Technical Report TR-1442 September 1984

Structural Coverage of
Functional Testing

Victor R. Basili
James Ramsey

Department of Computer Science
University of Maryland
at College Park

Abstract

A large, commercially developed FORTRAN program was
modified to produce structural coverage metries. The
modified program was executed on a set of functionally
generated acceptance tests and a large sample of
operational usage cases. The resulting strudtural
coverage metriecs are combined with fault and error
data to evaluate structural coverage in the SEL
environment. :

We can show that in this environment the functionally
generated tests seem to be a good approximation of
operational use. The relative proportions of the
exercised statement subclasses (executable, assign-
ment, CALL, DO, IF, READ, WRITE) changes as the struc-
tural coverage of the program increases. We propose a
method for evaluating if two zets of input data exer-
cise a program in a similar manner.

We also provide evidence that implies that in this
environment, faults revealed in a procedure are
independent of the number of times the procedure is
executed and that it may be reasonable to use pro-
cedure coverage in software models that use statement
coverage. Finally, the evidence suggests that it may
be possible to use structural coverage to aid the
management of the acceptance test process.

This study is funded by NASA grant NSG-5123.

Table of Contents

T Introduchion ceeeeeeeessetscnensseacesnosestsvensasnsnnsesnsssss
2 G0als Of the StUAY steeeestsiisiistviivnnmnnnconnsassssassasacnas
3 Data and ANGlYSLiS ceescesestsscsncnescosscrsessnannnansscasacssss
3.1 Structural Coverage in the SEL tivevesrvevsssavssssssassanee
3.2 Comparison of Inputs Using Structural Coverage Metries veee.
3.3 Error, Faults, and Failures and Structural Coverageces.
Structural Coverage and the Management of Acceptance Tests
Conclusions and CriticiSmsS sceessesscecccssccassocsonsnsssssoanans
ACKNOWI1edEmMENTS sassanueescesasrassoceonsosannssssessonoccncssss

=~ ;g

ReferenCeS teerertesensrossssscvsvocontosnsnanonnssssssnsssssnses

B S

14
15

17
17

1. Introduction

The goal of this study has been to understand and improve the
acceptance test process in the NASA Goddard Space Flight Center SEL
environment [SEL82a]. Towards this end, an SEL program has been modi-
fied to produce structural coverage metrics. The instrumented program,
the MAL language preprocessor, is a subset of the RADMAS satellite atti-
tude maintenance sjstem [sTL82]. It has 68 functions and subroutines,
10k source lines of code and 4k executable statements. The program was
modified to measure both procedure coverage and statement coverage.
Coverage is also computed for the statement subclasses: assignment

statements, CALL, DO, IF, READ, and WRITE.

The modified program was executed on a set of ten functionally gen-
erated acceptance tests and on sixty typical operational usage cases
[CSC78]. Error, fault and failure data* were collected from the system

test through operation phases [SEL82b]. Each execution of an acceptance

test or an operational usage case provides a structural coverage statis-
tic. These structural coverage statistics are first examined individu-
ally to understand the static properties of the acceptance test process.
Randomly generated sequences of acceptance tests and operational usage

cases are then examined in an attempt to understand the dynamic proper-
ties of structural growth. Finally the coverage data are combined with

the error, fault and failure data to understand how faults are revealed.

* We have tried to follow the IEEE Standard Glossary of Software En-
gineering Terminology definitions of error, fault and failure: An error
is the "human action that results in software containing a fault.™ A

fault is "a manifestation of an error."™ A failure is "a departure of

program operation from program requirements" [IEEES83]. Some of the
sources we cite were written before the standard; their use of error may
differ from the standard.

1
i

2. Goals of the Study

The first goal of this study was to characterize structural cover-—
age in the SEL environment. The first questions address the simple,
static properties of structural coverage for the different kinds of
inputs. Question I.D compares two kinds of structural coverage: pro-
cedure and statement coverage. It would be a useful result if we could
show that procedure coverage can be substituted for statement coverage
in software models since procedure coverage is easier to measure than
statement coverage. The final question addresses the dynamic properties
of structural coverage: the structural coverage growth of a set of input

cases.

Some testing strategies ([Duran80] and [Dyer82]) and software reli-
ability models [Brooks80] require a method for showing that two sets of
inputs exercise a program in a similar fashion. This motivated goal II:
"Can different input sets be differentiated using structural coverage

metries?" Questions IT.A-II.D explore several methods of doing this.

The purpese of the functional tests is to reveal faults in the pro-
gram yet some faults are still revealed in operation. What classes of
faults does functional testing miss? Does operational use exercise the
code differently than the functional tests? How is this related to
structural coverage? This motivated the next goal: "How are faults and
structural coverage related?" Questions III.A - ITI.D analyze the SEL
error, fault, and failure data with respect to structural coverage

[SEL82b].

Finally in Section IV these ideas are combined to suggest an

improved method of managing aeéeptance tests.

I. Characterize structural coverage in the SEL environment.

I.A. What is the statement coverage of functional testing? What is
the procedure coverage of functional testing?

I.B. What is the statement coverage of operational use? What is the
procedure coverage of operatiocnal use?

I.C. What are the intersection / union of functional testing and
operational use?

I.D. Can procedure coverage be substituted for statement coverage in
software models?

I.E. What are the properties of structural coverage growth?
JI. Differentiate different input sets using their structural coverage.

IT.A. Are heavily exercised procedures more likely to contain a
fault?

I1.B. Using Venn diagram?

II.C. TUsing nonparametric statistics?

II.D. Using number of executions of prime sections of code?
ITII. Relate errors, faults, failures and structural coverage.

IIT.A. Are more heavily exercised procedures more likely to contain
a revealed fault?

ITI.B. Are faults related to time to isolate?
ITI.C. Are faults related to time to understand and implement?
IIT.D. Are faults related to type of error?

IV. Use structural coverage to aid the management of acceptance tests.

IV.A. Can structural coverage be used to suggest new acceptance
tests?

IV.B. Can structural coverage be used to improve reliability models?

Figure 1.

3. Data and Analysis

This section contains a description of the data and their analysis

paralleling the outline in figure 1.

3.1. Structural Coverage in the SEL

Question:
What is the statement coverage of functional testing? What is the

procedure coverage of functional testing?

The acceptance tests we used are functional or "black box" tests
[Howden81], [Myers79]. Since exhaustive sampling of the input sub-
domains is impractical, a few sample inputs from a few subdomains are
chogsen that the testers feel are likely to reveal faults [CSCT8]. There

are 17 acceptance tests.

Table 1 shows the structural coverage of the acceptance tests.

Test 1 exercised 33 out of 68 possible procedures. It exercised 1069 of

the 4300 executable statements. 1In total the 17 tests exercised 51 pro-
cedures and 2408 executable statements (Union). There were 778 execut-
able statements that were exercised by every test case (Intersection).
These numbers are interpretated as percentages of the maximum in table
2.

Please note that we did not measure the structural coverage of
either system or unit tests. Statements which were not exercised during
acceptance test might have been exercised during previous testing.
Structural coverage measures were not available during either system or

unit test. Procedures were not tested with the goal of achieving high

structural coverage.

Question:

What is the statement coverage of operational use? What is the

procedure coverage of operational use?

We obtained 60 input cases that we claim are representative of SEL
operational usage. These are 60 samples of actual operational usage
cases. This 1s significantly different from other definitions of opera-
tional usage where typically the input domain is divided into sub-
domains, with each subdomain being assigned a probability of execution.
Input cases are then chosen using the probabilities of execution
[Brown75], [Duran78], and [Dyer82]. OQur definition of operational usage
lacks both the definition of subdomains and the assignment of probabili-
ties. These probabilities are difficult to compute and verify.
Rigerously derived or otherwise, these operational usage cases define

how the program was exercised.

The statement and procedure coverage of operational usage is

displayed in tables 3-4.

Question:

What are the intersection / union of functional testing and opera-

tional use?

Table 5 compares the structural coverage of functionally generated
acceptance tests and operational usage. Together they exercised 55 pro-
cedures and and 2768 executable statements. Their intersection (the
statements exercised by both sets of inputs) contains 51 procedures and

2397 executable statements. There are 360 executable statements thatb

j
H
|
i
|
1

are exercised by operational usage but not by acceptance test; 11 state-
ments that are exercised by acceptance test but not by operational

usage. Table 6 shows the raw numbers interpreted as percentages.

Some interesting observations can be made. The I/0 statements,
especially the WRITE statements, are less likely to be executed than
most other statement subclasses. This is reasonable considering the
role WRITE statements play in debugging and error condition handling
code. Also, as statement coverage iﬁcreases, different statements sub-
classes are more likely to be exercised. In table 6 the line labeled
"OpU-A" deseribes the statements that are executed in operational use
but not in acceptance test. Operational usage exercised 8.4% of the
code that acceptance test never exercised. This 8.4% is not an even
¢ross section of the statement subclasses. One would reasonably expect
the 8.4% to be similar for different statement subclasses but this is

not so. 12.1% of the IF statements are executeds half again as much as
might be expected.

While this is an interesting result in its own right, this also has
some significance to software reliability models. Assuming that state-
ments from different statement subclasses have different likelyhoods of
being a "fault," then this result seems to imply that a representative
reliability model should have a hazard function (see [Myers79]) that

varies over time.

Question:

Can procedure coverage be substituted for statement coverage in

software models?

Statement coverage is easy to measure but it is costly in terms of
execution time; procedure coverage is much cheaper to measure. Showing
thatl procedure coverage could be substituted for statement coverage in
software models would be a useful result. We have not tried to substi-
tute procedure coverage for statement coverage in software models to
demonstrate our hypothesis, but rather we have discovered a result that

seems to support this possibility.

Each execution of the instrumented program produced both a pro-
cédure coverage statistic and seven statement coverage statisties (the
number of assignment statements, executable statements, CALLs, DOs, IFs,
READs, and WRITEs exercised). Plots 1-.14 show procedure coverage versus
the different kinds of statement coverage for both operational usage and
acceptance test. The plots seem to be linear. This is unremarkable;
the more procedures that are exercised, the more statements are exer-
cised. What is interesting is the tightness of the linear fit. In the
limited range we examined, the values are never more than +200 state-
ments from the estimate for acceptance test and +300 statements for the

operational usage cases.

Question:

What are the properties of structural coverage growth?

For a set of input cases, structural coverage monotonically
increases with the execution of each new input case (bound above by the
number of reachable statements). This section examines the growth of

structural coverage. It is important for two reasons:

(1} It provides a way to see if two sets of input cases exercise the

program the same way. This provides a way to compare the

equivalence of operational use ahd acceptance testing.

(2) It provides useful data for the reliability models. Assuming that
increased coverage implies a higher failure rate, then anything we
learn about the growth of structural coverage can be applied to the

calculation of the reliability models” hazard functions.

With 17 acceptance tests and 60 operational usage cases, there are
clearly too many sequences to exhaustively examine. In a personal come
munication, Amrit Goel proposed a solution: examine the structural cove-
erage of a large, but manageable number of sequences. Plots 15-16 show
the structural coverage growth of 100 permutations of both acceptance
tests and operational usage, with median and guartiles superimposed.
Note that the acceptance test plots must all end at the point (17,

2408).

A variety of models were fitted to the structural coverage growth

data in an attempt to learn more about structural coverage growth. A

good mathematical model of structural coverage growth would provide
insight into structural growth. Models were fitted to the first half of
a sequence to evaluate their usefulness as predictors and to the entire
sequence to evaluate their ability to characterize structural coverage
growth., Plots of the residuals were examined visually to estimate good-

ness of fit.

The best fit was obtained using Goel and Okumoto’s NHPP model
[Goel80b]. The NHPP model was originally defined as a reliability
model. Given a history of faults revealed over time, it predicts the
number of faults revealed by time t. It is being used here as a model

of structural coverage growth. Restated in terms of structural coverage

8

growth, the model is:

m(t) = a(1-e~P%)
where m(t) is the number of statements executed after test t. a
predicts the maximum number of statements to be executed. b defines the
steepness of the curve. Given m(1) through m(tmax)’ a and b can be cal-

culated. Note the following properties:

m(0) =0
m(tmax) = SC(tmax)
lim m(t) = a
t=->00

maximum statement coverage

It is the best of the models attempted, but its results are impere
fect even when a variety of data transformations are applied. Plots
17-24 show some of the fitted models and their residuals. This remains

an area of future research.

In summary, we have used structural coverage to provide insight
into how functional acceptance test and operational usage exercise a
program”s code; to suggest results that effect reliability models; to
suggest a relationship between procedure coverage and statement cover-

age; and to move toward understanding statement coverage growth.

3.2. Comparison of Inputs Using Structural Coverage Metrics

Does functional testing have the same coverage profile as opera-
tional usage, or more generally, can structural coverage be used to com-
pare two sets of program inputs? This question is interesting for two

reasons:

(1) Some testing models require input sets that are "representative® of
operational usage [Brown75]. Structural coverage could provide a

way of measuring this.

(2) Many reliability models, when uging past failure data to predict
failure rate or number of failures, assume that the past inputs are

similar to the present inputs. Struectural coverage could provide a

method for confirming this.

! Question:

Can the Venn diagram technique be used to differentiate input sets?

In section 3.1 we compared functional test sets with operational

usage using a Venn diagram technique (tables 5-6). We used this to show
differences in the way operational usage exercised the program. Could
| this be extended to other input sets? For example, it seems plausible

that tests generated with the goal of high branch coverage would eéxecute

i different code than tests generated by test mutation on arithmetic
expressions [DeMillo78] or that boundary value functional tests would

exercise different sections of code than statistical predictions of

operaticnal usage. We hypothesize that the code in the different sec-

tions of the Venn diagram would reflect the properties of the two sets

i of tests.

! Question:
Can input sets be differentiated using nonparametric tests of

structural coverage?

j Acceptance test and operational usage were statistically compared

f

|

s

| .

} 10
?

[

using both the Mann-Whitney and Kruskal-Wallis tests¥. The proposed
hypotheses were: "For each of the structural coverage classes (pro-
cedures, executable statements, assignment statements...) the population
represented by the 60 operational usage cases is similar to the popula-

tion represented by the acceptance test cases.m

Table 7 shows the Kruskal-Wallis H statistic. It shows the result
of the test (reject or fail to reject) and the appropriate significance
level for each statement class. Table 8 shows the results for the
Mann-Whitney U statistic. The column “low U" shows which population had

the lower central tendency.

The tests failed to reject the hypotheses for all statement types
except READs. Since there are so few READ statements, a small, random
difference in the tests could falsely manipulate the statistic. The

other statement classes are less susceptible to smal@wcﬁanges and
represent a better population to examine.

The tests fail to reject the hypotheses that the two populations
are similar, meaning that in this case, operational use and acceptance

test cannot be distinguished by their structural coverage numbers.

Question:

Can the number of executions of prime sections of code be used to

differentiate input sets?

¥ The Mann-Whitney and Kruskal-Wallis tests were chosen because they
are nonparametric tests; they make no assumptions about the distribu-
tions of source populations. The Mann-Whitney test is most sensitive to
differences in "location (central tendency)." The Kruskal-Wallis test is
sensitive to differences in "location or dispersion or skewness.®
[SiegelB6].

11

Are statements executed as thoroughly by acceptance test as they
are by operational usage? For each statement in the program, it is pos-
8ible to count how many times it was exercised by a particular accep-
tance test or operational usage case. (This differs from the number of
times it was executed). If acceptance test and operational usage are
similar, then the percentage of acceptance test cases that executed a
statement should be similar to the percentage of operational usage

cases.

The two percentages were calculated for each prime section of code,
The plotted data are shown in scatier plot 25. The regression line has

slope 0.921 and intercept 0.032. The r square value is 0.863.

Since the plot does not show any imbalance, one could conclude that
acceptance test and operational usage exercise the code equally
thoroughly. It is a future goal of this research to replace this empir-

ical judgement by a statistical test,

Te summarize, we proposed three methods for comparing sets of pro-
gram inputs: Venn diggram comparison of executed statements, statistical
comparison, and thoroughness of execution of prime sections code. These
methods may be able to diffefentiate input sets, a result that would be

useful for understanding reliability models and some testing strategies.

3.3. Error, Faults, and Failures and Structural Coverage

The SEL has been collecting data on software development for 7
years [SEL82a]. Error, fault and failure data are collected using the
"Change Report From" or CRF (see figure 2). A CRF is filed whenever a

change, enhancement or fault repair is made to a subroutine or data

12

file. This study examines the fields "time %o isclate the error," %the

time to understand and implement," and the section "type of error#.®

There were eight faults found during operation. Each fault could
be repaired by changing code in oné procedure. One procedure contained

two faults. With these data, we can address these questions:

Question:
Were heavily exercised sections of code more likely to contain

faults?

These data are shown in table 9. A mark is entered for each of the
68 subroutines. The vertical axis describes the number of times the
subroutine was exercised in operational usage. The subroutines that

contained the faults are marked with mn#n,

Half of the procedures were exercised by more than 90% of the

operational usage cases. About half of the revealed faults occurred in

this group of procedures (3 of 8). With these data we reject the
hypothesis that more heavily exercised subroutines are more likely to

| contain a revealed fault.

Tables 10-12 show faults categorized by time to isolate, time to

understand, and number of times the procedure was exercised.

Question:

Is procedure coverage related to time to isolate?

¥ Time to isolate the error is classified as taking: less than one
hour, one hour to one day, greater than one day, never found. Time to
; understand and implement the change is classified as taking: less than
| one hour, one hour to one day, one day to three days, or greater than
three days. Faults are categorized as originating in the: requirements,
functional specification, design (either involving data or expression),
external environment, use of language, clerical or other.

| 13

Time to isolate the change seems to be independent of procedure

coverage.

Question:

Is procedure coverage related to time to understand and implement?

Increased usage seems to be associated with longer time to under-
stand and implement a change. This might be explained by suggesting
that the lightly exercised procedures contain fairly simple code while

the heavily exercised code is, by necessity, more complicated and

requires more time to modify.

Question:

Is procedure coverage related to type of error?

Table 12 lists the faults classified by type and procedure coverage
in operational usage. There are too few féults to reveal any interest-

ing patterns.

In summary, we have tried to relate statement coverage to: "time to
isolate an error," "time to understand an error," and "type of error."
The data begins to suggest a relationship between "time to understand an
error" and structural coverage. There were too few errors to make any
firm statements about "time to isolate an error" and "type of error."

This remains a promising area of study.

4. Structural Coverage and the Management of Acceptance Tests

Combined with failure data, structural coverage could aid the
design of acceptance tests. Imagine a manager in charge of designing

acceptance tests for a group of =imilar projects or for various releases

14

of a single project. With the failure data from the previcus project or
release and the structural coverage of both the acceptance and opera-
tional usage cases he can suggest new acceptance tests for the next
release. He could reduire tests to exercise unexercised sections of
code., He could require new acceptance tests to explain the code missed
by acceptance test but exercised in operational usage. If he is using a
testing methodology or reliability model that requires inputs that are
representative of operational usage, he can use these data to select

more representative tests.

We see structural coverage being used by a manager in an iterative

fashion:

(1) Gather structural coverage data on acceptance tests and release the

project.
(2) Gather structural coverage data and failure data on operational
usage. Use these data to adjust reliability models.

(3) Use structural coverage data to: suggest new tests and evaluate how

the old tests were created.

(4) Restart the cycle with the new acceptance tests.

5. Conclusions and Criticisms

We coneclude:

(1) We may be able to compare sets of inputs using statistical tests
and Venn diagram techniques. This would be useful for examining

some testing methods and reliability models.

15

(2)

The structural coverage growth of different statement subelasses
grows at different rates. This insight might be of interest to

reliability model developers.

The data seem to imply:

(1)

(2)

(3)

(1

(2)

(3)

(1)

Faults are independent of number of executions. We can (in our
environment) reject the hypothesis that heavily exercised pro-

cedures are more likely to contain more revealed faults.
Procedure coverage may be used for statement coverage.
Management of the acceptance test process is possible.
This study can be criticized on a number of points:

There are too few faults to make any forceful statements about
errors, faults, failures and structural coverage. (But then again

we cannot fault NASA/GSFC for having programs with too few faults.)

While the data suggests that it may be possible to differentiate
test sets using structural coverage, we have never provided an

example that shows that it can!

This study does not address the order in which the functional tests
were used, the order of the operational usage cases or which opera-

tional usage cases revealed the faults.

The study did not produce a good model of structural coverage

growth.

These points will be addressed when the study is replicated in the

summer and fall of 1984. The program being studied is DERBY [CSC831, a

large (300 routines, 50k source lines of code), satellite simulator.

16

i
j
;
i
|
|
;
i
;
|
|
|
:

The new project is larger and should have more faults. With the new
project, we will gather more thorough information on the order of system
tests, acceptance tests, operational usage cases, plus the exact input
that reveals a failure. The results of this new study should answer

many of the questions raised by this study.

6. Acknowledgments

We would like to thank Frank McGarry, Dr. Gerald Page, and Dr.
Amrit Goel for their help in the production of this paper, Dr. David
Hutchens for a clear-eyed review, and the University of Maryland s
Software Engineering group for providing a fertile intellectual environ-

ment.

7. HReferences

[Basili81]
Basili, Victor R. and David M. Weiss, Evaluation of a software re-
quirements document by analysis of change data, Proceedings of the
Fifth International Conference on Software Engineering, San Dlego,
CA, pp. 314-323, March 9-12, 1981.

IBasili82]
Basili, Vietor R. and David M. Weiss, A Methodology for Collecting
Valid Software Engineering Data, TR-1235, Compuber Science Techni-
cal Report Series, December 1982.

[Brooks80]
Brooks, W. D. and R. W. Motley, Analysis of Discrete Software Reli-
ability Models, RADC TR 80-84, RADC, April 1980.

[BrownT75]
Brown, J. R. and M. Lipow, Testing for software reliability,
Proceedings of the International Conference on Reliable Software,

Los Angeles, CA, pp. 518~ 527, April 1975.

17

[cscT78]
Acceptance Test Methods, TM-78/6296, Computer Sciences Corporation,
October 1978.

{cse83)
ERBS Dynamics Simulator User’s Guide and System Description, SD-
83/604k, Computer Sciences Corporation, August 1983.

[DeMillo78]
DeMilio, Richard A., Richard J. Lipton, and Frederick G. Sayward,
Hints on test data selection: Help for the practicing programmer,
Computer, pp. 34-41, April 1978.

[Duran78] .
Duran, Joe W. and John J. Wiorkowski, Towards models for proba-
bilistic program correctness, Proceedings of the ACM Software Qual-
ity Assurance Workshop, pp. 39-U44, 1978.

[Duran80]
Duran, Joe W. and John J. Wiorkowski, Quantifying software validity
by sampling, IEEE Transactions on Reliability R-29, 2, pp. 141-144,
June 1980.

[Duran81]
Duran, Joe W. and Simon Ntafos, A report on random testing,
Proceedings of the Fifth International Conference on Software En-
gineering, pp. 179-183, March 1981.

[Dyer82]
Dyer, M. and Harlan D. Mills, Developing electronic systems with
certifiable reliability, Proceedings of the Conference on Electron-
ic Systems Effectiveness and Life Cycle Costing, NATO Advanced
Study Series, Springer~Verlag, Summer 1982.

[Goel80a]
Goel, Amrit L., Software error detection model with applications,
Journal of Systems and Software 1, 3, pp. 243-249, 1980.

[Goel180b]
Goel, Amrit L. and K. Okumoto, A Time Dependent Error Detection
Rate Model for Software Performance Assessment with Applications,
anmual report to RADC, Department of Industrial Engineering and
Cperations Research, Syracuse University, Syracuse, New York, March
1980.

[Goodenough75]
Goodenough, John B. and Susan L. Gerhart, Toward a theory of test
data selection, IEEE Transactions on Software Engineering, pp.
156-173, June 1975.

18

[Howden81]
Howden, William E., 4 Survey of Dynamic Analysis Methods, Tutorial:
Software Testing & Validation Techniques, 2nd Ed., ed. E. Miller
and W. E. Howden, pp. 209-231, 1981.

[IEEE83]
IEEE Standard Glossary of Software Engineering Terminology, IEEE
3td 729-1983, IEEE Inc., February 1983.

[Musa80]
Musa, John D., Software reliability measurement, Journal of Systems
and Software 1, 3, pp. 223-24%, 1980.

[Myers79]
Myers, G. J., The Art of Software Testing, John Wiley & Sons, New

York, 1979.

[3EL82a]
The Software Engineering Laboratory, SEL-81-104, Software Engineer-
ing Laboratory Series, February 1982.

[SEL82b]
Guide to Data Collection, SEL-81-101, Software Engineering Labora-
tory Series, August 1982.

[Siegel56] _
Siegel, Sidney, Nonparametric Statistics For the Behavioral Sci-
ences, McGraw-Hill Book Company, Inc., New York, 1956.

[3TL82]
Research and Development Mission Analysis System (RADMAS) System
Deseription, STL-82-005, Systems Technology Laboratory Series, July
1982,

[StuckiT7]
Stucki, Leon G., New Directions in Automated Tools for Improving
Software Quality, pp. 80-111 in Current Trends in Programming
Methodology, Vol II: Program Validation, ed. Raymond T. Yeh,
Prentice~Hall, Inec., Englewood Cliffs, New Jersey, 1977.

19

NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION

REASON: Why was the change madse?

DESCRIFTION: What change was made?.

EFFECT: What companents {or documents) are changed? (Include version)

EFFORT: What additional components {or documents) were examined in determining what change was needed?

Month Day Year)

Need for change determined on

Changestartedon

What was the effort in person time required to understand and impdement the change?

——1 hour or less, - 1 hour to 1 day, — 1 day to 3 days, e .. Mmore than 3 days

SECTION B - TYPE OF CHANGE (How is this change best characterized?)

[Error correction : O insertion/deletion of debug code

O Pranned enhancement I Optimization of time/space/accuracy
O Implementation of requirements change () Adaptatidn ta environment change
O improvement of clarity, maintainability, or documentation o L1 Qther {Expiain in E}

O Improvement of user services

‘Nas more than one component affected by the change? Yes No

FOR ERROR CORRECTIONS ONLY
SECTION C - TYPE OF ERROR {How is this error best characterized?}

Requirements incorrect or misinterpreted [0 Misunderstanding of external environment, except language
3 Functional specifications incorrect or misinterpreted O Error in use of programming language/compiler
: Design error, involving several components 3 Clerical error
Error in the design or implementation of a single component [0 Other (Exptain in E}

FOR DESIGN OR IMPLEMENTATION ERRCRS ODNLY

If the error was in design or implementation:

The error was a mistaken assumption about the value or structure of data

The error was a mistake in control logic or computation of an expression

5802 {6/78)

 Figure 2.

FOR ERROR CORRECTIONS ONLY

SECTION D - VALIDATION AND REPAIR

What activities were used 1o validate the program, detect the error, and find its causa?

Activities Activities Activities Activities
Used for Successful Tried to Successful
Program in Detecting Find in Finding
Validation Error Symptams Catuse Cause

Pre-acceptance test nsns

Acceptance testing

Post-acceptance use

Inspection of output

Code reading by programimer

Cade reading by other person

Tatks with other programmers

Special debug code

Systern error messages

Project specific error messages

Lﬁeading documentation

Trace

Durnp

:Cross-reference/attribute list

\Proof techniegue

!Omer [Explain in E)

When did the errar enter the systermn?

one hour or fess, __ one hour to one day, ___more than ane day,

If never found, was a workaround used?____ Yas

Yes {Change Report #/Date

—requirements . functional specs

What was the time used io isolate the cause?

never found

Ne {Explain in €}

Was this 2rror related to a previcus change?

No Can't tell

can't tell

design __coding and test __-_other

ramifications.

Mame:

SECTION E - ADDITIONAL INFORMATION

Plagse give any information that may be helpful in categorizing the error or change, and understanding its cause and its

Authorized: : Date:

FamR 15/7E)

‘35853 dauedtgtubis 403 (GTYL Es5n BRUTOd E®REp /T a4E 3uIy]
586 0 = UOTAETIBJI0D ZpH I8 = ITFST3E36 4 [&T "I = 143 pas
0i6 ' = aaenbg. B81 v~ = jdasaajur &BO 22 = adots

Coverage for 17

e T e T

Assignment Statement Coverage vs Procedure

Acceptance Tests.

Plot 1.

L g e ey 5C r= 7 ai o 1]
+ h + -+ t]
| 1 | | |
{ I 1 I
R |
H i e
1 T 1 T T LLi |
i i I i
{ | !
e “ |
i 1 ! 1 .
T 1 T T T | LR
i) { i
[I | i
_ |
t
u _. o
f H | [AIR
| ;
I i
i §
1 |
! L L o'F N
! l | 1 s
| t
1 E
_ t....gl,.
{ P
; + : e SIS
[I k oy i
i g |
! W+
{ 7
! A
w (fec]
i |
1 I
1 3 e
i s
= t s {uE
i A
I 1
i PO
| N
i o | [
f T 1 t s
| * | t
1 e 1 [
! » L] 1
1 A i I 1
1 i] | i P
i 1 i 1 hao
1 |]]
| I | 1
t HE i i :
H 1 1 { i i i
L 1 i L I 1 | 1 1 L 1

ooal

€ UMt Che

ge for 17 Accep-’

CALL Statement Coverage vs Procedure Covers

tance Tests.

Plot 2.

35&E) aduedTdrulits u03d (gTyl asn SAUTOd EREP LT Bl adayy

GE&H D = UOL4BTSBILOI CEZ 'OT = 3136T4€45 | BEEC B = 443 pjs
/0 = Bdenbs o 8.0 PET-~ = fdadasnur iy L = adors
P...U_U.LN.L
o G Ol oo ce bt as ey ot = 0
] (X}
| =
| |
t] i |
w (aP=)
F Pl
LH
.._,. E 3
..__. —
s |
O 17 Qat
% .\... A
_ Vi
..\.‘.
LS |
i 1 { !
| e t
I o | i I - T
r F Q.h.v
o
} L |
| o & I
i g | i
! |]
I i i
| y | | !
H d | | i
; i i t
L .w | | | P
\ H _— m m H lminror
i & | I | :
| L |] 1 I
i * i i i |
i I I]) i i
i]] I 1
i i i | i
i I i i ;
] 1 I | i
i i [i]
! 1 1] I _

£
e
il

3 Ot 11

ge for 17 Accep-

Do Statement Coverage vs Procedure Covera

tance Tests.

Plot 3.

3583 ajuesbt4Iublts dog (GTrL asn sputod ERER L] 848 aday|’
GE& "G = UOTHETB4L0T 8BS FT = ST35I9815 TS Fa = Jddd PR
EQ0s G = @.iEnbs 4 Y7L B~ = 3dasdsjur &0 T = adoys

0

II‘_)
o

i

lip]
oy
-
i
i
i
]
1]
i
L]

at

i
]

e T
TR
o

a1

Ok

V) - - s

(R

ge for 17°

Executable Statement Coverage vs Procedure Covera

Acceptance Tests.

Plot 4.

isan duedrgtubis w0y (grIL espy sjurod Bqep LT 848 8asy
FB& 0 = UOTIRIILLOT EQL EE = ITASTIRAS | POF ET = Li3 pas
246 D = adenbs 4 £L1 'B6lL- = 3dadgazuy £46 96 = odots

(o}
(%]
1y
s

b

)]
Y}
)
(o)
1)
'
be
13
Hy
bl

ar

Iy
2

ELE)

oos

02T

i : - 00T -

. - - 009l

%

B

oosT

onoe

e

IF Statement Coverage vs Procedure Coverage for 17 Accep-

-Plot 5.

tance Tests.

1887 87udI4Tubrs Jo0y (SI)L 280 s3UTod BABP LT 9UE @adayyp
L£8& D = UOTIHIDULLOD 448 GF = 3T36I3BR8 ;| ©&T 11 = 448 pas
Q.60 = adsenbs CEL LETI~ = Fdaadanrur 11 11 = adois
o N (O .
% S Ok [wi G L =4 S at g o
i— | } e : i / i by
i i 1 i 1 1 § \ { |
1 1 i i | I
i | i i | I
i | i i
!] H
L |
H T
{ |
i |
!
1
i l |] i 1 1 |
; i 1 1 1 I i i
1 1
“_ _ { _
m _ |
I T !
Il i
| 3
.~
A
ra
s
.
* oy
..\.
._..._s.‘
...wn..
i \...,
" I
|
e
* L
i | i
}
|
“ E 3

)

o

=t 4

Plot 6.

S

tance Tests.

i

READ Statement Coverage vs Procedure Covera

L]

wr

iy

%

s

+

1]

153

.

]

v

i

n}

1

gt

10

Hl

14

& & TETIn

[

xl:

ge for 17 Accepw

Th
£
-

LL

3. 830

. 589
significance test.

g

T square
correlation

-4 &5
= 5. 789

intercept
1.904 T statistic

D. 345

siope =
std err

far

Use T{15)

There are 17 data paints,

ge for 17 Ac-

WRITE Statement Coverage vs Procedure Covera

ceptance Tests.

Plot 7.

‘Ana) ajuedtygrudts uog (glii Asn sjured ezep AT @&4E adayy
SBH G = UOT4RISILO0I LG G = ITISTRERS | OPF E = J48 pis

185 0 = saenbs 4 266 DI~ = jdadudjur YEL 0O = ado1s
En e
4z St b o RN f= il oz Gt Wa o i3
i
=
nt
AF
.-._
» L3
A..H
ra *
» L7
s I
4
E 3 .\..
s
i a
! A
/ N
w
y
¢ w;
E 3

DL 3

Assignment Statement Coverage vs Procedure Coverage for 60

Plot 8.

Asa aduedrgrubrs Loy (BG)L @SN squicd BREP OO BuE aday)

UOTIRPIaddos 468 41 = 213513035 1 . $/C &b = 443 gas
CZL'GE8~ = 2danuaijur . /75 #2 = mnoﬁm
e g2 ae St ai -
¥
P
-
¢
/
...\
1
—

Operational Usage Cases.

not

ane

Gog

oog

ETMBADMEEUCH N

CALL Statement Coverage vs Procedure Coverage for 60 Opera-
1 Usage Cases.

iona

t

;Plot G.

4881 BouenTdTubIc U0y (£6)L SN ‘sautod P3EP 0% a4e adayy
t68 0 = UDIZETB4403 Z&T '§T = IEASTILLS | H5E 12 = A48 pas

&bl O o= BaEnbs 4 Tl @4T- = 3daldagur 168 '8 = BCEO[S
enodd
0% =t O =t o Gz 3z =R ol by L}
= 12
.R - E
Ea
&
.._.
x_‘.._,.
_L-..
£ u=]
-.- .
* K
; Pl
=
_ﬁum .
*. » ...\
\..\. £ .
] - aaT
*
.
E B -
i
} ¥
.‘\-.‘.
s < i
& A=
’-.u..x ada »
x L
”T Qe
i &
W
* —
| 1
H T
4
=
o
C #*

ME83 8duUENT3TubBTIS U004 (gG)L 8SN S3uTod PRED 09 Sd4E. adayl
EE8 G = ULTIRTBLUOD /oy BT = JIISTAIERS | LCL S = Li3 pPas

92/ 0 = sienbs o LH8 bE- = 3dasdajur L&T B = adols
@
£
O
o,
[
fOD Es LR F
& ﬁmm .u“r L_r mt m_u 5= o2 St o1 g 9
P “ _ { m i i ! T ’
i)
e .
(o]
e :
W (R}
o] P .
c N
i
o 1
2 |
o ue
MW a -
m m \\= "
(¥ w L
: < HE
2 _.. e
: -
© -
ch #* * A)
£ F] ok
v A K)
% _m ¥ o
o o ow e
g © ¥8
29 INRd
'R : te A
0 i
he - 0%
- -
8% ‘ _
nnun # 3™
¥
. i -
g %
=
S
— 9 4
o g
o
(<]
.

..:;
Qk

Executable Statement Coverage vs Procedure Coverage for 60

Operational Usage Cases.

Plot 11,

‘3593 @juespgrubite soy (@EYL asn 'syurad egep 0% aJdE aday)

166 "¢ = UCTIIBTALLOD EGH 'EE = 2I3%13183% § SOC T& = -Add R3s
oo 0 = adenbs 4 Cty B2/- = 3deddajur 866 b = adors
SDD.LdA
hs St b S [ui & (= 51 ai = 0
i } i } f 1 i i %0
i ! ! I t | i 1 |
I S | |
I |
h i | i — “
| | _ |
L § I [
i l .
» Fm iy
- *®
rd
| v
s,
o
..\\.4
A4
d N
l..Im \\.. Qﬁ_c I
e : .
- * 4 \.._.\
. \.!
o E
3 & o
. wﬂm
- 0ORT
....\. ’
I e |
| ko' | “ m
I L &] I
| L. { |
i ®L - { i
; T | 1 {
P ’
T - aaneg
|
L o5

E TR TN IFER I, U

‘3sey wouestirulits goi (ggyL Bsn ‘siutod ¥3ep 09 ade adayg
Ot 'C = UDTABIRLIOD QUL OF = 2IISTLE3S) £EQ IF = JLia R3S
88 0 = sdvnbs 4 GE8 E8T- = adanuaaqury G ‘1T = adors

IF Statement Coverage vs Procedure Coverage for 60 Opera-

tional Usage Casges.

Plot 12,

suoadg

‘N

Ub

ST

ot

U}

-

[3u]

[}
i

T T T T e e e " *F"““""

x1=f"N

e R

4887 8ouest4Iubrs w0l (@E)L 8SM 'sjuTed esEp O adm adayy
PG 0 = UDTZETALU0D B0& b = IT4STIEAS | B[O 2 = JAdd p3s

il

R

READ Statement Coverage vs Procedure Coverage for 60

Plot 13.

E&E O = 8swnbs a oec 't = ydaluagut 168 ' = adoys
Sneged
...... ETS
fre il Sk =T [al oa naA =T o =]
! ! ! =t ng ST ar =]
i i i
i H
" —
“ !
| J
I |
|
* -
1 o~
e
-
a e
& ax
-~
8 E EEE R P
° i i i o
w% - #: .
[2] .\..... \
o -~
w., L
. i ~
] ! A
[»] - .ﬂlf’ >
=] -
- -
1 4
£ b '
1))
o,
] "
ko - b

LT @D

WRITE Statement Coverage vs Procedure Coverage for 60

Plot 14.

‘3ee3 2auent4ruliis Aoy (BgyL esn ‘S3UTod E3EP OF a4e adaayy
£56 'C = UOTAEIALA0D L81 G = IEISIAEAS L ECT B = L4 PaAs
CIE 0 = BJEAbS A4 Q1T 8- = qdazsajur £Eve ¢ = adoys
Snd.dd g
ﬂm mw ﬂw & o i s S S} S [
! t 4 t f } { i * 1)
M I i i _ { ! I 1
|
1] ¢
w i t | i.
ﬁ =
!]
|
i
j
- i R
i v
I T
e g
- w &
t.\
v
. ES I e I
: i -
% _m 1 & owook -
0 N as -
p L cor e 3 [l
o * ’ -
3 -~
e -~
&D e
g |
= i [l ..\.1
i * | w o b~ B '
= - -
o - ad
2 i
o I =L = =
M.w.. ! % @
o L L :
i — (g]
w =t
m
_ T
“ *
L

IR Ju R AR

M E— v -
h__E.. .~
- v
N . E .-
0 E' " wi-
-ME. .. .
N E" -
Y, R —— -
AMEL -
lg llllll |
-0 E vt
P —

[1 | PRV —PISEY - R

T

ool B ooree ol .

—_E_ A ...

EERIRE 1) T T~ R IR
L I SR

o QY Bt ey -
e - B

@ —x- 22 @ -y- 3900

Structural Coverage of 100 Permutations of 60 Operational

“Plot 15.

(median, 10th, and 90th percentiles superim-

Usage Cases.
posed)

: =% % . m
99 1 H 1 m 1
:) . Z mo, .
@ i . wm - ' 10 12
; i m 10 18 10
i m ;
[98 !]
m
i 18 18 ' '
m iB '

86 .

@ -x- 11 1980 -y- 2588—! . : .

"Plot 16. Structural Coverage of 100 Permutations of 10 Acceptance

Tests. (median, 10th, and 90th percentiles superimposed)

LI I el L -

b ——r—— o
wme e o meem comms wmaEmemn s
ER L X Y e Ll
- . . ——————— —

" e mew e e E—

-1000 -y~ 2000

9 x- 20

NHPP Model Fitted to the First 5 Values of the 100 Opsra-

Plot 17.

(residuals)

tional Growth Segquences.

8 -x- 2 @ -y- 4000 ' _ .

Plot 18. NHPP Model Fitted to the First 5 Values of the 100 Opera-
tional Growth Sequences. (plot of a vz b)

-500 -y- 1008

B —x- 21

NHFP Model Fitted to the First 10 Values of the 100 QOpera-

Plot 19.

(residuals)

tional Growth Sequences.

'@ -x~ 1.5 1600 —y- 2500

Plot 20. NHPP Model Fitted to the First 10 Values of the 100 Opera-
' tional Growth Sequences. (plot of a vs b)

L)
1
BEE
Pl
BEN
Pl v
lg:l
S T R . :
NEREEE . S
.'_Elgllil..: I!ll
- 0 i I i l' II-
§§'|!i,f§5"
REREEEN R
R T T N
@ ~x- 21 -500 —y- 1090—!

Plot 21. NHPP Model Fitted to the First 15 Values of the 100 Opera-
tional Growth Sequences. (residuals)

8 —x- 1 2000 -y- 3008'— : L

Plot 22. NHPP Model Fitted to the First 15 Values of the 100 Opera-
tional Growth Sequences. (plot of a vs b)

———— s -

e s e et ——
e S o ———— n

A5 e S e —— e i e
R ANA rerem e EmeeE E e e s o
Y A e s s

-508 -y- ‘1506

_B‘-x— 21

NHPP Model Fitted to the First 20 Values of the 100 Opera-
(residuals)

tional Growth Sequences.

Plot 23.

B —x- 1 2200 —y- 300 — '

Plot 24%. NHPP Model Fitted to the First 20 Values of the 100 Opera-
tional Growth Sequences. (plot of a vs b)

Comparison of Execution Coverage of Acceptance Test and

Operational Usage.

Plot 25.

s3uUTod B48p GIIT 8Jde aady)

‘Asey 2IuelTFTUDLS dvd (EILI)L @En
626 0 = URTIR[H1403 ZOG 88 = ITI5TAE3S | &1 °0 = <418 pP3s
£28 sJaenbs 4 PO O = jdanasgur 160 . = adols
BoURgdBoL
;) Y + g'qQ a'o
o}
%
' * # #*
. 5
e = * % - *
¥
-] ¢ - Foe
ﬁ . « R .
. \\\
_ - AR
O s .
- < - ‘
A .~ = S
» - o=
‘\m. :
* #* *
* . g
* * X\ﬂ\ *
* e #*] *
\\ﬁ *®
. # *
i -~ . - »
" o . ..
\....,n\\. “ﬂ * * rk
« o~ * .
»
-
- %
#
#*
m
._L_\\\. .
el »* *
#
#* e "

o

S

Q

@ oh

Statement Coverage

of the MAL Preprocessor

by 17 Benchmark Test Cases.

]

|

|

| Case Procs Exec Assign Calls Do If Reads Writes
7 33 1069 530 78 55306 5 13
| 2 30 1oz | oads 1 sy 1 37 a3 1 g | 15
|3 b33 Dogosr b o529 1 76 1 52 lowg | 6 | 43
| & |30 | 932 | 456 | 8y | 39 logg I 5 | 43
| 5 } 33 ; 1019 : 519 : 77 } 51 ; 2141 i 6 ; 12
; .

| 6 [37 Tz 1 o632 | 410 1 62 logg b oq9 | 2
b7 b0 ! 928 | uss | gy 1 39 I8 1 6 | 7
| 8 36 1 1208 | 622 1 101 | 61 D opg | 5 | gy
| 9 I 30 | 928 I 455 | ‘84 | 39 | 208 | § | 10
{10 : 1Yy } 1677 } 821 : 161 { 71 ; 368 ; 11 : 21
| |

L1 [u6 ! 1786 | 855 | 216 1 76 1 375 1 ¢ 1 46
| 12 |38 1285 | 6i0 ! 102 | 58 lags | g 1| 29
|13 Doy 1oqyns 1 691 1 166 | 57 13z | 7 1 72
| 1% Dus tagrs | o819 | 169 I 70 1367 | o | 20
| 15 : 15 : 1959 ; 957 ; 209 : 85 : 414 ; 13 ; 5
I |

| 16 w5 1oagen 1 oger 1 a9 1 93 lzgs | oq2 | oy
|17 } u5 : 1728 ; 810 : 171 : 71 : 379 : 12 } 2
|

| Union b s1 1 oonos | 1187 | 286 1108 lago | o1 1 30
: Intersect II 29 ll 778 ; 389 ; 42 ll 35 Il 186 } 6 ; 10
| Maximm | 68 | u300 | 1870 | wis | st | 73 | m | 206

I
|
I
I
I
I
|
I
|
I
I
|
I
]
|
|
I
I
I
l
I
I
|
I
I
[
!
I
|

. Table 1.

% M o eN o OO OO .- b= OO
€O L [. " . ¥ - A . @ . ® . "
o WAt oF oTF o o Q] e e
L] — \n — - -
-
B QoW w9 o0 O N0 no Mo N
(3] * ‘. . . s * . .
™~ t~ ety Yoo S 7 S
~obt~gp©O A O oy 88070 oM — -
B o draerd dedbdg oeo oo el o
BN © 0 0w o 0
MRS m ma R Fox R0 R[R3R L&
8 _lo TOTRY wRea®W Lomee o oo
L~ T e v, » . . - . * .
(=) (1) [1a) o T oI n Wpw = N o
S uE M mEn Ay ThnIY YR o
| I —
aCt-X llllllllllllllll
54
SEDES Neqex m-amn NN xo mo =o
0, e 4 o L] . - o v . .
O 0 o o WO o 0w — ot oo =) © O
- m mmd § ~8+-8- WRISRW NN FIED T O
v .%e0 __ __ _ —_—
R=g: e
mMmmm Mo ® OMmMo ENO L oo inw
teee.s Qm-o- b b 5.—...1-. . * .
o | = s =t = oy O
3gmoln RN MmN NN T we DT 23 S8
St?ﬂ-ﬂ
a.nw.q...P llllllllllllllllllllll —_—
- .
.nVuJ o [=)N AU o I N J MO oOv o 59706 o o -
[1)3 * e a2 g P on?.\o..on . T .
" =t = =4 O T o0 T h — O L o O 00
H onnan AulaHh AW 58 2%
0 >_r e * * * .I » - - &
W T O = W o & o b= 1 O o O ey o
g F=xZFFF TN wvinmnwo g 288 A
3
R3]
@
o o
8 98
. O DN N o~ B8
— N n O =00 O — e e e —_— - =T

Table 2.

Statement Coverage
of the MAL Preprocessor

by 60 Operational Useage Cases.

40

Case Procs Exec Assign Calls Do It Reads Writes
1 39 1368 660 125 52 324 10 14
2 43 1712 832 193 80 381 10 19
3 45 . 1830 896 188 1 78 | 411 13 22
] 37 1262 625 - 86 57 278 14 24
5 37 1252 618 120 53 276 10 15
6 36 1098 536 84 50 268 9 14
7 33 1012 B84 9l 39 236 9 13
8 39 1359 652 | 129 52 331 9 13
9 37 1246 619 84 56 275 1h 23
10 37 1252 618 120 53 276 10 15
11 by 1743 831 196 76 382 1 19
12 37 1249 616 120 53 275 10 15
13 35 1295 666 81 68 306 10 19
14 35 1286 660 81 68 305 10 19
15 35 1136 545 106 45 272 9 14
16 LT 1794 853 217 76 378 12 19
17 37 1272 - 637 86 57 278 14 24
18 37 1252 618 120 53 276 10 15
19 37 1270 635 86 57 278 14 24
20 37 1249 616 120 53 275 10 15
21 37 1118 532 113 39 253 7 9
22 43 1657 807 155 68 363 14 25
23 30 99U 508 62 nz 242 8 13.
24 30 986 196 66 42 241 8 13
25 39 - 1361 646 132 53 322 10 14
26 34 1235 638 76 67 288 10 19
27 37 1123 529 104 52 265 9 14
28 37 1260 626 85 57 276 14 24
29 37 1270 635 86 57 278 14 24
30 43 1779 857 192 80 413 10 20
31 37 1218 593 121 50 282 9 13
32 30 997 500 66 41 247 8 13
33 33 1070 538 63 49 264 9 15
34 21 561 299 21 25 108 8 1
35 39 1424 681 164 60 305 10 15
36 37 1250 619 85 56 275 14 24
37 4y 1743 831 196 76 382 11 19
38 37 1262 629 86 57 278 14 23
39 Ly 1749 832 199 77 383 11 19
38 1258 10 15

612 117 557 298

Table 3.

Statement Coverage
of the MAL Preprocessor
by 60 Operational Useage Cazes.

(cont.)

Case Procs Exec Assign Calls Do If Reads Writes
1 39 1290 - 638 101 58 286 12 23
42 36 1351 695 a7 71 326 9 18
i3 37 1246 619 8h 56 275 14 23
4y 45 1736 838 172 “T1 382 15 27
45 u5 2002 971 213 86 435 16 28
6 Ly 1685 819 162 71 371 14 2h
47 39 1292 640 101 58 286 12 23
48 4s 1683 817 170 T0 370 12 23
ig 45 1970 956 210 86 L1y 16 28
50 us 1772 859 178 73 386 15 27
51 39 1337 635 127 54 317 10 16
52 37 1271 635 86 58 280 14 23

- 53 34 1184 585 109 16 267 9 15
54 ko 1355 650 126 52 333 9 13
55 1o 1456 689 167 57 327 10 15
56 37 1250 617 120 53 275 10 15
57 37 1248 603 115 54 302 9 14
58 37 1272 637 86 57 278 14 24
59 34 1048 516 72 50 242 9 15
60 20 - 527 273 19 24 106 8 1
UNION 55 2757 1345 327 120 581 19 36
INTERSECT 19 yu2 228 - 16 19 86 7 9
MAXIMUM 68 4300 1870 418 753 34 206

157

Statement Coverage
of the MAL Preprocessor

by 60 Operational Useage Cases.

(Percentage of Maximum)

Case Procs Exec Assign Calls Do Ifr Reads Writes
1 7.4 31.8 35.3 29.9 33.1 43.0 29.4 6.8
2 63.2 39.8 44,5 4g,2 51.0 50.6 29.4 3.2
3 66.2 42.6 47.9 44,0 49,7 54.6 38.2 10.7
il 54.4 29.3 33.4 20.6 36.3 36.9 k1,2 11.7
5 54.4 29.1 33.0 18.7 33.8 36.7 29.4 T.3
6 52.9 25.5 28.7 20.1 31.8 34.3 26.5 6.8
T 58,5 23.5 26.0 22.5 24.8 31.3 26.5 6.3
8 5T.4 31.6 4.9 - 30.9 33.1 44,0 26.5 6.3
9 54.4 29.0 33.1 20.1 35.7 36.5 1.2 11.2
10 54.4 29.1 33.0 28.7 33.8 36.7 29.4 7.3
11 64,7 4o.5 yy. 4 6.9 8.4 50.7 32.4 9.2
12 54,4 29.0. 32.9 | 28.7 33.8 36.5 29.4 7.3
13 51.5 30.1 35.6 19.4 3.3 ho.6 29.4 9.2
14 51.5 29.9 35.3 19.4 43,3 40.5 29.4 9.2
15 51.5 26.4 29.1 25.4 28.7 36.1 26.5 6.8
16 67.6 k1,7 b5.6 - 51.9 48.4 50.2 35.3 9.2
17 54,4 2%.6 3.1 20.6 36.3 36.9 1.2 1.7
18- 54,4 29.1 -33.0 28.7 33.8 36.7 29.4 7.3
19 54.4 29.5 34.0 20.6 36.3 36.9 1.2 1.7
20 54.4 29.0 32.9 28.7 33.8 36.5 29.4 7.3
21 54,4 26.0 28.4 27.0 | 24.8 33.6 20.6 .4
22 63.2 38.5 43.2 37.1 43.3 48.2 41,2 12.1
23 By, 1 23.1 27.0 14.8 26.8 32.1 23.5 6.3
24 43,1 22.9 26.5 15.8 26.8. 32.0 23.5 6.3
25 57.4 31.7 34.5 31.6 33.8. 42.8 29.4 6.8
26 50.0 28.7 4.1 18.2 k2,7 38.2 29.4 9.2
27 54,4 26.1 28.3 24.9 33.1 35.2 26.5 6.8
28 54,4 29.3 33.5 20.3 36.3 36.7 41,2 1.7
29 54,4 29.5 34.0 20.6 36.3 36.9 1,2 1.7
30 63.2 1.4 45,8 5.9 51.0 54.8 29.4 9.7
31 54,4 28.3 31.7 28.9 31.8 37.5 26.5 6.3
32 Ly 9 23.2 26.7 15.8° 26,1 32.8 23.5 6.3
33 48.5 24,9 - 28.8 15.1 31.2 35.1 26.5 7.3
34 30.9 13.0 16.0 5.0 15.9 14.3 23.5 5.3
35 57.4 33.1 36.4 39.2 38.2 L0.5 29.4 T.3
36 54,4 29.1 33.1 20.3 35.7 36.5 41.2 11.7
37 4.7 40.5 4.y 46.9 8.4 50.7 32.4 9.2
38 54.4 29.3 33.6 - 20.6 36.3 36.9 41,2 11.2
39 64.7 L4o.7 Ly.5 417.6 | 49.0 50.9 32.4 9.2
Lo 55.9 29.3 32.7 28.0 35.0 39.6 29.4 7.3

by 60 Operational Useage Cases.

Statement Coverage
of the MAL Preprocessor

(Percentage of Maximum)

Case

41
42
43
By
45
46
47
48 -
49
50

51
52
53
54
55
56
57
58

59
60

UNION
INTERSECT

Procs

57,4

52.9
54.4
66.2
66,2
64.7
57.4
66.2
66.2
66.2

57.4
54,4
50.0
58.8
58.8
54,4
54.14
5l .4
50.0
29.4

80.9
27-9

Exec

30.0
31.4
29.0
4o.4
k6.6
39.2
30.0
39.1
45.8
1.2

31,1

29.6
27.5
31.5
33.9
29.1
29.0
29.6
24,4

S 12.3

64,1
10.3

{cont.)
Assign . Calls
34,1 24,2
37.2 20.8
33.1 20.1
hy.8 k1,1
51.9 51.0
43.8 38.8
34.2 24.2
43.7 40.7
51.1 50.2
45.9 §2.6
34,0 30.4
.34.0 20.6
31.3 26.1
34.8 3¢.1
36.8 40.0
33.0 28.7
32.2 27«5
34,1 20.6
27.6 17.2
4.5 h,5
71.9 78.2
12.2 3.8

Do

36.9
45.2
35.7
45.2
54.8
45.2
36.9
4h.6
54.8

=
(o) ¥
.

ul

@ 4 & % s =
W = oW WO

(PN RVIRUIRUYRES I VR FV)
O Flo v O h =

g
—
- L]
[93)

—
(%]
W

76.4
12.1

ir

38.0
43.3

. 36.5

50.7
57.8
49.3
38.0
49.1
55.4
51.3

42.1
37-2
35.5
1,2
3.4

. 36.5

o,1
36.9
32.1
14.1

Reads

35.3
26.5
41.2
hy.1
B7.1
B1.2
35.3
35.3
47.1
i1

29.4
1.2
26.5
26.5
29.4
29.4
26.5
k1.2
26.5

23.5

55.9
20.6

Writes

11.2

8.7
11.2
13.1
13.6
1.7
11.2
1.2
13.6
13.1

.

—

—
Ul =] = Oh=3 -3 OV —1 -2 ~J
* * » = & ® 4
WwW—1 mwww W o

—
=3
* *
=u

Comparison of Statement Coverage
of the MAL Preprocessor
by 17 Acceptance Test Cases
and 60 Operational Usage Cases.

!

|

|

|

Case Procs Exec Assign Calls Do if Reads Writes |

|

Acpt bost Doanos | 1187 | 286 ! 108 ! mgo | 1y 1 30
Usage : 55 : 2757 : 1345 ; 327 : 120 : 581 : 19 i 36
i

Union 55 1 2768 | 1353 | 327 1 120 I 581 | 19 | 36 |
Intersect } 51 ! 2397 { 1179 I 286 : 108 } 590 : 14 { 30 |
!

A-OpU o I oqq g8 I ot ol ol o | 0 |
OpU-A | 5 | 360 | 166 | w1 | 12] 91] 5 | & |

Table 5. |

Comparison of Statement Coverage
of the MAL Preprocessor
by 17 Acceptance Test Cases
and 60 Operational Usage Cases.
(by percentage of Maximum)

|
!
i
|
|
Case Procs Exec Assign Calls Do If Reads Writes |
]
Acpt t7s.0 1 s6.0 | 63.5 | g8.4 | 68.8 | 65.1 | u1.2 | 1n.6 |
Usage ; 80.9 : 6.1 { 71.9 ; 78.2 : 764 : 77.2 ; 55.9 } 17.5 |
. !

Union | 809 | 6u.a 1 72,8 1 78,2 1 76.n | 77,2 | s5.9 | 175 |
Intersect i 75.0 : 55.7 : 63.0 i 68.4 { 68.8 : 65.1 ; 41.2 ; M.6 |
: |
A-0pU oo ! o3 1 o ! 00! 0.0 ! 0.0} 0.0 ! 6.0
OpU-4 | 5.9 | 84 | 8.9 | 9.8 | 7.6 | 12.1 | 1wt | 2.9 |

Table 6.

Kruskal-Wallis Comparison
of Acceptance Test
and Operational Usage Coverage.

HO: populations are the same.

i i
I |
i |
| |
i |
| Coverage Type H Result I
I Procedure | 0.076 | ftr @ 0.1]
| Executable Statement [0.218 | ftr @ 0.1 !
| Assignment | 0.076 | ftr € 0.1 |
I call | 0.005.I ftr @ 0.1 I
| Do ' 0.005 ftr € 0.1 i
| 1f I 0.362 ! ftr € 0.1 !
| Read 11.657 ! reject @ 0,001 |
| write 2.608 | ftr @ 0.1 I

Table T.

Mann-Whitney Comparison
of Acceptance Test
and Operational Usage Coverage.

HO: populations are the same.

|

i

I

!

1

Coverage Type U low U ‘Result |
Procedure 487.5 AT ftr 8 0.1 i
Executable Statement | 472.01 AT | ftr @ 0.1 I
Assigrment, | 487.5 1 AT | ftr @ 0.1 f
Call | 504.0] AT | ftr @ 0.1 |
Do | 504.0 | OpU | ftr @ 0.1]
If | 461.0] AT | ftr @ 0.1 ;
Read | 232.0] AT | reject @ 0.01 |
Write l 378.5 , AT I ftr @ 0.1 i

Table 8§,

Procecures Classified by the
Number of Times Procedure was Exercised /
Total Operational Executions

(Faulty procedures are starred.)
(Unexecuted procedures are u’s)

. Procedures

100% P%X ¥ % pop
PPPDPP
pPPPPD
PpPPPD
PPPDPP
pp

90% Ppp

80% *¥pp

70% D

60% PPPPD

50% fppoyp

kog *pppp
p

-30% PDP

20%

10% *pppop
pp

0% vuuuuu
Tmuunuu
uuu

Table 9,

Time to Isolate the Change vs
Number of Times Procedure was Exercised /
Total Operational Executions.

(Effort to Understand and Implement in Parenthesis)

100% (Th < 1d) (th < 1d)
(1d < 3d)
90% '
80% (1h < 14) (1d < 3d)
70%
60%
50% (1h < 1d)
10% (1 hour <)
30%
20%
| 10% (1h < 1d)
T never round

< T hour T nour < T day > 1 day

Table 10.

Time to Understand and Implement the Change vs
Number of Times Procedure was Exercised /
Total Operational Executions.

(Effort to Isolate the Cause in Parenthesis)

100% (Th<1d) (Th<1d)
{1 hour <)

90% .

80% (1h<1d) { >1 day)

70%

60%

50% (1 hour <)

Ty 4 (1 hour <)

30%

20%

10% : (1Th< 14

< 1 hour T hour < 71 day T day < 3 days > 3 days

Table 11..

Faults by CRF Classification vs
Number of Times Procedure was Exercised /
Total Cperational Executions.

Req.

Func.
Specs.

Design

Data

Extern. Cler.

Exp Env.

Lang.

Qther

T00%
90%
80%
70%
60%
50%
k0%
30%
20%
10%

X,X x

Table 12.

