Technical Report TR-1255 _ March 1983
: AFOSR 80 ¢ 0001

ANALYZING A SYNTACTIC FAMILY OF
COMPLEXITY METRICS *

David H. Hutchens and Victor R. Basili
Department of Computer Science
University of Maryland

*Research supported in part by the Air Force Office of Scientific
Research Contract AFOSR-F49620-80-C-001 to the University of Maryland
Computer su—port provided im part by the facilities of the Computer
Science Center at the University of Maryland

Abstract

A family of syntactic complexity metrics is defined that
generates several metrics commonly occurring in the literature.
?he paper uses the family to answer some questions about ¢the
relationship of these wmetrics to error-proneness and to each
other. Two derived metrics ére applied; slope which measures the

re;ative skills of programmers at handling a given level of com-

‘plexity and'g sgdare-which'is indirectly related to the con- "

siatency of performance of the programmer or team. The study
suggests that individual differences have a large effect on the
significance of results where many jindividuals are used. When an
individual is 1solated, better results ‘are obtainable. The
metrics can -also ~be used to differentiate between projects on

which a methodology was used and those on whieh it was not.

1. Introduction

As computer scientists attempt to understand the software
process and pro&uct, it is natural"to try to measﬁre those
aspects of software that seem to affect cost. A major problem in
computer séience is the intellectual control of design that is
directly related to the complexity of the product. Many attembts‘
at quantifying the complexity of computer progréms have been made
.[Basili & Reiter 79, Chen 78, Curtis et al. 79, Dunsmore & Gannon
8o, Halstead 77, McCabe 76]. A good compiexity.metric could be
used as é quality assurance test by software developers and even
'as a contractual obligation. Current complexity metrics may.be
roughly'divided into tﬁo basic groups, (1) static metrics that
are measures of the product.at one particular point in time, and
(2) history metrics that are heasunes of the product and process
taken over time. Static complexity metrics are based on the phy-
's;cal attributes of a scoftware product. These fall 3into three

basic c¢ategories: volume, control orgaﬁization, and data organi-

zation. Each of these categories will be discussed briefly
bélow. This paper will deal predominately with the volume and

control subelasses of static complexity metrics.

Some volume metrics are measures.of the size of a product:
the number of 1lines of code, the number of statements, or the
number of operators and operands [Halstead 77]. The software
science volume metric is in this grohp. Even cyclomatic complex-
-1ty [McCabe 76] can be placed in this category since it is the

nunber of decisions plus one. The number of procedures, the

1

average length of proéedures, and the number of variablea are
examples of volume metrics. The number of input/outbut formats
[Carriefe & Thibodeau 7T79] and other abstraction metrics are
volume metries aslwell. Note that these latter metrics are meas-
ures of the logical'size, rather than just the physical size, of

a4 program.

Control organization metrics are measures of the comprehen-

sibility of control structures. Thus c¢yclomatic complexity, when
viewed as the number of control paths, is alsc a control @etric.
Knots [Woodward et al; 791 aﬁd Maximal Intersection Number [Chen
78] attempt to measure the control complexity by visual proper-
ties of program control, either as it is written (in a computer
language) or as it would appear in a pianer flow graph. Average
ﬁesting‘ level has been shown te¢ be a useful control organization
metriec [Dunsmore T78]. Essential cﬁﬁpiexity [MeCabe 76) falls in

this category aas well. Control organization metrics may also
include interprocedural ﬁetrics such as calling 1level and dis-

tinet calls [Benyon-Tinker 79].

Data ggganization metrics are méasures of data use and visi-
bility as well as the 1lnteractions Setween data within a program.
Data binding [BaSili & Turner 753 Stevens, Myers & Consgantine
741 1is an example of a module interaction metric. A span [Elsh-
off 76] is an attempt to measure the proximity of references to
each data item. As such it quglifies a3 a data organizatiocn
metric. Slicing [Weiser 81] can also be considered a data organ-

ization metric. A slice is that (not necessarily consecutive)

portion of code that is necessary to produce some prescribed par-

tial output from the program.

As seen above, 1t is not alwayé ¢lear which category a par-
ticular metric belongs to. For example, we may view cyclomatic
complexity as a volume or a control metric depending upon the

desired emphasis.

2. Definition of a Structural Metric Family

The abovg metrics have failed to 'gain full acceptance as
valld measures of program cﬁmplexity for:at least two reasons.
First, there is a lack of experimental evidence to determine what
-aspects of the system life cyéle thé metrie expl;ins. While a
metric could correlate well with debugging time, it might still
be a poor predictor of the effort required to do maintenance. We
need experimental evidence that is focused on the expected uses
of the metrics. Second, existing metrics are not ﬁarameterized

and thus cannot be tuned to the results of exploratory analysis.

A complete development of the structural family of complex-
ity metrics may be found in [Basili & Hutechens 80)]. The struc-
tugal family includes many metrics_from the volume and control
organization groups. The data organization group_is a subject

for other research.

E-'If the fdmily is to include 'many of the metries in the

‘literature it must incorporate length, nesting level, control

paths, tYpes of control structures, and decomposition simplicity.

The family should transcend languages (although specific members
may not). The various members may .relate to many aspects of
software development and maintenance although'any one metric may

only be useful in a limited way.

Length-ean be measured by lings of code, with or without
conmments. However, in a frée format language this measure c¢an be
altered by cosmetic revisions of the c¢ode, =so0o the number of
' statéments seems to be a more consistent measure. Nesting level
might be inéluded explicitly or as a factor to be multiplied with
the complexity of the lower levels. _Contfol paths and types of
control structures are closely related and are handled in a
variety of ways by current metrics, so the family must allow a
‘general mechanism for these concepts. Decompositién simplicity
is intended to measure the naturalness with which the intended

funetion is broken into smaller functions.

With these concéepts in mind, a recursive definition of a
family of control structure complexity metrics (c) could be given

by:

e(p) = b

M

e(pi) + f{n,lev,t,s)

i=1 S

where p is é program that is decomposed in some fashion into k
components pl, p2, ..., pk. The parameter b generates the multi-
plier for nesting level, The function f, the key to the metrie,
has‘ four arguments: n, the.number of decisions in program p that

are not part of any subcomponent pi; levy, the nesting 1level of

component - p3y t, ‘the type of structure instantiated by pj; and s,

the structural "nicenessa" of p. The range of £ is the positive

- real numbers.

| Some.discussion of, and restridtiqﬁs on, the paraméters:will
clarify.fhéir meaﬁing. b is intended.to peﬁalize nésting so b>1;
where, of course, b=1 just removes it from the formula. Since an
increase - in the number of decisions should not decrease the com-
plexity,.f should he a nondecreasing function- of n. At first
glance, : ‘one might be tempted to place a nondecreasing condition
on f with respect to the level, lev; However, there is reason to
believe. -that - a concave up function (one that falls at first and
later riges)_of lev may be better [Dunsmore 78]. An example may

'bé-found-in.[Basili & Hutchens 80].

It éhould be noted that B is éupeffluous, for the metric

. k .
e(p) = b > e(pl) + f(n,lev,t,s)
1=1 |
K_
= > e(pi) + £° (n,lev, s 3)
i=1
_ lev

where f“(n,lev,t,s) = b f{n,lev,t,3).

In this example, b is reduced to a constant in the function £°.
The use 'of ;the oonstant, b, makes the penalties more explieit
than does hiding that 1nformation in the function. Indeed, many

instantiations may use b 1nstead of 1ev.

The values of t normally range over syntactic entities, such
as assignment, while, case, and if statements. The parameter s
describes whether the control structure is "structured" or "non-

structured®.

The control flow of a program may be described by a digraph.

4 program (equating the program and its digraph) is called a

proper program if it has a single entry and a single exit, and
every node of the program lies on some path from the entry to the

exit. A proper program is called a gfime program if it contains

no proper subprograms with two or more nodes. The usual while do

d and if then else fi are examples of common prime programs. A

priﬁe decomposition is found by continually replacing prime sub-

programs by function nodes (a node with a single entry and a sin-
gle exit). A proper program has a unique prime decomposition if

successive sequences are treated as a unit [Linger, Mills & Witt

791.

By letting the parameter 3 have the two values 1) proper and

2) not.proper, the resulting (sub)family is given by:

k_ / f(n,lev,t) 3 p proper
e(p) = b > e(pi) + <
i=1 ' \ g(n,lev,t) 3 p not proper

Both f and g are functions from (INTEGER x INTEGER ¥ VOCABULARY)
to REAL, where VOCABULARY 1s that of the grammar for the
language. This restricted family will be used throughout. the
rest of this paper. if one assumes that proper programs are less

complex than non~-proper programs then f(n,lev,t) < g(n,lev,t) for

6

all n, lev, and t. The réstricted family might reasoﬁably be

called a syntactic complexity family since it 1is Dbased oh the

syntactic decompositions of the program.

The syntacetic complexity family covers most of the volume
metrics and some of the control flow metrics in the literature.

It does not contain any aspects of data organization.

3. Some Members of the Family

One major.benefit of basing.the décomposition on the syntac-
'tic' structure is the ease with whiéh a compiler can be changed
into an automatic metric tool. As a simple example, consider the
decomposition of programs into Stétementa (and statements into

substatements) where

/1 3 p a statement

Ile‘

e{p) = e(pi) + <
i=1 A\ 0 3§ otherwise.

Note that this uses the t parameter of the famjly. The resultant
measure is nothing more than a count of the executable statements

(STMT), a member of the volume subfamily of metrics.

The call count (CALL), the number of calls to any procedure
or function whether user defined or language pre-defined, is
easily produced as another member of the volume subfamily as folw

lows.

/13 pa fune or proc call

A\ 0 ;3 otherwise

Likewise, the decision statement count (DeeS) is another

volume metric,

k_ / 13 p an IF, WHILE, or CASE
e(p) = > c(pi) + <
i=1 \ 0 ; otherwise

Cyclomatic complexity (v(G)) may be generated by adding the
number of decisions to the number of segments (McCabe 761. The

- measure 1is

/13 b a segment

|v1#

el(p) = e(pi) + <
1

i= A\ n ;3 otherwise

Eventually each decision will be counted exactly once. There-
fore, the member is just the eyclomatic number of the program, a
member of the control organization subraﬁily of metrics. Note

that this formulation uses predominately the n parameter.

For a final example, consider this more complex member of

the family:

/ 1+log2(n+1) 3 p proper stmt

s

(1) e(p) = 1.1 e{pi)} + <
1

i= Y 2'(1+1o§2(n+1)) $ p not proper stmt

This member exhibits some of the flexibility of the family. The
b value of 1.1 penalizes nesting by counting each statement 10%
‘more than it would be at .thej next outer level. Furthermore, .
poorly structured code is penzlized twice as much as well struc-
tured code. Each statement must contribute at least 1 to. the

measure since' 1 ia added in each of the functions f and g. The

8

use of the ‘logarithm encourages the use of " case statements.
" Thus, this metric¢ includes consideration of nesting level, length
(sta;ement count), structured programming practices, and Dbonuses
for use of .an organizing construct (the case statement). This
metric, which we_will call Syntaetic Complexity (SynC), is a

hybrid of volume and control organization families.

'~ Several other hembers of the family, dinc¢luding essential
complexity and the software science count of total operators and

operands, are derived in (Basili & Hutchens 80].

4. Experimentation

‘This research focgses on the ability of product metrics to
*explain'-the‘nuﬁber‘of program changes made during development as
~well as the differences in. therqmetrics'icauséd? by different
development strategies. Given the above family of syntactic
heprics one would like to (1) evaluate their use in specific
environmeﬁﬁs‘ ;nd (2).ana1yze and comparémmembéré of the various

subfamillies.

_:In th§ first case a set. of questibns 'to.'be' asked might
includes Are .the ‘metrics uéeful in measuring or predicting the
error proneness of programs? Are they = effective " in predicting
‘the ‘effort ‘that goes into program development? Are they useful
{n ‘characterizing methodological approaches? ' 'Are they useful in

”féval>ing the software dévelopment process and product? -

Questions generated by the second concern include: Are there
any differences in these subfamilies? Are thgy all measuring the
same thing? 1Is 6ne member of. a subfamily better +than others
under some set of conditions? Are the instances of anomalies
between measures an indicaiion of error proneness or .extra
effort? Which are useful in evaluating and characterizing metho-
‘dbiogical approaches? Does one have to gd coutside this family to

find metries whieh capture different aspects of complexity?

It is impossible to answer all of these questions within the
scope of this paper and on a single data base of small programs.
However, this paper will present experimental evidence for

evaluating and c¢lassifying metriecs.

In order to investigate the error proneness, the progranm
changes made during the develobment of the projects have been

counted. A program change [Dunsmore & Gannon 77] is defined to

be either a textual change to one or moré adjacent lines of
source code, or the insertion of one or more lines of source code
‘ with the following exceptions. An insertion together with aﬁ
adjacent changed line of code is considered to be only one pro-
gram change. The insertion of output statements is not con-
sidéfed a program change ag this activity 1is usually conéerned
with temporary debug code. Thé deletion of code is not con-
sidered a program change as the code is usually either moved. (in
which "case the insertion is counted) or the code is debug code
ﬁeing removed'after it.is no longer needed. Changes and inser-

tions of comments are not counted as program changes. Program

10

changes have been shown to be closely related to the number of

errors made during development [Dunsmore & Gahnon 771.

The syntactie compléxiby:family has been 1mp1emented in the
.SIMPL-T compiler [Basili & Turner 76]. SIMPL-T is a GOTO-less
non-block'structured language that allows 3statement nesting.
Loops may be #ﬁnorma}ly exited using the EXIT statement and

RETURNs are allowed at fany point. . Sfﬁ?L-T ‘'is used 1in many

W B
s

" courses at the University of Maryland; théfef‘gg, the experiment
: : . 4 N N :

participants were fairly familiar with the language.

The research reported in this paper uses a gatabase of 19
compilers written by %upperclassmen and“graduaterstudents. The
compilers were writteh under three different development metho-
dologies: ad hoe individuals (A1), ad hoc teams (AT), and disci-
plined teams (DT). Each team consisted of 3 students. The ad
hoe individuals ﬁnd ;d hoc teams were not given any particular
‘methodologies or techniqueé to be used 1in the implemenfation.
- They were free to organize their work in any way they desired.
The disciplined teams Were'required'to use a iist of methodolo-
gles and techniques that were ‘taught in their class. Thess
hethodologies included chief pfogrammer teanms, walkthrOUgh;, and
top down design with PDL, among others. Several metrics have
.-already been tested to see if they detect the differences among

the groups [Basili & Reiter 79,81].

The results reported here deal with the metric defined 1in

equation 1 (SynC), statement count (STMT), call count (CALL),

11

cyclomatic complexity (v{(G)), and decision statement count
(DeecsS). We will focus on the relationship between these metrics

and the program changes made during the project development.

4.31. The Effects of Individuals

In attempting to validate the varibus metrics as useful
predictors of error-proneness, we compared each metric against
the number of program changes for each project. That is, the
number of program changes for each project was determined, and
the metrics were computed on each segment (procedure or function)
in each projéct.' The complexities of the individual segments

were combined into a project complexity in several different
ways. These included summing the complexity of each ségment as
well as_summing only the most complex segments (such as the top
10 or 20 perqent). All these att;mptsfat correlating the number
.of program changes to the complexitf of the project were unsuc-

cessaful, 1.e. no significant correlation was found.

The five metries conasidered here are highly correlated as
may be seen in the correlation matrix in Table 1. Thus, multiple
regression equations tended to be erratic, with the coefficients
changing greatly with the addition of new variables, #hile pro-
ducing minimal inereases in R square. Therefore, the rest of

this paper deals only with simple regression equations.

A second, more detailed analysis was made of the error-
proneness of the metrics. Each of the complexities of the indi-

vidual segments in one project was correlated to the number -of

12

Table 1

Correlation Matrix
for the product metrics

STMT SynC CALL v(G) Decs
STMT 1.000 |
Syn¢ .975 1.000
CALL .845 .770 1.000

v{(G) .879 .893 .T4T 1.000
Decs .873 .939 -617 - .832 1.000

program changes made in that particular segment. Appendix 1 con-
- tains the éoefficients of determination {(r square) and the slope
. of the lines for each of the projects and each _of. the metries
- using éimple regression analysis [Neter & W#sserman_?h] on the

metrids with the dependent variable program changes.

-~ Ex#miniﬁg only the 6 projects that wgre déﬁeioped by ad hoe
individﬁéls, the coefficient of détermination (f.équare) for SynC
as a §redictor of'program éhanges ranged betweeﬁ LU475 and .866.
The other ﬁeﬁrics had slightly lower vélues but a similar spread
(see Appendix 1). Therefore, when an individuél is isolated, it
‘appears that these metries do,correlate.well with the number of
program ;hanges. For an example plot, sée Figure 1.

L s m ol v e A W M e G A N W D W AN A L A

~ Insert Figure 1 around here.
" Reduce to 1 e¢olumn if possible -
and label with "Figure 1"

It is somewhat surprising:that é linear fit doeg better for

almost all cases with . respect to both r. square and the

13

distribution of thg reslduals than a regréssion based on log-log
transformations which yields an exponential curve in the original
data. Many have argued that segments éhouid be made =small to
contrel their complexity. An exponential fit would imply that
the argument is valid, since the sum of the complexities of
several small segments would be much smaller than the complexity
of one 1argef segment with the same amount of code. However, a
linear fit .implieS' that there 1s no advantage to splitting a
large segment into many smaller segments unless .duplication of

code could be reduced.

The 19 projects did fit linearly for all five metries. Only
a couple of projects yielded minor improvement using log-log
;transformations.(exponential fits). The straight lines inteﬁsect
close to the‘prigins; therefore, the poor fit of the exponéntial
is not caused by missing the low valued points due to foreing the

curve through the origin.

It is possible that the linear model appears to fit best
because the segments are so small (the average "maximum segment
size" for the 19‘projec£§ is 66 statements). The exponential
tail might appear if there were larger (more complex) segments.
It is also possiblé that programmers naturally 1limit themselves

to smaller segments where they can handle the complexity level.

More interesting, however, is that the slopes of the fitted
lines varied from .16 to .73 for SynC (See Figure'a). Similar

variation exists for the slqpes of the other metrica. The slope

14

of the line ma& be viewed as 2 measure of a prbgrammér’s ability
‘to cope with complexity since:it estimates the number of program
changes ﬁe makes in developing a program for each unit of com-
plexity. This interpretation is possible because the intercepts
of the regression lines are close to zero. It is the variation
| in the slopes that accounts for the lack of results using several
projeets produced by different people.

Insert Figure 2 around here.
Reduce to 1 column if possible
and label with "Figure 2"

Experimentation that coﬁbines the work of different people
is likely to contain a large amount of noise resulting from indi-
‘vidual differences among participants. This phenomenon alone may

be the cause of many failed experiments.

4.2. Slope Metrics

In general, the slope of the regression line 1is pot suffi-
cient to determine which of two results is. better. .The intercept
may also play a role. _For example, if one individual has a high
sloﬁe but a 1ow_intercept, he may still have produced code while
making fewer program changgs than a person with an average slope
but a mueh higher intercept. In the data for this study the
ihtercepts were all close to zefo, and what 1ittle variation did
"exist tended to be in the same direction as the differences in

slope.

15

Using the slope to indicate a programmer s ability to cope
with eomplexity gives hope of producing an experiment that can
quantify a programmer’s limitations with reaspect to the complex-
ity of wvarious applications. The results might be used for
management decisions such as assignment of tasks to differeet

programmers.

The results presented here, however, do not give a total
picture of the individual”’s ability to cope with complexity. One
complexity metrie¢ is not powerful enough to represent the diffi-

ceulty of the task.

Since a single cohplexity metric is enlikely to cover all
‘aspects of comﬁlexity, it .may be possible for a programmer to
shift the difficulty of development to unmeasured aspects of the
program, ifi.e. ¢to the data strueture if the metric 1s a volume
metfic.. A vector of meﬁrics {and eofresponding slopes) might
give e better.indication of therability of the programmer to cope
with eomplexity. Such a vector.may be useful in determining how
_tor-allocate. tﬁe- available programﬁer resources so that each is
working on problems_where the cemplexity is.expectedrto be oflthe

type that he is most capable of handling.

One advantage of a slope metric is 1ts independence of the
specification (as long as the specification is not changing dur-
ins development). Note that in this experiment, the specifica-
tion for each of the segmeﬁts in a given product is different.

It therefore might be possible to take measurements from the reg-

16

ular work of the'progfammers over a long period of time and avoid
- the construction of a special experiment. Thus the programmers
- will not need to be specifically aware of the exoeriment s0 their
performance_would not be affected by any reactions to the experi-

mental situation.

The benefit of a derived metric like slope might still be
'_realizabie even if the fits are nonlinear. For example, if the
relationship is exponential, the value of the exponent might pro-
vide a measure of the programmer’s limitations. The use of
metries in the evaluation of progbammer's ability ¢to c¢opy with
complexity is an area that warrants considerable research attenf

“tion.

- B.3. Comparison of Methodologies

The five metrics were used to oomporé the Qifferent gooups
-of teams. This part of the study uses the Kruskal-Wallis test
and the ﬂann-Whitney U test [Siegel 56] to determine if a partic-
ular group appears to have a better slope and/or coefficient of
determination than another, for an example of the difference,’
compare Figure 1 with Figure 3. Note that the slope of thelline
has uniﬁs of changes per onit of oomolexity. Thus tho larger'the
'alope, the more changes mado in the face of a given level of com-
Plexity and (supposedly) the less effective in handling complex-
'ity the methodology or programmer that produced it. Statisti-
cally, the coefficient of _deterﬁination is a measure of the

amount of -variation-in-the dependent variable (program changés)_

17

that may be explained by the variation in the independent vari-
able (the product metriec). That iz, a high coefficient of deter-
mination leaves less variabiliﬁy to be accounted for by other
factors; 1individual differences in particular. ‘Thus we would

éxpect them tc be higher for ad hoe individuals than for teams.

Insert Figure 3 aroiund here.
Reduce to 1 column if poesaible
‘and label with "Figure 3"

It also acts as a measure,of :uniformity in team efforts.
Under the hypothesis that methodology makes a group act more like
an individual with respect to consistency, one would expect that
disciplined teams would have a coefficient of determination thaﬁ
is slightly lower (less consistent)_than ad hoe .1ndividuals but
~larger (morg ~consistent)} than ad hoc teams. The results appear
in fab;es 2 and 3. The CALL metric doces not éppeab in these
tables because none of the statistics are significant with regard
to it. Appendix 2 shows the raw data sorted and displayed to

illustrate the contribution of each group.

The Kruskal-Wallis test ylelds a significance level of
between .02 and .05 (depending on the metric) in favor of there

being some difference among the alopes of the groups.

As may be seen in Table 2, the slope of the line 1is larger
for ad hoe 1individuals than for disciplined teams. This means

that disciplined teams do a better job (by requiring fewer pro-

18

Table 2

Methodology Comparisons
using the Mann-Whitney U test
of slopes

SynC '
' Kruskal-Wallis at .05 level
Mann-Whitney AI = AT
AI > DT at .01H4 level
AT = DT '
STMT Co
‘Kruskal-Wallis at .05 level
Mann-Whitney AI > AT at .094 level
AI > DT at .014 level
AT = DT '
v{(G) :
. Kruakal-Wallis at .02 level
Mann-Whitney AI = AT
AI > DT at .008 level
AT > DT at .074 level
DecS

Kruskal-Wallis at .02 level
Mann-Whitney AI AT at .026 level
' ‘Al DT at .008 level
AT DT

H Vv

gram changes) for a given amount of complexity than ad hoe indi-
viduals. Disciplined teams appear better than ad hoc teams for
the v(G) metrie. The ad hoc teams appear to have done better

than the ad hoc individuals by the DeeS metric.

It should be noted that there is no statistically signifi-
cant .differences émong the intércepts of the three groups with
" respect £o any of the metrics except STMT. The Kruskal-Wallis
test for :SfMT” yields a 'significance level of .05%. The Mann;
Whitney U test shows AI<KAT at a .026 level of significance and
DT<AT at a .052 level of significance. Note that this tends to
support the claim that di#ciplinedlteams were more able to cope

with * the COmplexity. It makes the distinétion between ad hoce

19

individuals and ad hoc teams less clear.

For the coefficient of determination, the Kruskal-Wallis
test givés a significance level of .03 to .10 in favor of there
being some difference among the groups (see Table 3). The ad hoc
teams seem to have a lower coefficient of determination than ad
hoe individuals. It is conjectured that this results from the
differing abilities of the_members of ad hoc teams causing dif-
ferent parts of the system to be assembled with varying' degrees
of effectiveness. It 1s interesating to note that disciplined
teams also have a larger coefficient of determination than ad hoe
teams (for Sync and STMT). This also indicates that a team that

Table 3

" Methodology COmparisOns
(using the Mann-Whitney U test)

r square
3ynC
Kruskal-Wallis at .03 level
Mann-Whitney AI > AT at .016 level
' AI = DT
AT < DT at .052 level
STMT '
' "Kruskal-Wallis at .10 level
Mann-Whitney AI > AT at .026 level
AI = DT :
AT ¢ DT at .034 1level
ov(a) | :
‘ Kruskal-Wallis at .10 level
Mann-Whitney AI > AT at .016 level
Al = DT
. AT = DT
DecS

Kruskal-Wallis at .10 level

Mann-Whitney AI > AT at .0H2 level
AI = DT
AT = DT

20

works with a set of methodologies tends to be more cbnsistent
with respect to uniformly spreading the errors through the code
than a team that does not. The data indicates that disciplined
teams have a lower coefficient of determination than ad hoc indi-
viduals. This would also be .expected given our conjecture.
Since both disciplined ﬁeams and ad hoc individuals were more
consistent than ad hoe teams, we may say that the discipline
allowed thg teams _to perform more 1like an individual than a

group.

4.4, Regression By Methodology

We treated all of the segments developed by all ad hoe¢ indi-
viduals in one regression model for each of the five metries to
.8ee 1f there were any consistencies within the group. We did
likewise for the other two groups; ad hoe teams and disciplined
teams. Since the projects were known to have a large variation
in the slopes “of the fegression lines, it was no surprise that
all fifteen data plots.gave a fan that was c¢lose at the origin
but became moré spread out as the value of the metric increased.
" For this reason, the regression model that gave similar variance
of residuals across the scale of the independent variable was an
exponential model of the fofm

.) e
changes = b metr;c
or |

log(changes) = log{(b) + ¢ log(metric)

21

The results of the 15 regressions are given in Table 4.

We note that 14 of the exponents are less than 1.0 {(one was
1,026). This indicates that the larger segments are less costly
in program changes than smaller segments for each unit of com-
plexity._ There are at least three posasible interpretations of

this result.

(1) Larger segments cause less problems (so we should encourage

larger segments).

7(2)_ Programmers tend to write larger segments when the problem
is trivial and smaller segments when the problem is more
Table U4

Segments of Methodoclogy Regressions
(metrics with program changes)

_ b e r square
Call
AT 1.288 .822 «337
AT 1.68%4 .655 +275
DT 1.221 516 .253
v{(G)
Al 1.562 .822 «337
AT 1.761 .7T63 -+ 357
DT 1.680 399 . 104
Dees
AT 1.507 1.026 «359
AT 1.689 .892 366
DT 1.560 +555 .163
SynC
AT «575 +801 463
AT «+911 .645 .386
DT 672 .538 ' 242
STMT '
ATl «539 «921 L8473
AT 97U . 707 .400

DT .658 .608 + 257

22

difficult.

(3) The less capable programmers felt a need to reduce the size
"of their segments in order to maintain control. Thus, the

larger segments were writfen by'the better peopie.

Because the third interpretation also explains the 1linear
fits for the single projeets, it appears to be the best explana-
tion; More experiments are needed before any definitive conclu-

sions can be reached.

‘A confusing point is that the r square for the DT groﬁp is
'loﬁer -than- for the Aizénd AT groups. This Séems to contradict
some of the earlier conclusions; It does suggest that a diseci-
piined team 4is 1less predictable than an éd hoe individual or
team, given data from random individuals or teams of the
appropriate type. However, given-history data from the specific
feam {i.e. the past performance of the team in dealing with c¢om-
plexity); a specific disciplined team seems more predictable than
a speéific ad hoec team. More experiments are needed to resolve.

these points.

5. Compariscn gﬁ Metrics

'We now.ﬁurn to the second set of questions. The five
members of the family' have been compaﬁed to see how well they
predict the nﬁﬁber of changes thétlwere made to each segment.
Many other members of the family were investigated but ncot

reported because they are unfamiliar and yield no new insights.

23

The results are summarized in Table 5.

For each project, the coefficient pf determination was com-
pared 'ofer the five metrics. .Friedman's test [Conover T1] is
employed to determine globally (ovér all five metriés) whether
-there is reason to believe that any of ﬁhe metrics performs sig-
nificantly differently from the others. = After concluding that
there is a difference in the metrics at the .02 level of signifi-
~cance, a two-tailed sign test [Siegel 56] was used pairwise to
test the null hypothesis that the metries have equal predictive
value. If the level of significance was 1es§ than .10, the
alternative hypothesis (that " there 1is a difference) with the
direction of difference was listed in Table 5. Otherwise, the
two metrics are listed as "=", indieating that we may not reject
the null hypothesis. The last column contains the ratio of the
times that the f@rst liated.metric-had a bettér (higher) r séuare
than the second metric, to the total nuﬁber of data points in the

Table 5

Metric comparisons
(using the sign test)

Friedman yields a .02 level

"SynC = STMT® (10/19)
‘MmSynC = v(Gg)n (13/19)
."3ynC > DecS"™ at .063 level (14/19)
"SynC > CALL"™ at .019 level {15/19)
"y{G) < STMT"™ at .019 level (4/19)
"y (G) = Decs™ (77/19)
"v(G) = CALL"™ (10/19)
"DecS = STMT" ' (7/719)
"DeeS = CALL" (11719)
"CALL <

STMT" at .063 level (5/19)

- 24

group.

The results shoﬁ that STMT does better than v(G) and indi-
cate that it may be better than CALL in explaining the number of
program 6hanges. Moreover, SynC is better than CALL and there is
an 1indication that it may be better than v(G) or Decs; There is
no distinguishable differehce between SynC and STMT_ or between

CALL, v(G), and DecS.

Since the statement count is easy to calculate and many
researchers have found that it does a credible job of measuring

the complexity, it must be considered the baseline for comparison

~in studies of this kind. This study has failed to find a metric

that is significantly better than sﬁatement count.

6. Orthogonality of the Metrics

If the complexity of computer programs is to_be_measured, it

is necessary to develop metrics that have a degree of orthogonal~

ity, i.e. metrics that measure different aspects of the complex-

ity. As was seen in the ecorrelation matrix of Table 1, ﬁhe
metries considered so far lack this property. One possible way
to gain some orthogonality is to normalize the metries. For
example, if cyclomﬁtic complexity is normalized with respect to
length (by computing v(G)/STMT) the.resulting_metric is a measure
of decision density in the code. One might then ask if code with

a high decision'density'requires more program changes than code

| with a low decision density. For our data, the answer is no.

Similar results {or 1lack thereof) hold for CALL and DeeS

25

normalized by STMT.

A mild relationship does seem to exist between SynC/STMT and
program changes, but little predictive value is gained. The nor-

malized metrics were also tried in multiple regression equations

with all of the original metrics, using ineremental regression

techniques [Neter & Wasserman 74]. The normalized metries proved

to yield little additional information in the equations.

Another approach, more ¢losely resembling [Sunohara et al,
81), 4is to regress a metrie (éuch as v(G)) with STMT and select
those points that are sufficiently far from the regression line
(e.g. 1 or 2 standard errors of estimate). Then, considering the
regression of STMT with program changes, inquire about the resi-
duals asssciated witﬁ the outliers of the first regression. It
the anomalies have an effect on the residuals (if they tepd to be
1arger), then the anoﬁélies‘tend to cause more than their share
of program changes. This approach was tried. None of the
metric; had anomalies whére the associated.residual populations
have means significantly different from 0. In fact, the means
tended to be very close to 0. Therefore, the anomalies do'nof

seem tq explain program changes in our data.

No orthogonal metries within this study of syntactic metrics

have been successful at expléining program changes.

| We believe that orthogonal metrics may exist outside the
realm of syntactic complexity. Metrics that measure other pro-

perties of programs and program development, specifically data

26

metrics EBasili & Turner 753 Dunsmore 783 Elshoff T76; Henry &
Kafura 81; Stevens, Myers & Constantine T4; Weiser 81; Yau & Col-
lofello 80)], may prove orthgonal to the control structure
metrics studied heré. Wg are currently investigating a variety

' of metric classes.

7. Conclusions

A family of syntactic complexity metriecs has been defined
that encompasses many of the current metries. The family has
been used in comparing different individuals, metrics, and

development methodoloegies.

It was found fhat individuals differ widely in the number pf
.program changes required to .implement a program'of somé.given
complexity. This. leads to the” poésibility of measuring a
programmer’s abiliiy to copé with éomple#ity. The eoncept of an
ability measure should be pursued-with. éomplexity metrics. from

other groups of metrics (such as data complexity metrics).

Furthermore, we have some evidence that a disciplined team
acts more capably than an individual as measured by the slopes of
the fitted'regression lines. This lends support to the argument
that even small projects that one person might be able to do will
.be done beﬁter if more than one person eooperateé iﬁ the develop-
ment (at least when they take active steps, such as thé ﬁse of
various methodologies to aid. iﬁ _their communication). This
should not be construed to mean that many programmers should be

assighed_to the task. Rather, it might be possible to -gain the

" aq

same advantages by assigning the project to one programmer and
allowing him to use ¢ther programmers in design and code reading

in return for providing the same service to them.

‘Several metrics in the family hgve been evaluated with
reépeet to theif suitability in correlating wiﬁh program changes;
none seems significantly better than statement couﬁt. Metrics
which count specific parts of the code (such as CALL or DecS)
appear to be iess well related to program changes than the
metriecs which count moré things (such as SynC and STMT). This
suggestas the hypothesis that program changes are distributed ran-
domly through the code and the closer a metric comes to counting
all of the syntactic attributes of the program the better the
metric will correlate with program changes. One experiment can
.not prove or disprove this hypothesis. As more data is examined,

we may begin to understand this relationship more fully.

8. Acknowledgements

We would like to thank H.E. Dunsmore and G. Sutton for their
efforts in “counting the program changes in the projects. This
work would not have been possible without the work done by R.W.

Reiter in developing the experiment.

28

Appendix 1

This appendix contains the values of the slope and . coeffi-
ciept of determination data for each of the 19 projects. The
.data is'presented ih groups with'eaéh columﬁ representing a given
metric. Thé projects afe ordéred in thg same manner in each of -

the two tables.

29 .

-8lope and Coefficient of Determination Data

slope

SynC STM™MT CALL v(G) DecS

.T29 1.162 1.811 1,776 4,567

‘ - +286 «397. J443 1,013 3.043
AT « 157 « 277 L469 L4440 1.076

O © +576 .809 1,460 2.121 3.114

499 - ,927 3.859 2.788 2.950"

L L2048 «319 .5u47 .531 1.060

.92 .785 1.775 1.244 2.904

AT ~.085 .121 .118 .289 .6%0
«173 .24y 242 . 799 . 841

“LJU56 ° ,T7H3 1.736 1.992 2.840

.128 .254 ' .502 .621 .811

«155 .239 «510 .258 1,035

. 142 «.193 . 362 «372 1.078

1681 .278 . 390 .583 .887

DT . 102 . 143 . 181 .281 .932
.297 .524 .823 .69% 1,627

.189 «320 .542 .499 1.319

. 141 .210 «323 . 831 .812

r square

- SyncC STMT CALL v{G) DeecS

U475 Jhu47 .104 ,288 .368

.866 .800 .556 .595 .852

AI 717 .679 LU487 .525 . 733
-521 U469 JA54 - 396 » 372

- «T39 .838 . 489 .683 «T12

.592 .638 . 075 .627 . 450

. 490 .504 .289 «257 -376
. 322 .287 .380 <177 + 325
AT 170 .149 .078 . 187 207
. 054 .051 .02% .086 .0u2
.585 «551 «533 .589 +515
. 207 .227 «319 .210 «232

»335 .358 . 257 . 065 . 302
- 351 - 309 .312 .163 .382
' «T24 - 790 « 705 .522 .480
DT .660 + 725 .872 + 735 «531
-499 .558 . 734 - 321 +336
.682 .625 .398 49y .672
U469 . 484 »337 . 350 .288

30

Appendix 2

The folibwing tables present the results of the regression
models on each of tﬁe 19 compiler projects. The data is sorted by
the r square or the slope and is divided into three columns unﬁer
the headings Al fad hoe individual), AT (ad hoe team), and DT
(disciplined team). This is intended to provide a picture of the
statistical .results found in the paper by i1llustrating whiéh

© groups have higher or lower values for these measures.

v

e

-3

sorted Raw Data
(used by Mann-Whitney U test)

square

' 2.788

32

. r .
v(G) . DeecS ' .SynC STMT CALL
AI AT DT © AT AT DT AI AT DT AI AT DT AT AT DT
065 1 .042- - .05%4 ! .051 | .024
.086 - | .207 | J170 | 149 I .075
163 | .232 | $ 207] .227 I .078
L7700 - .288 | .322 | L287 | <104
. 187 | o .302 | .335 | .309 | .257
.210 I .325 | “351 | ~.358 1 . . .289
.257 I .336 | LU69 | Luu7 ! .312
.288 i .368 I U475 I .469 I «319
.321 1 .372 ! L1490 i "' Lugy | - ' .337
_ 350 | .376 | L1499 | 504 I .380
.396 i T .382 | .521 ' i «551 1 .398
894 | L4850 | .585 I .558 | .us4
.522 | .480 | .592 I .625 | .u87
.525 f | +515 I .660 | .638 I .489
_ .589 | © o .531) L6821 .679 I .533
.595 | 86721 ST I .725 | .556
.627 | 712 | 724 | .790 | - .705
.683 | +733 | .739 | .800 | T34
.735 | .882 1 .866 | .838 | .872
SN 1 | ' |
s 1 ope :
v(g) Dees SynC STMT CALL
AI AT DT AT AT DT AI AT DT " AI AT DT AI AT DT
' .258 | L. 680 N .085 | S .121 ! .118
.281 | .811 1 102 | . 143 | .181
.289 | .812 | 128 | .193 | 242
<372 | . 841 | PR LS IR .210 |- .323
, LU31 .887 | L1482 | .239 | .362
L4809 i .932 | +155 | .24y | .390
J499 | 1.035 | .157 | - 254 I 406
.531 I 1.060] 181] L2177 I . uu3
.583 | 1.076 | 173 | 278 | .U69
.621 I 1.078 | .189 | .319 | .502
.69 | 1.319 | 204 | ' .320 | .510
1.013 | 2.774 I .297 1| .524 | 547
1.244 | 2.84¢0 | 437 | .68%4 | . .B23
1.318 i 2.904 . | 456 | .T43] 1.811
1.776 i 2.950 492 i .785 | 1.460
1.992 i 3.044 | 1499 i .809 I 1.736
2.121 { 3.114 | 576 I .927 } 1.775
| 4.567 I .729 | 1.162 { 3.859

References

[Basili & Hutchens 80]
V.R. Basili and D.H. Hutchens, "A Study of a Family of

'Structural Complexity Metries," Proc. ACM-NBS Nineteenth
Annual Technical Symposium: Pathways to System Integrity,
Gaithersburg, MD. June 1980, pp. 13-15.

[Basili & Reiter 79] .
V.R. Basili and R.W. Reiter, "An Investigation of Human Fac-
tors in Software Development,™” Computer, Dec. 1979, pp. 21=-
38. .

{Basili & Reiter 81] _
" V.R. Basili and R.W. Reiter, "A Controlled Experiment Quan-
titatively Comparing Software Development Approaches," IEEE.
Trans. Software Eng., May 1981.

[Basili & Turner 75] -
~V.R. Basili and A.J. Turner, "Iterative Enhancement: A Prac-
tical Technique for Software Develcopment,¥ IEEE Trans.
Software Eng., Vol. 1, No. 4, Dec. 1975, pp. 390-396.

[Basili & Turner 76]
V.R. Basili and A.J. Turner, SIMPL
ming Language, Paladin House Publia

Structured Program-
Geneva, Ill. 1976.

L-T: A
hers,

er

[Benyon-Tinker 79] ' _
' «G+ Benyon-Tinker, "Complexity Measures in an Evolving large
m;ﬁystem, Workshop on Quantitative Software Models, IEEE,
Klamesha lLLake, NY, October 1979, pp 117-127.

[Carrﬁere & Thibodeau 79] .
W.M. Carriere and R. Thibodeau, "Development of A Logistics
Software Cost Estimating Technique for Foreign Military
Sales,"” General Research Corporation, Santa Barbara, Cali-
fornia, June “79.

[Chen 78] _ _
E.T. Chen, "Program Complexity and Programmer Productivity,"
IEEE Trans. Software Eng., Vol. 4, No 3, May 1978, pp. 187~
193.

[Conover T1]
W.J. Conover, Practical Nonparametrie Statistics, John Wiley
& Sons, New York, NY, 19T71.

33

[Curtis et al. 79] :
B.Curtlis, S.B. Sheppard, P,Milliman, M.A. Borst, and T.
Love, "Measuring the Psychological Complexity of Software
‘Maintenance Tasks with the Halstead and McCabe Metrics,”
IEEE Trans. Software Eng., March 1979, pp. $6-104.

[Dunsmore 78}
H.E. Dunsmore, "The Influence of Programming Factors on Pro-
gram Complexity,"™ Ph.D. Diss., Dept. of Computer Science,
University of Maryland, July ‘78. ' '

[Dunsmore & Gannon T7]
H.E. Dunsmore and J.D. Gannon, "Experimental Investigations
of Programming Complexity," Proc. ACM-NBS Sixteenth Annual
Technical Symposium: Systems and Software, Wash., D.C., June
1977, pp. 117-=225.

[bunsmore & Gannon 80]
H.E. Dunsmore & J.D. Gannon, "Analysis of the Effects of
Programming Factors on Programming Effort," The Journal of
Systems and Software 1, 1980, pp. 265-273.

[Elshofrr 76}
J.L. Elshoff, "An Analysis of some Commercial PL/1 Pro-
grams," IEEE Trans. Software Eng., Vol. 2, No 2, June 1976,
pp. 113-120.

[Haistead 77]
M. Halstead, Elements of Software Science, Elsevier Computer
Science Library, 1977.

[Henry & Kafura 81}
S. Henry and D. Kafura, "Sofiware Quality Metrics Based on
Interconnectivity," Journal of Systems and Software, Vol. 2,
No. 2, 1981, pp. 121-131.

[Linger, Mills & Witt 79] .
R.C. Linger, H.D. Mills, B.I.Witt, Structured Programming:
Theory and Practice, Addison-Wesley, Reading Mass., 1979.

[McCabe 761
T.J. McCabe, "A Complexity Measure,"” IEEE Trans. Software

Eng., Vol. 2, No. 4, Dec. 1976, pp. 308-320.

[Neter & Wasserman T4}
J. Neter and W. Wasserman, Applied Linear Statistical
Models, Richard D. Irwin, INC., Homewood Ill., 1974,

[Siegel 563 : _
S. Siegel, Nonparametric Statistics, McGraw-Hill Book Com-
- pany, New York, NY, 1956,

34

[Stevens, Myers, & Constantine T4}
W.P. Stevens, G.J. Myers and L.L. Constantine, "Structural
Design," IBM Systems Journal, Vol. 13, No. 2, 1974, pp.

[Sunochara et al. 81]
T. Sunchara, A. Takano, K. Vehara, and T. Ohkawa, "Progranm
Complexity Measure for Software Development Management,"
Proc. Fifth International Conference on Software Engineer-
ing, San Diego, California, March 9-12, 1981, pp. 100-106.

[Weiser T791] '
: M:D. Weiser "Program Slicing,”"” Fifth International Confer-

ence on Software Enginegring, San Diego, California, 1981.

[Woodward et al. T79]
M.R. Woodward, M,A. Hennell, and D. Hedly, "A Measure of
- Control Flow Complexity in Program Text," IEEE Trans.
Software Eng., Jan. 1979, pp. 45-50. o

[Yau & Collofello 801 ' .
5.5, Yau and J.S. Collofello, "Some Stability Measures for

Software Maintenance", IEEE Trans. on Software Eng., Vol. 6,
No. 6, Nov. 1980, pp 545-552. ' ' -

35

45 —

30 f—

40 [—

35—

SLOPE = 0,286
INTERCEPT «-0.425
T SQUARE =0,866

Ad Hoc
Individual

Figure 1

140

90 — Ad Hoc Individual
- Regression Lines
80 — |

o1 4111
0 20 40 60 80 00 120 140 160 180
' o ' SynC

" Figure 2

Changes

SLOPE = 0.239
INTERCEPT = 0,382
T SQUARE =0.358

0000 09

Disciplined

Team

°l

5 10 5

20
STMT

25

‘ .Figure 3

- 30

35

40

45

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entared)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2, GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
TR-1255

4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED

COMPLEXITY METRICS 6. PERFORMING OXG, REPORT NUMBER
TR-1255

7. AUTHOR(S8)) _ B. CONTRACT OR GRANT NUMBER(s)
David H. Hutchens and Victor R. Basili AFOSR-F49620-80-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. FﬁOGRAM ELEMENT, PROJECT, TASK

. AREA & WORK UNIT NUMBERS
Department of Computer Science

University of Maryland
College Park, MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS ' 12. REPORT DATE
Math. & Info. Sciences, AFOSR March 1983
Bolling AFB 13. NUMBER OF PAGES
Washington, D. C. 20332 . : 35 plus 3 pp. of figures
T3 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
55, DEGL ASSIFICATION/ DOWNGRADING
SCHEDULE :

16. DISTRIBUTION STATEMENT (of this Report)

Approved for publie release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the absfract entered in Block 20, if different from Report}

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

software experiments, software metrics
control structure metrics, structural complexity
syntactic complexity, program changes, development methods

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)
A family of syntactic complexity metrics is defined that generates several
metrics commonly occurring in the literature. The paper uses the family to answefr

some questions about the relationship of these metrics to error-proneness and to
each other. Two derived metrics are applied; slope which measures the relative
skills of programmers at handling a given level of complexity and x square which
is indirectly related to the consistency of performance of the programmer or
team. The study suggests that individual differences have a large effect on the
significance of results where many individuals are used. When an individual is

DD ,an7s 1473 EDITION OF 1 NOV 6515 OBSOLETE UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dafa Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Enlerod}

20. (cont'd)

isolated, better results are obtainable. The metrics can also be used to
differentiate between projects on which a methodology was used and those
on which it was not.

UNCLASSIFIED
" SECURITY CLASSIEICATION OF T:'c PAGE(When Data Enterad)

