8/V, _

Thﬁé; the highést'level for an algorithm is its program specifi-
cation and there L.has value unity. The larger the size of the
required implementation V, the lower the program level of the
impleméntation. Since“L requires the calculation of V%, which is
not alwéyé readilyipbtainable, Software Science hypothesizes that

ﬁ can be approximatéd by

.13

The correlation for L vs. L™ of .531 (p < .001;. 1794
modules) is disappointingly below that of .90 given in [191.
Hoping for an increase in the correlations, the modules are par-
titioned by the number of executable statements in Table 2.
Although the upper quartiles show méasured improvement over the
correlation of the whole sample, a more interesting relationship
surfaces. The level estimator significantly underestimates the
program level in the second, third and fourth gquartiles, with the
hypothesis being rejected in the first quarﬂlie; The increase in
magnitude of the n2%* parameter does not appeér to be totally cap-
tured by the definition of L". |

Table 2. Relatjonship of observed vs. estimated program level
broken down by program size. '

XQT STMTS MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 19 - 446 484 - U -

20 - 40 4y2 672 under - €<.0001

41 - 78 457 .597 under <<.0001

79 <= byg .615 " under <<.0001
all _ 1794 <531 under <<.0001

~ {p ¢ .001)

Program difficulty The program difficulty D is defined as

the difficulty of codiﬁg an algorithm. The metric D and the pro-
gram level L have an inverse relationship; D is expressed

D = 1/L_.
An alternate interpretation of difficulty defines it as_ thg

inverse of'L“, given by

14

Christensgp, Fitsos and Smith [12] demonstrate that the unique
 operator count n1 tends to remain relatively constant with
respect to length for 490 PL/S programs. They propose that the
average operand usage N2/n2 is the main contributor to the pro-
gram difficulty D2. The scatter plot appearing in Figure 3 and
Pearson correlation coefficient of .729 (p < .001; 1794 modules)
display the relationship between N2/n2 and D2 for our FORTRAN
modules. The application of polynomial regression brings in a

second degree term (p < .001) and results in a correlation of

.-738- ’
<< Figure 3 >>

However, after observing in Figufe thhat n1 varies with program
aize, it' seems as if the n1‘s inflation might possibly better
explain D2. The scatter plot appearing in Figure 5 and the
correlation of .865 (p < .001; 1794 modules) show the relation-
ship of D2 vs._n1. Step-wise'polynomial regreassion brings in a
second 'degree term initially, followed by a linear term (p ¢
.001), and results in a correlation of .879. 1In our environment,
the unique operator count nt explains a greater proportion of the
variance of the difficulty D2 than the average operand usage

N2/n2.

<< Figure 4 >>

15

<{ Figure 5 >>

Program effort The Software Science effort metric E

~attempts to quantify the effort required to comprehend the imple-
mentation of an algorithm. It is defined as the ratio of the

volume of an implementation to its-level, expressed as

The E metric increases for programs implemented with 1large
volumes or written a; 1pw program lévels; that is, it varies with
the square of the volume. An approximation to E can bg obtained
without the knowledge of the potential volume by substituting L"

for L in the above equation. The metric

v nt N2 V nl N2 N log2 n

EA = mweme I ooeeaoecooaomow T o saas - o oy o -
L® 2 n2 2 n2
defines the producﬁ of one half the number of unique operators,
.the average dperand usage and the volume. In an attempt to
remove the effect of possible program impurities [9], [19], N" is

substituted for N in the above equation, yielding

The correlation coefficients for E vs. E*, E vs. E**, 1n E vs. 1n
E® and 1n E vs. 1n E*" are given in Table 3a. A fit of a least

squares regression line to the log-log plot of E va., E® prOduces

16

the equation
ln E = .830%*1n E° + 1.357 .
Equivalently,
E = exp(1.357) # (E")#%#0.830 .
Due to this non-linear relationship and the improved correlation
of iln E vs. 1n E®, the modules ére partitioned by executable
stateﬁents in Table 3b. The application of polynomial_regression
confirms this non-linearity by bringing in a second degree term
(p < .001), resulting in a correlation of .698. In Table 3b,
notice that the correlations seem substantially better for
modules below median size. The significant overestimation in the
upper three'quartiles éttributes to the relationship of L and L”

described earlier.

Table 3. Observed vs. estimated Software Science E metric.

a. Pearson Correlation (p < .001; 1794 modules).

R
E vs., E” .663
in E vs., 1ln E” «931
E vs. E°° .603

ln E vs. 1n E*° .890

b. E vs. E” broken down by executable statements.

XQT STMTS MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 19 46 .T08 under .0050

20 « 40 - by2 .709 over <<.0001

41 - 78 457 L4117 over <<.0001

79 <= _ bhg 550 over <<.0001

=~ (p < .001)

Program bugs Software Science defines the bugs metric B as
the total number of "delivered®" bugs in a given-implementation.

Not to be confused with user acceptance testing, the metric B is

AT

the number of inherent errors in a system component at the com-
pletion of a distinet phase in its development. Bugs B 1is

expressed by -

E v
B= L-—- - -

Eo Eo

where Eo i1s theoretically equivalent to the mean number of ele-

mentary discriminations between potential errors in programming.
Through a calculation that employs the definitions of E, L and
lambda (lambda = LV# ig referred to as the language level), this
equation'beeomes'

(1ambda)'*1/3 (E)*#2/3
B = | e mas - -——— -
Eo

The derivation determines an Eo value of 3000, assumes

(lambda)**1/3 ~= 1 and obtains

(E)#%2/3

The correlation for B vs. B* is .789 (p < .001; 1794 modules).

In summary, the relationship of some pf the Software Science
metrics with thelr estimators seems to be program size dependent.
Several observations lead to the result that thg metric N® signi-
_ficantly overestimates N for modules béiow the median size and
underestimates for those above the median size., The level estima-

'EOr L™ seems to have a moderate correlation'with Ly, and its sig-

18

nificant underestimation of L in the wupper three quartiles
reflects 1its failure to capture the magnitude of n2#% in the
larger modules. 7W1th respect to the E metric, the effort estima-
tor E° correlates better over the whole sample than E°", and
their strongest correlations are for modules below median size.
The estimator E® shows a non-linear relationship to the effort
metric E. The correlation of 1In E vs. 1ln E" significantly
improves over that of E vs. E°, with the E” metric’s overestima-
tion of E for larger modules attributing to the role of L™ in its
definition. With the above family of metrics, Software Science
| attempts to quantify size and complexity related concepts that
have traéitionally been described by a more fundamental set of

measures.

Tablé 4 displays:ﬁhe correlations of the Software Science
metrics w&th_ the classibél program méasures of source lines of
code, cyclomatic complexity, etc. There are several ébservations
worth noting.. Length N and volume V have remarkably similar
éorrelations and correspond quite well with most of the program
measures. Several of the metrics correlate well with the number
of executable statements, especially the program "size" metrics
of N1, N2, N and 'f {also B). The level estimator L™ and its
inverse D2 seem to be much more related to the standard size and
wcomplexity rmeasures than their counterparts L and D1. The
language level lambda does not seem to.show a significant rela-
tionship to the sténdard size and complexity measures, as

expected. The E"" metric relates best with the number of execut-

19

able astatements and the 3mcdified cycliomatic complexity, while
gorrelating with all the measures better than the E, metriec and
slightly better' than E®. None of the Software Science measures
correlate espécially weil with the number of révisions or the sum

Table 4. Comparison of Software Science metrics against more
traditional software measures.

Key: ? not significant at .05 level
T significant at .05 level
a gignificant at .01 level

~otherwise as3ignificant at .001 level

Source_Lines Source-Cmmts Cyclo_cmplx_2 Calls_&_
' I | | E
: Execut_Stmts| Cyclo_cmplx | Revisions ;
S I -

nt +TT6 .854 778 .796 .818 .361 .802
n2 .852 .867 .853 .767 TTH 430 .809
N1 .824 .96% .868 .881 .889 .328 .869
- N2 .826 <949 871 .858 .870 «355 .870
n2#% . 792 .691 - ,75% .635 .629 «501 .683
N .829 .961 .873 874 .88% «343 .874
N° .864 .897 864 .800 .811 420 .836
v - .837 .962 ° .875 .873 .883 .343 .876
Ve «.T76 <677 .T34 .618 611 . 485 664
L -.098 «,179 ~.112 ~.170 ~,173 ? ~-.158
L -.383 -.411 ~.394 -,389 -.396 -.216 -.386
D1=1/L .067a .2414 .113 . 178 .196 -.093 .134
D2=1/LA 0696 -872 OTI‘S -816 0839 0269 -791
N2/n2 «365 544 437 ~.508 « 517 .106 U470
Lambda . 136 ? .108 ? ? . 134 ?
E . 439 .629 «500 «535 .556 .106 ~ .506
E” .663 .831 -7T11 771 « 797 .224 .T48
E™" ’ .738 .871 - 760 . 799 .829 .268 .788
B -~ .837 .962 .875 .873 .883 .343 .876
B” 546 .T49 610 .650 +670 149 .620

Jumps

Calls

lsuz
614
0552
-597
.541

«577
621
-58"‘
-525
~-.083

-.250
?

<478
2481

.282
U452
«501
.584
-.+355

~ B and V will have identical correlations since they are linear

functions of one another.

20

of procedure and function calls. The primary measures of unique
operators nl and unique operands n2 correspond reasonably well
overall with n2 being stronger with source lines and ni stronger
with the - eyelomatic complexities; -~ In the next section, an
analysis attempts to determine the relationship that these param-~
eters reall§ have with ‘the.quantities that the& theoretically

describe.

V. External Validation of the Software Science and Related Metrics

Thé purpose of fhis section is to determine how well the
Software Scienée' hetrics and various complexitf measures relate
to actual effort and érrors encouﬁtered during the development of
software in a commercial environment. Thesé cbjective product
metrics are compafed against more'primitive vplume metrics, such
. as iines of source code. The reservoir of development data
includes the monitoring of several ﬁrojects "and the analysis
examines several prbjects at once, individual 5rojécts and indi-
vidual programmers across projects. To.remove the dependency of
the distribution of the correlation coefficient on the actual
measures of effort and errors, the nonparametric Spearman rank
order correlation coefficients aré examiﬁed in this section [22].
(Thé'ability of a few data points to artificially inflate or
" deflate the Pearson product-moment correlation coefficient is
well recognized.) The analysis .first. éxamines how well these
measures corregpond to the total effort spent in the development

. of software.

21

A. Metrics® Relation to Actual Effort

Initially, a correlation across seven. projects of the
Software Science lE metriec vs. actual effort, on a module by
module basis using only those that are newly developéd, produces
the results in Table 5. The table alsc displays the correlations
of some of the more atandard volume metries with actual effort.
These disappolntingly low correlations create a fear that there

Table 5. Spearman rank order correlations Rs with effort for
all modules (731) from all projects.

Key: 7 not significant at .05 level
S significant at .05 level
a significant at .01 level

otherwise significant at .001 level

E . 345
B® J445
E™" .588
Cyelo_cmplx .463
Cyelo_cmplx_2 LU67
Calls R
Calls_&_ Jumps A9l
Di=1/L - .126
p2=1/L" <817
Source_Lines .522
Execut_Stmts 456
Source-Cmmts 460
v L4438
N .43
etal . 485
eta2 461
B L4438
:N .345
Revisions «531
Changes 469
Weighted_Chg .68
Errors .220
Weighted_Err .226

22

may be some modules with poor effort vreporting skewing the
analysis. $ince there is partial redundancy built into the effort
data collection process, there exists hope of validating the

effort data.

Validation of effort data The partial redundancy in the

development monitoring process is that both managers and program;
mers sﬁbmit effﬁrt data. Individual progrémmers record time spent.
on each module, partitioned by design, code, test and support
phases, on a weekly basis with a Component Status Report (CSR).
Managers record the ﬁmount of time every programmer spends work-
ing each week on the project.they:are.supervising with a Resource
Summary Form (RSF).‘ Since the latter form possesses the enforce-
ment associated with the distribution of financial resources, it
is considered more accurate [24]. However, the Resource Summary
Form does not break effort down by module, aﬁd thus a combination

of the two forms has to be used.

Three different possible effort reporting validity checks
are - proposed. All employ the idea of selecting programmers that
tend to be good effort reporters, and then.using just the modules
that only they worked on in the metric analysis. The three pro=-

posed effort reporting validity checks are:

numbef of weekly CSR’s submitted by programmer

number of weeks programmér_appears on RSF’s

23.

sum of all man-hours reported by programmer on all CSR’s

sum of all man-hours reported for programmer on all RSF s

number of weeks programmer’s CSR effort > RSF effort

total number of weeks programmer active in project

The first validity propdésal attempts to capture the frequency of .
the programmer ‘s effort reporting. It checks for missing data by
ranking the programmers according to the ratio VYm of the number
of Component Status Reports submitted over the number of weeks
that the programmer appears on Resource Summary Forms. The seéond
validity proposal attempts to capture the total percentagé of.
effort reported by the programmer. This propoesal ranks the pro-
granmers ‘according to the ratio Vt formed by the sum of all the
man-hours reported on Cdmponent Status Réports over the sum of

all hours delegated to him on Reéource Summary Forms.

Note that for a_given week, the amount of time reported on a
Component Status Report should be always less than or equal to
the amount of time reported on the corresponding Resource Summary
Form. This 1is ?ot because the programmer fails to "cover™" him-
self, but a consequence of the management’s encouragement flor
programmers to Eealisticly allocate their time rather than to
guess in an ad hoc manner. This observation defiﬁes a third vali-
dity proposal to attempt td capture the frequeney of a

programmer s reporting of inflated effort. This data check ranks

24

the programmers according to the guantity Vi equal to one minus
the ratio of the number of weeks that CSR effort reported
‘exceeded RSF effort over the total number of weeks that the pro-

grammer is active in the project.

Metrics’® relation to validated effort data Of the given

proposals, the systems development head of the institution where
the software is being developed suggests that the first proposal,
thg missing data check, would be a good initial attempt to select
moduies with accurate%effcrt yepqrting [24]. The missing data
ratios - Vm are defiﬁed forﬁprogrammers on a project by project
| bésis. Table 6 displays the effort correlations .of the newly
dé#eioped modules worked on by only programmers with Vm >= 90%
‘from.all projects, those with Vm >= 804 and for all . newly
developed modules.' Most of the .correlations of the modules.
included in the Vm >= 90% 1e#el seem to show improvement over
those at the Vm >= 80% level. Although this ié the desired effect
and several of the Vm >= 90% correlations increase over the ori-
ginal values, a majority of the correlations with modules at the
Vm >= 80% level are actually lower thah their original coeffi;
eients. Since the effect of the ratio’s screeﬁing of the data is
iﬁcdnsistent and the overall magnitﬁdes of the correlations are

.low, .the analysis now examines modules from different projects

separately.

25

Table 6. Spearman rank order correlations Rs with effort for modules
across geven projects with various validity levels.

Key: 7 not significant at .05 level
*» significant at .05 level
a gignificant at .01 level

otherwise significant at .001 level

Validity ratio Vm (#mods)

all(731) 80%(398) 90%(215)

E T . 345 . 307 «357
E” . U45 422 JB67
"E°” .488 . 480 .513
Cyelo_emplx .463 L4557 U479
Cyelo_cmplx_2 U467 U454 506

Calls B4 .360 402
Calls_&_Jumps L - 475 .« 479
Di1=1/1L . . 126 .088#% ?
p2=1/L" <417 «371 LA21

Source_Lines . =522 «519 501

Execut_Stnts U456 U429 475

Source-~Cnmts LA460 420 - .439

v .448 434 475
N ' 434 <416 460

etal 485 L8622 <493

eta2 461 b7 503

B ‘ 448 434 475 .

B® . 345 . 307 « 357

Revisions .531 .580 .565
Changes 469 . 495 .385
Weighted Chg 468 .521 462
Errors .220 . 381 .205
Weighted_Err .226 .382 247

The Spearman correlations of the various metrics with effort

for three of the individual projects appear in Table 7.

26.

Table 7. Spearman rank order correlations Rs with effort for
‘ : various validity rankings of modules from individual

projects S1, S3 and S7.

Keys: ? not significant at .05 level
b " 8ignificant at .05 level
a significant at .01 level
otherwise aignificant at .001 level
p- _ unavailable data
Project
S1 - 83~ ST~
Validity ratio :
Vm ' all 80¢% 90% 80% 90% all 80%

f#imodules 79 29 20 132 81 127 4g
E : .613 .64T7 .726 L469 .L19 .285 .4009a
E” .665 .T13 .746 " .602 .585 " .389 .569
E*" .700 .T74T7 .798 .638 .640 - 430 .567
Cyclo_cmplx LT57T .T7T4 .792 .583 .608 463 .523
Cyelo_emplx_2 .76% 785 .787 .609 .6648 .491 .523
Calls .681 .698 .818 La2 L 492 408 ,48s
Calls_&_Jumps .776 .813 .822 .594 .619 .488 .569
D1=1/L .262a ? - ? .156#% ? .7 ?
"D2=1/L" .625 .681 .Tus .507 .hu2 «377 .499
Source_Lines .686 .672 .T29 .TH3 .734 LU86 .U499
Execut_Stmts .688 .709 .781 .609 .594 .408 .515
Source-Cmmts .670 .T710 .778 .67T1 .654 L8416 LJUT1
v .657 - .692 LTT4 627 .637 37T - U497
N . .653 .680 .755 .613 .619 .360 .484
etal .683 .740 .848 .553 .533 <439 .431
B .657 .692 .774 .627 .637 © W37T .h497
B® : .613 .643 .726 L4469 L4119 .285 .409a
Revisions 67T 717 .804 .655 .632 449 .510
Changes .687 .635 .760 .672 .639 .238a .380a
Weighted_Chg .685 .629 .Tig9 .673 .649 . +238a .256%
Errors z z z .644 611 .253a .438
Weighted Err z z z .615 ,605 .2U5a ,276%

~ All modules in project S3 were developed by programmers
with vm >= 80%.

=~ There exist fewer than a signifieant number of modules developed
by programmers with Vm >= 90%. :

27

Although the correlation coefficients vary considerably between
and among the projects, the overall improvement in projects S1
and 83 is apparent. Almost every metric’s correlation wiéh
' development effor£ increases with the more reliable data in pro-
jects S1 and S7. When comparing the strongest correlétions from
the. seven 1individual projects, neither Software Science’s E
metrics, cyclomatic complexity nor source lines of code relates
convincingly Dbetter with effort than the others. Note that the

estimators of the Software Science E metric, E” and E™", appear

to show a stronger relationship to actual effort than E.

The validity screening process substantially improves the
correlations for &some pfojects, but not all. This observation
points toward the existence of projeet dependent factors and
interactions. In an attempt teo minimize these intraproject
effects, the analysis focuses on individual ‘programmers across
projects. Note that Basili and Hutchens [2] also suggest that
programner differences have a large effect on the results Whep

many individuals contribute to a project.

The use of modules developed solely by individual program-
mers significantly reduces the number of ;vailable data points
because of the team nature of commerc¢ial work. Fortunately, how-
ever, there are five programmers who totallj defeloped at least
fifteen modules each. The correlations for all modules developed
by them and their values of the thrée propoéed validity ratios
are given in Table 8. The order of increasing correlation coef-

ficients for a particular metric can be related to the order of

28

Table 8. Spearman rank order correlations Rs with effort for modules
totally developed by five individual programmers.

- Key: 7 not significant at .05 level
LA significant at .05 level
a significant at .01 level

otherwlse significant at .001 level

Programmer (#mods)

P1(31) P2(17) P3(21) P4(24) P5(15}

E «593 ? ? .561a ?
E” " L.T18 526% .375% .555a .507% -
E~" 789 .570a ? +.539a .511#%
Cyclo_cmplx .592 H69% ,521a »565a ' ?
Cyclo_cmplx_2 .684 .583a L481# .546a ?
Calls .622 .T87 -7 .669 ?
Calls_& Jumps .701 .604a Jas1® .579%a ?
D1=1/L 3148 ? ? ? ?
p2=1/L" .713 LU0 ? .497a LUBTH
Source_Lines = .863 .682 .6052a .624 ?
Execut_Stmts LTUT .540% .436% .63 5348
Source-Cmmts .826 .576a .530a 612 .5090%
v - .7T18 .540% 453% «579%9a L451%
N o .676 .526% Wu61® .556a AT
etal c .811 .575%5a ' 7. .536a ?
- eta2 : . 765 . 701 .527a .597 ?
B - ' - .718 540% 453 .579a LA51%
B™- -593 ? ? .561a ?
Revisions .675 .523% RTTT .468% ?
Changes JU12% .U68% .600a ? ?
Weighted_Chg .428a .527% .502a 7 ?
Errors - .386% 2 _ .668 ? .596a
? .545%

. Weighted_Err .342% | ? .624

VALIDITY RATIOS (%)

vt - .97.9 91.8 98.8 82.1 T4
Vi ' ‘78.6 69.5 77.6 - 80.0 87.5
. Ave’vm!‘rt 95-2 93'9 93025) 83.0 7“-1

Ave. Vm,Vi 85.5 = 82.75 82.65 81.95 80.8

29.

inereasing values for a given validity ratio using the Spearman
rank order correlation. The significance levels of these rank
order correlations for several of the metrics appear in Table _9;
The statistically gsignificant correspondence between the program-
mers’ Galidity ratios Vm and the correlation coefficients Jjusti-
fies the use of the ratio ¥m in the earlier analysis; possible
improvement is suggested if Vm were combined with either . of the

other two ratios.

Table 9. Significance levels for the Spearman rank order correlations

“between the programmer’s validity ratios and the correlation

coefficients for several of the metrics.

Ratio
Metric vm vt vi Ave(Vm,Vt) Ave(Vm,Vi)
E*" : .09 .09
Cyclo_cmplx ‘ _ . i
Cyclo_cmplx_2 .05 .02 .02
Calls_&_Jumps .05 - - .02 .02
Source_Lines .05 : .02 .02
Source-Cmmts : .09 .09
v (B) .09 .09
eta2 .05 - .02 .02
Revisions .001 09" .09 .09

'~ Negative correlation.

In suﬁmary, fhe stroﬁgest sets of correlations occur between
the ﬁetrieé and actual effort fqr certain validated projects and
fqr modules totaliy develope§ by individual = programmers. While
rglationships across all projects using bﬁth all modules and only
validated modules produce only fair coefficients, the validation

process shows patterns of improvenment. Applying the validit?

30

vi
Ave(Vt,¥%

.05

ratio screening to individual projects seems to filter out some
of the project specifiec interactions whiie not affecting others,
with the corrglations improving accordingly. Two averages of the
validity ratios (Vm with Vt and Vm with Vi) impose a ranking on
the individual programmers that statistically agrees with an ord-
ering of the impﬁovement of several of the correlations. 1In all
sectors of the analysis, the inclusion of L"™ in the Software Sci-
ence E metric in ité estimators E” and E*" seems to improve the
metric correlations with actual effort. The analysis now attempts
toe see hoﬁ well these metrics relate to the number of errors

‘encountered during the dgvelopment of software.

B. Metric’s Relation to Errors

This section aftempts to determine the correspondence of the
SOftware‘ Science and related metries both to the number of
developﬁent errors and to the weightéd'sum of effort required td
isolate and fix the errors. A& correlation across all projects of
the Software Science bugs metric B and some of the standard
volume and complexity metrics with errors and weighted errors,
psing only newly developed modules, produces the results in Table
10. Most of the.correlations.are very weak, with the exception
of syétem ehangea. These diéappointingly low cofrelatiohs attri-
bute ¢to .the discrete nature of error reporﬁing and that 340 of
“the 652 modules (52%) have zero repofted efrors.' Even .though
théée correlations show liﬁtle or no correspondence, the follow-

ing observations-indicate potential imprpveﬁent.

31,

Table 10. Spearman rank order correlations ﬁg with errors and
weighted-errors for all modules (652) from six projects.”

Key: 72 not significant at .05 level
oo significant at .05 level
a aignificant at .01 level

otherwise significant at .001 level

Errors Weighted_err-

£ .083% .101a
E" 2151 L1714
g~" .163 .186

Cyclo_cmplx .196 .205
Cyelo_cmplx_2 .189 .200

Calls .220 .236
Calls_&_Jumps .235 .248
D1=1/L ? ?

p2=1/L" 124 140

Source_Lines .255 .265
Execut_Stmts .177 .198
Source-Cmmts .288 ,298

v .168 .186
N .162 .180
etal «.102a .132
eta2 | <181 .199
B .168 .186
B* .083% ,101a
Revisions «375 .375%
Changes .B67T .636

Weighted_Chg .627 .677

Design Eff .219 .185

Code_Eff .285 .316
Test Eff .189 .164
Tot_Effort .324 .332

~ Project S1 has no data to distinguish errors from changes.
Weiss [4], [5] conducted an extensive error analysis that

involved three of the projects and employed enforcement of error

reporting through programmer interviews and hand-checks. For two

32

of the more recent projects, independent validation and verifica-
tion was performed. In addition, the on-site systems development
head asserts that due to the maturity of the collection environ-
ment, the aeccuracy of the error reporting is more reliable for
the more recent projects [2U4]. These developmental differences
provide the motivation for an .examination of the relationships on

an individual projecet basis.

Table 11 displays the attributes of the pfojects and the
éorrelations of all the metrics vs. errors and weighted errors
for three of the individual projects. The correlations in 87, a
project involved in the Weiss study, are fair but better than
those of project 35 (not shown) that was developed at about the
‘same time. Project S4 and 86 (also not shown) have very poor
o#erall correlations and unreasonably low relaticonships of _revi-
sions with errors, whieh point to the effect of being early pro-
jécts in the collection effort. The trend that the attributes
‘ groduée is not very apparent, although chronology and error
reporting enforcement do seem to have some effect. In another

attempt to improve the correlations, the analysis applies the

Table 11. Spearman rank order correlations Rs with errors and
' weighted-errors for modules from three individual projects

- Key: 7 not significant at .05 level
» significant at .05 level
a significant at .01 level
otherwise significant at .007 level
Err errors
W_err weighted-errors

33

Project (#mods)

33(132) S4(35) s7(127)

Err W_err Err W_err Err W_err
B 401 .378 ? ? .397 .39
B” .536 .482 ? ? «507 .503
E™" 579 .522 ? ? 492 .505
Cyclo_cmplx 542 . 481 ? ? .393 .368
Cyclo_cmplx_2 .553 .489 ? ? 405 .400
Calls 445 L4432 «.300% ,316% +423 .419
Calls_&_ Jumps .566 .518 ? ? 432 412
D1=1/L ? ? ? ? .168% _178%
Source_Lines .648 .622 .339% ? 490 ,487
Execut_Stmts .538 .505 ? ? 478 .465
Source~Cmmts .599 .568 ? ? 501 .u483
N .526 .380 ? ? 457 U449
etal .550 .500 ? ? .488 .522
eta?2 541 .500 ? ? ".348 .367
B 5481 .495 ? ? 461 .456
B” 401 .378 ? ? «396 .390
Revisions .784 .694 .686 .630 «567 .500
Changes 0939 1864 -770 -761 . 0727 0670

Weighted_Chg .8%0 .885 .661 .757 .624 .71%

Design Eff = 2 ? ? ? ? ?

Code_Eff .620 .632 ~+413a° .398a .27h .264
- Test_Eff <473 481 ,312% ? ? ?

Tot_Effort 644 ,615 +455a .447a »253a .285a

PROJECT ATTRIBUTES

Weiss sbtudy ' X X
IVeE V X
Chronology : recent_ early middle

previous section’s hypothesis of focusing on individual program-
mers. Table 12 gives the correlations of the metries with errors
and weighted errors for modules that two of the individual pro-

grammers totally developed. Even though it is encouraging to see

:au

Table 12. Spearman rank order correlations Rs with errors and
weighted-errors for modules totally developed by two
individual programmers.

Key: ? not significant at .05 level
LA significant at .05 level
a aignificant at .01 level
otherwise significant at .001 level
Erpr errors

- W_err weighted-errors

Programmer (#mods)

P2(17) - p3(21)
Err W_err Err W‘efr
B .51ae uu7e 368% 2
E® : «527% .Lg3s .600a .563a
E®" .515% [473% .666 .649

Cyclo_cmplx .575a .558a .463% 428
Cyelo_cmplx_2 .661a .616a L4848 _jhugn

Calls ? . 498 .506a .469%
Calls_&_Jumps .545% ,560a .598a .557a
B1=1/L ? ? ? ?
D2=1/L“ 05583 -526* .459" .’429'
Source_Lines ? . ? = .662 .646
Execut_Stmts .624a .577a .579a .533a
Source-~-Cmmts ? .436% .635 .594a
v LHg1# _yT2e .679 .655
N LHgh% h7gw 641 .610a
‘etat L497® 448% . 511a .589a
eta2 ? ? 715 .77
B Jhg1% _n72w .679 .655
Bﬂ . 051‘4' .'-ln'f" 0368‘ ’ ?
Revisions ? ? . «830 .8B11

" Changes .T16 .662a .855 .828
Weighted Chg ? .510% ,863 .861
Design_Eff ? 7. LU460% _392%
Code_Eff ? .450% .699. .667
Test_ Eff ? ? .668 .644

?

Tot_Effort ? .668 .624

35

the correspondences of the metriecs B, E"" and eta2 with errors as
among the best for programmer P3, the same metrics do neot relate

as well for other programmers.

In summary, pértitioning an error anaiysis by individual
project or programmer shows impfoved correlations with the vari-
ous nmetrics. Stroﬁg felatiénships seem to deﬁend on the indivi-’
'dual programmer, whilé few high correlations show up on a project
wide basis. fhe co;relationé for the projects reflect the posi-
tive éffects of reporﬁingrlenforcement and collection ﬁroeess’
maturity. Qverall, .the. correlations with total errobs are-
slightly higher than those ﬁith welghted efrors, while the number

of revisions appears to relate the best..

I. Conclusions

In the Software Engineering Laboratory; the Software Science'
- metries, c¢yclomatic compléxitj and various traditibnal progréﬁ
measures have been analyzéd for thelr relation to effort,
development errors' and one another. The major }esults of this
investigation are the following: 1) None of the metrics exanmined
seem to manifest a sétisfactory expianation of effort spent
developing software or the errors incurred during that process;
2) neither Software Scieﬁce'é E metrie, cyclométié complexity nor
source lines of code rglates convinecingly better with'efforf than
the others;‘3) the sﬁrongeét effdrt correlations are derivéd when
modules obtéined from.individual prégrammers or:cebtain validated

projects are considered; 4) the majority of the effort correla-

36

tions incfeaserwith the more reliable data; 5) the number of
revisions appears to correlate with development errors better
than either Software Science’s B metric, E metric, .cYclomatic
.complexity or source lines of.code; and 6) although some of the
Software Science metriés have size dependent properties with
their estimators, the metric family seems to possess Eeasonabie
internal consistency. These and the other_results of this study
contribute_ to the validation of software metrics proﬁosed in the
literature. The validation.process must continue before meﬁrics
can be effectively uaed in the characterization and évaluation of

software and in the prediction of its attributes.

Acknowledgment

The authors are grateful to F. McGarry and B. Curtis for
their valuable comments on this analysis. We would also like to
ﬁhank B. Decker, H.'Taylor and E. Edwards for their assistance

with the SAP program and the 8.E.L. database.

Bibliograbhy

[1} V. R. Basili, Tutorial on Models and Metrics for Software
Management and Engineering IEEE Comput. Society, IEEE Cata-
log No. EHO- 167-7, 1980. ' '

{2] V. R. Basili and D. H. Hutchens, "Analyzing a Syntactic Fam-
' ily of Complexity Metrics," Dept. Comput. Sci., Univ. of
Maryland, College Park, MD 20742, Tech. Rep. TR-1053, Dec.

1981 (to appear in T.S.E.).

{31 V. R. Basili and T. Phillips, "Evaluating and Comparing the
Software Metries in the Software Engineering Laboratory,”
ACM Sigmetries (1981 ACM Workshop/Symp. Measurement and
Evaluation of Software Quality), Vol. 10, pp. 95-106, Mar.
1681. : ‘

37

(4]
(5]

[6]
[7]

[8]

£9]

- [10]
[111
[121]

[13]

V. R. Basili and D. M. Weiss, "A Methodology for Collecting
Valid Software Engineering Data%*," Dept. Comput. Sei., Univ.
of Maryland, College Park, MD 20742, Tech. Rep. TR-1235,
Dec. 1982, ' . .

V. R. Basili and D. M, Weiss, "Evaluating Software Develop-
ment by Analysis of Changes: The Data from the Software

. Engineering Laboratory* " Dept. Comput. Sei., Univ. of Mary-

land, College Park, MD 20742, Tech. Rep. TR-1236, Dec. 1982.

V. R. Basili and M. V.'Zelkowitz; “Analyziﬁg Medium Scale
Software Developments," Proc. 3rd Int. Conf. Software Eng.,
Atlanta, GA, May 1978, pp. 116-123.

V. R. Basili and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"” Com-
puters and Structures, Vol. 10, pp. 39-43, 1979.

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter,
Jr., W. F. Truszkowski and D, L. Weiss, "The Software
Engineering Laboratory," Software Eng. Lab., NASA/Goddard
Space Flight Center, Greenbelt, MD 20771, Rep. SEL-77-001,
May 1977. _ ‘

Bulut, Necdet and M. H. Halstead, "Impurities Found in Algo-
rithm Implementations,"™ ACM SIGPLAN Notices, Vol. 9, Mar.
1974, '

D, N. Card, F. E. McGarry, J. Page, S. Eslinger and V. R.
Basili, "The Software Engineering Laboratory," Software Eng.
Lab.,, NASA/Goddard Space Flight Center, Greenbelt, MP 20771,
Rep. SEL-81-104, Feb. 1982.

E. T. Chen, "Program Complexity and Programmer Produc-
tivity," IEEE Trans. Software Eng., Vol. SE-U4, pp. 187-1914,
May 1978. ' ﬁ

K. Christensen, G. P. Fitsos and C, P. Smith, "A Perspec-
tive on Software Science," IBM Syst. J., Vol. 20, pp. 372-
387, 1981. _ _

B. Curtis, S. B. Sheppard and P. M. Milliman, "Third Time
Charm: ~Stronger Replication of the Ability of Software Com-

b plexity Metrics to Predict Programmer Performance,"” Proc.

[147

[15]

thh Int. Conf. Software Eng., Sept 1979, pp. 356-360.

W. @ Decker and W. A. Taylor, "FORTRAN Static Source Code

-Analyzer Program (SAP) User’s Guide (Revision 1)," Software
Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD

20771, Rep. SEL-78-102, May 1982.

A. R. Feuer and E. B. Fowlkes, "Some Results from an Empiri-

cal Study .of Computer Software," Proe. U4th Int. Conf.

38

[16]

(171

Software Eng., Sept. 1979, pp. 351-355.

G. P. Fitsos, "Vocabulary Effects in Software Séienee," IBM.
Santa Teresa Lab., San Jose, CA 95150, Tech. Rep. TR 03.082,
Jan. 1980.

J. E, Gaffney and G. L, Heller, "YMacro Variable Software

. Models for Application to Improved Software Development

-[18]

19]

[20]

[21)
[22]

23]

[24]

[25]

[26]

(271

‘Management," Proc. of Workshop on Quantitative Software

Models for Reliability, Complexity and Cost, IEEE Comput.
Society, 1980. :

S. A. Gloss-Soler, The DACS Glossary: A Bibliography of
Software Engineering Terms, Data & Analysis Center. for
Software, Griffiss Air Force Base, NY 13441, Rep. GLOS-1,
Octo 1979. ‘ !

M. H. Halstead, Elements of Software Science, Elsevier
North- Holland, New York, 1977. ‘

R. V. Hogg and E. A. Tanis, Probability and Statistical
Inference, MacMillian, New York, 1977, pp. 265~ 271.

IEEE Standard Glossary of Software Engineering Termlnologx,
IEEE, 342 E. H7th St., New York, Rep.,IEEE -3TD-729-1983,

1983.

M. Kendall and A. Stuart, The Advanced Theorx of Statistics,
Vol. 2, 4th Ed., MacMillian, New York, 1979, pp.-503 508.

T. J. McCabe, "A Complexity Measure," IEEE Trans. Software
Eng., Vol. SE-2, pp. 308-320, Dec. 1976.

F. E. McGarry, Syatems Deveiopment Head, Code 582.1, NASA/
Gaddard Space Flight Center, Greenbelt, MD 20771, personal
consultation, Jan.-July 1982, ‘

E. M. 0°Neill, S. R. Waligora and C. E. Goorevich, "FORTRAN
Static Source Code Analyzer (SAP) User’s Guide," Software
Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD
20771, Rep. SEL-78-002, Feb. 1978. : .

V. Y. Shen and H. E. Dunsmore, "A Software Science Analysis
of COBOL Programs," Dept. Comput. Sei., Purdue Univ., West
Lafayette, IN 47907, Tech. Rep. CSD-TR-348, August 1980.

C. P. Smith, ™A Software Science Analysis of IBM Prograhming
Products,"” IBM Santa Teresa Lab., San Jose, CA 95150, Tech.

- Rep. TR 03 081, Jan. 1980.

39

UNCLASSIFIED
SECURITY CLASSIFICATION OF THI5 PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE -~ BEFAD INSTRUCTIONS

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYRE OF REPQORT & PERIOD COVERED

METRIC ANALYSIS AND DATA VALIDATION ACROSS

FORTRAN PROJECTS Technical Report

6. PERFORMING CRG. REPORT NUMBER

_ , _ TR-1228 !
7. AUTHOR(=®) s..' CONTRACT OR GRANT NUMBER(S)
Victor R. Basili, Rlchard W. Selby, Jr., and _ _NSG-5123
Tsai-Yun Phillips _ _ . "AFOSR-F49620-80-C-001
9. PERFORMING ORGANIZATION NAME AND ADDRESS l . - | 1. PROGRAM.ELEMENT.PROJECT. TASK

. AREA & WORK UNIT NUMBERS
Department of Computer Science

University of Maryland 7 o) _
College Park, Maryland 20742 P . : ,

1. CONYROLLING OFF{CE NAME AND ADDRESS 12. REPORT DATE .
Code 582.1, NASA/Goddard Space Fllght Center _ November 1982
Greenbelt, Maryland 20771 13. NUMBER OF PAGES
Math. & Info. Sciences, AFOSR. Bolllng AFB. D.C. T 39
14, MONITORING AGENCY MAME & ADDRESS({f differant from Controliing Cilice) 15. SECURITY CL ASS, (of this report)
UNCLASSIFIED
154, DECLASS!FICATION/ DO\‘VN‘GRAD!NG
SCHEDULE

16. DISTRIBUTION STATEMENT (of thig Report) ,

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Repott)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identlfy by block number)

Halstead metrics, software science, data validation,
cyclomatic complexity, software effort and error metrics

20. ABSTRACT (Continue on reverse side If necessary and identify by block number}

See reverse side.

FORM 14) j ‘ : ‘ " "
D EDITION OF | NOV 65 |S OBSOLETE
DD 1san'ys 1473 ; : UNCLASSIFIED
SECURITY CLASSIFICATION OF TH!S PAGE (When Data Erterad)

UNCLASSIFLED
SECURITY CLASSIFICATION OF THIS PAGE(Whon Data Entersd)

The attraction of the ability to predict the effort in developing or
to explain the quality of software has led to the proposal of
several theories and metrics. As a step towards confirming these
attempts, the Software Engineering Laboratory analyzes the Halstead
metrics. McCabe's cyclomatic complexity and various standard program
measures for their relation to effort (functiomal spec1f1cat1ons :
through acceptance testing), development errors (both discrete and.
weighted according to the amount of time to locate and fix) and one
anpther. The data 1nvest1gated is collected from a commercial FORTRAN
environment and Examined_across several projects at once, within indi-
vidual projects and by individual programmers across projects,with
three effort reporting accuracy checks demonstrating the need to
validate a database. The metrics' correlations with actual effort
seem to be strongest when modules developed entirely by 1nd1v1dual pro-
grammers or taken from certain validated projects are considered. Two
averages formed from the proposed validity ratilos induce a statlstlcally
significant ordering of the magnitude of several of the metrics'
correlations for modules developed totally by individual programmers.

. The analysis also suggests that some of the Halstead metrics seem to

' possess size deperident properties with their estimators and that in
comparing the strongest correlations neither Halstead's E metric,
McCabe's cyclomatiQ'complexity nor socurce lines of code appear to
relate convincingly better with effort: than the others.

UNCLASSIFIED

SECURITY CL ASS!FICATldeE"" Tt P AGEIWRer Data F.'f:':ff;w::',‘.

