Computer Note CN-14.2 August
!‘"'-"-—"

SIMPL-T:

A Structured Programming Language

by
Victor R, Basili
and

Albert J. Turner

1975

Computer Science Center * UNIVERSITY OF MARYLAND * College Park, Md. 20742

Preface

SIMPL-T is & member of a family of languages that are designed to be
relatively machine independent and whose compilers are relatively trans-
portable onto a variety of machines. It is a procedure oriented, non-
block structured programming language that was designed to conform te the
standards of structured programming and modular design. There are three

data types in SIMPL-T: integer, string and character.

The first member of the SIMPL family, the typeless language SIMPL-X,
was bootstrapped onto the 1108 in the Fall of 1972. The implementation
of SIMPL-T was completed in January, 1974,

This Computer Note is primarily intended as the reference manual for
SIMPL~T. However since it is anticipated that it will be used in teaching
SIMPL-T, the material has been organized so that the manual can be used in

the classroom.

We would like to acknowledge the work of Hans Breitenlohner who wrote
the executrion time monitor and provided assistance in trying to interface
with the idiosyncrasies of EXEC 8. Acknowledgments also go to Mike Kamrad
and Bruce Carmichael for their work on the bootstrap and Eleanor B. Waters

and Dawn Shifflett for the typing of the the main portion of this note.

This project was supported in part by the Office of Naval Research
under Grant NOO0l4-67-A-0239~0021 (NR-044-431) to the Computer Science
Center of the University of Maryland, and in part by the Computer Science

Center of the University of Maryland.

Victor R. Basili
Department of Computer Science

Albert J. Turner
Computer Science Center

Preface to Later Editions

Several enhancements have beeﬁ ﬁade to the SIMPL-T Compiler since
this document was originally written. At each new printing, however,
updates have been made to maintain the accuracy of the user documentation.

The printing history and compiler version number corresponding to

éach printing is given below.

Computer Note Printing Date ' . Compiler
14 January 1974 : . 1.0
August 1974 o lﬂﬁ
14.1 January 1975 o o L5
14,2 - August 1975 e 1.7

1.

Contents

Introduction

The Basiec SIMPL-T Language
2.1 Program Structure
2.1.1 Declarations
2.1.2 Segments
2.1.3 Scope of Identifiers
2.2 Comments and Blanks
2.3 Statements
2.3.1 Assignment Statement
2.3.2 If Statement
2.3.3 While Statement
2.3.4 Case Statement
2.3.5 Call Statement
2.3.6 Example

2.4 Integer Ekpressions

2.4.1 Subscripted Array Variables =

2.4.2 Function Calls
2.4.3 Constants

2.5 Basic Integer Operators
2.5.1 Arithmetic Operators
2.5.2 Relational Operators
2.5.3 Logical Operators
2.5.4 Precedence
2.5.5 Examples
Identifiers
Basic I/0
2.7.1 READ
2,7.2 WRITE
2.7.3 Example

2.8 Example

ii

Page

W 00 00 00 0~ 0~ W oo W

T R T T e T T o T = T = T~ S
O WO w - W W W W N D

T A R oL AR AR S Page
3. S8tring Data e s .25
v+ 3,1 Introduction SR T U STt 25

3.2 Constants T TN 25

© 3.3 Variables T DR 25

" 3.4 Declarations ISR T e e 25
3.4.1 Scalar e 25
3.4.,2 Array ST Sl i s ain 267

3.5 Operators - S TETANE U b
3.5.1 Concatenate R 27

3.5.2 Substring T T 27

3.5.3 Relational Operators T T S I A 28

3.6 String Expressions R T 28
3.7 Assignment Statement P 29
3.8 Example - AL DAL P R o 29
3.9 1/0 e 3
3.10 Example SR S R S0 31

| 3.11 String Functions S L 33
3.11.1 User Defined Fundtiohs == . ~o.ocov i wiv T 033

3.11,2 Intrinsic Functions Do mimn 7135

3.12 Substring Assignment R T S T N 37
3.13 String Parameters P S S D N S 37
3.14 Example e T SO 38

4, Additional Language Features . ;T;:mfv - E a0
4.1 Escape Mechanisms '”j-” 40
4,1,1 Fxit Statement T : 40

4,1.2 Return Statement | 'j i .-‘:_. 49

4.1.3 Abort Statement SRR ’-'i- '- 42

4.2 Parameter Passing by Reference | e .?jff R
4.3 Recursive Segments S ay;vt f ?‘: "

| 4.h Access Between Separately Compiled Program Modules 44
4:4,1 Entry Points | '“- | i< - 45

4.4.2 External Reference ":"”1 i f : 45

4.4,3 Nonexecutable Progran{':s"'"' AR L : Le

4.4.4 Example 1 S .‘:“,ﬁ.gt f f . Iy

iid

Page

4,4,5 Example 2 48
4.4.6 FExecuting a Program Having Multiple Modules 48
4.5 DEFINE Facility 49
4.5.1 Macro Definition ' - © 49
4.5.2 - Example _ o S 49
4.5.3 Macro Expansion | | o : 50
4.5.4 Conventions énd Restrictions o .51
4.5.5 Options . - 51
5. Some Special Purpose Language Features : . 53
5.1 Character Data Type ' o 53
5.1.1 Introduction ‘ . R 53
5.1.2 Constants ' | . . 53
5.1.3 Declarations S _ P :' 53
5.1.4 Statements ' R
5.1.5 Operators : ' : : .55
5.1.6 Intrinsic Functions and Procedures :;__,. 55
5.1.7 I/0 | S 57
5.1.8 Characters as Strings - o .57
5.1.9 Summary : 5T
'5.2 Bit Representation for Integer Constants - 58
' 5.3 Bit Operators . o 29
5.3.1 Shift Operators L | S 59
5.3.2 Bit Logical Operators o ‘ o - 59
5.3.3 Precedence | , 589
- 5.4 Partwords ._ | . _ 60
5.5 Record I/C _ : :_. ‘ o - ‘ 61
5.5.1 1Introduction : - _1'.“) ' 61
5.5.2 READC . | N 61
. 5.5.3 WRITEL S o 62
5.6 File 1/0 o R
5.6.1 Introduction) - L _ ”. .63 .
5.6.2 File Declaration , | ‘ 1 S 63
5.6.3 READF e
 5.6.4 WRITEF | o e
5.6,5 Control Operations l'”_ B 65
'5.6;6 Example o '” B ;" | 65
5.6.7 Conventions and Restrictions .f'.: o B 66

iv

5.7"Mn1tiple Input-stream Files C
;2.8 Obtaining the Executlon Time Optlons__
5.9 Generating Relocatable Output

5.9.1 Introduction |

5.9.2 OPENORJ

5.9.3 DEFEP and DEFXREF

5.9.4 GENOBJ

5.9.5 DEFLC

5.9.6 CLOSEOBJ

5.9.7 Example

5.9.8 Conventlons and Restrlctlons

5.10 Programs That Execute as Processors

.‘S.ll Symbolic Output
.Using SIMPL-T on thg:;106[l108<__

6.1 Source Input Format
6.2 Debugging Aids
6.2,1 Traces
6.2.2 Subscript Checking
6,2.3 Omitted.Case Check
6.2.4 Conditional Text
6.2.5 User Contingency Interrupt
6.3 Messages Generated by SIMPL-T
6.4 Source Listing

6.5 Attribute and Cross-reference Listing

- 6.6 Keyworda and Intrinsic Identifiers

6.7 Other Options

6.8 Program Analysis Facilities

' 6.8.1 Program Statistics
6.8.2 Execution Statistics

6,8.3 Execution Timing

6.8.4 FExecution Statistics or Timing with Multiple -

Modules

6.9 Macro Pre-compile Pass

6.10 Program Execution Time

Page

.. b6
67

67

67

68

. 68

69

”}1%6?
T T2

71

74)

74

75

75
76
77
77
78
79
79
80
81
81
81
81
82
83
83

84
84

7. Additional Notes on the 1106/1108 Implementation of SIMPLrT

7.1
7.2
7.3
7.4
7.5

Appendix
Appendix
Appendix
Apﬁendik
Appendix

Appendix

SIMPL-T Object Code

Interface with Other Languagés.
Some Comments on Efficiency
Functions with Side Effects

Arithmentic Overflow

I, Executing a SIMPL~T Program on thé 1106/1108
II. Precedence of Opefators

IIT. ASCII CharacterVCodes

. Formal Specification of SIMPL~T Syntax

V. Keywords

VI. Intrinsic Procedures and Functions

vi

Page
85
85
85
86

&7
87
88

90
91
92
98

99

‘1. Introduction

This manual describes the implementation of the language SIMPL-T
for the Univac 1106/1108 computers using the Exec 8 operating system.
SIMPL-T is éssentially an extension of the language SIMPL-X, whicﬁ is
described in: V. R. Basili, ~V"SIMPL-X, a language for writing struc-
tured programs", Tech. Rept. TR-223, U. of Md. Comp. Sc. Center, Jan.
1973.

SIMPL-T is a procedure-oriented, non—blockustructured'prograﬁming
language that was designed to conform to the standards of structured
programming and modular design. SIMPL T is intended to be the base_
language for a family of 1anguages that w1ll 1nc1ude a systems program—
ming language and the graph language GRAAL ¢ W Rhelnboldt v. Ba5111
and C. Mesztenyi, "On a programming language for graph algorithms
BIT 12, 1972). The design and development of.the SIMPL family of lan~
guages is being done at the University of Maryland Computer Science

Center and Computer Science Department.

In order to avoid the inclusion of much material that would be
superfluous for the anticipated readers, it is assumed that the reader
has some knowledge of a general purpose programming language such as

FORTRAN, BASIC, ALGOL, or PL/I.

The manual is designed so that the basic features are presented
first, and more specilalized features are presented later. Chapter 2
contains a description of the basic language that is sufficient to get
a novice SIMPL-T programmer "on the air". Chapter 2, Chapter 3, and
"most, if not all, of Chapter 4 contain the material that would normally
be covered in a programming course (with selected topics from Chapter 5
‘perhaps also being included). Most of the material in Chapter 5 is for
those who are familiar with the language and have special purpose re-
quirements. Chapter 6 contains information about using the SIMPL-T com-

piler, and Chapter 7 contains assorted information about the 1106/1108

Exec 8 implementdtion.

A language feature that has not yet been explained is sometimes

used in an example in order to provide a more illustrative example.

2

The meaning of such a feature should be clear from its usage to those
who are familiar with another general purpose programming language but
if not, the feature is always explained soon after such a usage. It
should also be noted that the examples are designed primarily to illu-
strate the SIMPL-T language and thus they may not always illustrate the

best way to solve a particular programming problem.

Braces ({ }) are used to denote optional syntax and the symbols
< and > are used to enclose the name of a general syntactic entity.

For example, the syntax for a call statement can be SPecified by
‘CALL <identifier> {(<parameter list>)}

This means that a call statement consists of the word CALL followed
by an identifier. The identifier may optionallj be followed by a para-
meter list, enclosed in parentheses. Words such as CALL “are calied

kezwords.

2. The Basic SIMPL-T Language

2.1 Program Structure
The syntax for a SIMPL-T program is illustrated by

{<declaration list>} <segment list> START <identifier>

The <declaration list> defines the variables that may be used anywhere
in the program. The <segment list> is a collection of procedures
(subroutines) and functions, and <identifier> names the procedure

with which execution is to begin. (The <segment list> may consist

of oﬁly a single procedure.)

| .The.following example illustrates this. program structure., -
INT X,Y 7 ' } declaration list
PROC PRINTSUM(INT A, INT B) |
WRITE (A+B)

PROC MAINPROG

X :=3

Y = 4

CALL PRINTSUM(X,Y)

segment list

START MAINPROG
(The result of this program is that 7 is printed.)

Thus a SIMPL-I program contains a (possibly empty) set of global decla-
rations and a set of procedures and functions. Execution begins with one

of the procedures, and the procedures and functions are called as needed

during execution.

| 2.1,1‘_Dec1arations

The initial declaration list of a program contains declarations for
all variable identifier names that are global. A global identifier is an
identifier that is known to all segments of a program. Only global decla-
rations for integer variables and integer arrays are discussed in this

section.

4

2.1.1,1 Integer Declaration

An integer variable may have any integer value between —235 + 1

and 235 - 1, inclusive. An integer variable declaration consists of
the keyword INT followed by one or more identifier names, separated
by commas. Initialization may also be specified as illustrated by the

following valid declaration list.

“INT X
INT CAT, DOGl
INT M=3, N=-1, I
In the above example M and N are initialized to the values .3
and -1 , respectively. This means that these variables will have the
specified values when execution of the program begins. The value of an
uninitialized variable is initially undefined. (Actually globals will

have value 0 on the 1106/1108 unless the B MAP option is specified.)

2.1.1.2 Integer Array Declaration

The only data structure in SIMPL~T is the one-dimensional array.
This is an ordered collection of elements, all of the same data type.
The elements are numbered 0, 1,..., n~-1 , where n is the number of

elements in the array.

Integer array declarations begin with the keywords INT ARRAY , and
are completed by listing the array identifiers and the number of elements
for each array. The number of elements must be a positive integer, and

is enclosed in parentheses. TFor example,
_ CINT ARRAY TOTALS(10)
declares an array of 10 elements: TOTALS(0)}, TOTALS(1),..., TOTALS(9) .

An array can also be initialized by specifying a list of values for
the array elements. Initialization begins with the first element (number
- 0) and proceeds until the list is exhausted (or all array elements are
“exhausted). A repetition factor can be specified by enclosing the factor

in parentheses following the initialization value.

Some" examples are

INT ARRAY A(3), BAT(95), VECTOR(20)
INT ARRAY A1(10), B(5) = (2,3,-1)
INT ARRAY C(11) = (0,1,3(9))

The second declaration specifies that B(0) . B(l) , and B(2) are to
be initialized to 2 , 3 , and ~1 , respectively. The third decla-
ration initializes C(0) to -0, C(1) to 1, and C(2)-C(10) to -3 .

2.1.1.3 Declaration List

A declaration list, such as the list of glebal declarations at the
beginning of a program, consists_of one or mbre declarafions. Declara} :
tions follow one another with no separator (except blanks).. More than
one declaration for the same type can appear in a declaration list.

All identifiers used in a program must be declared.
An example of a declaration list is

INT X, Y
INT I

INT ARRAY INPUTS(100),0UTPUTS(50)
INT SUM

INT ARRAY SUMS(20) = (0(20))

2,1.2 Segments

A segment is a procedure or function definition. Segments contain
a list of statements to be executed when the segment is invoked.
2.1.2.1 Procedures

The syntax for a procedure definition is illustrated by

PROC <identifier> {(<parameter 1ist>)} {<local declaration list>}

<statement list> {RETURN}
where <identifier> is the name of the procedure.
An example of a procedure definition is

PROC TEST (INT X, INT Y) _
/%* THIS PROC PRINTS THE SUM OF X AND Y */
WRITE (X+Y)

6

A procedure is a subroutine that, when invoked, executes its <statement list>
and returns to the caller. A procedure may access any global identifier
(unless the procedure has a local identifier by the same name) as well as

its local identifiers and parameters.

The items of the <parameter list> , separated by commas, are of the
form INT <identifier> or INT ARRAY <identifier> . These parameters are

passed to the procedure when it is invoked (called).

Integer parameters are passed by value (unless otherwise specified
as in 4.2). This means that if a procedure changes the value of an
integer parameter, the new value is effective only to that procedure.

For example, if procedure P is defined by

PROC P(INT X}
X 1=

and the statements

CALL P(X)
WRITE(X)

are executed, then the number printed will be 3 (not 7).

Array parameters, however, are passed by reference. Logically, this
means that the array itself is passed (rather than the value as for integer
paraﬁeters). Thus any modification to an array parameter by a pfocedure
will be a modification to the actual arréy passed as an argument by the

caller. ¥Yor example, if procedure (Q 1is defined by

PROC Q(INT I, INT ARRAY A)
A(T) 1= 7 |
and the statements

A(2) 1= 3
CALL Q(2, A)
WRITE(A(2))

are executed, then 7 will be printed.

2,1.2.2 Functions
The function definition syntax is illustrated by

INT FUNC <identifier> {(<parameter 1list>)} {<local declaration list>}

{<statement list>} RETURN(<expression>)

A function is similar to a procedure. The main differences are
1)} the value of <expression> is returned (as the value of the function

evaluation) to be used in the same manner as the value of a variable

would be used;
2) Functions may not have side effects, that is, they may not change

the values of any nonlocal variables or arrays.

{Note that (2) dis assumed but not enforced. Those who insist on writ-

ing functions with side effects should see 7.4 .)

2.1.2.3 Local Declarations

All local variables and arrays must be declared in the local declara-
tion list. Local declarations are similar to global declarations, but
initialization is not allowed. (The values of local variables at entry

to a segment are undefined.)

2.1.3 Scope of Identifiers

‘_Global identifiers, including segment names, are acceséible from all
lsegments unléss_a segment declares a local with the same namejas a global.
-Local declaratioﬁs‘override'global declarations so that a global identi-
fier is not available to a éegment'iﬁ which that identifier is declared
local. : ' -

Local identifiers are only accessible to the segment in which they
‘are declared. Both globals and locals may be passed as paraméters. The
value of all locals is undefined at entry to the segment, and locals do
not necessarily retain their values between successive calls to the seg-

ment.,

2.2 Comments and Blanks

Blanks may appear anywhere in a SIMPL-T program except within an

8

identifier, symbol, keyword, or constant. Blanks are significant de-
limiters and may be needed as separators for identifiers or constants.

For example,

IF X

and

TFX

are not equivalent.

A comment is any character string enclosed by /* and */ . (See
6.1 for a modification of this convention.) A comment may appear any-
where that a blank may occur and has no effect on the execution of a

program. The following illustrates a comment:

/* THIS IS A COMMENT. %/

2.3 Statements

The syntactic entity <statement list> . denotes any sequence of
SIMPL-T Statements. WNo separators (other than blanks). are used between

statements.

2.3.1 Assignment Statement

The syntax of the assignment statement is given by
<variable> := <exXpression>
where <variable> is either a simple variable (i.e., an integer identi-
fier) or a subscripted variable. The assignment statement causes the value of
the <expression> to be assigned to the <variable> . Examples of wvalid

SIMPL-T assignment statements are

X = Y47
X 1= Y=Z o
A(T):= A(T+L)+A(J-2)*X

2.3.2 If Statement

The IF statement causes conditional execution of a sequence of "

one or more statements. The syntax is

IF <expression>

THEN <statement listSl

~ {ELSE. <statement list>,} END

At execﬁtion, the value of the <expression> determines the action taken.
If the value is nonzero, <statement list>, is executed and <statement
lisq>24 (if there is an else part) is skipped. If the value is zero,
<statemerit 1ist>2 (if it exists) is executed and <statement liét>l__is
not executed. Execution proceeds with the next statement (following

END) after execution of either <statement list> .

Example
IF X<3 .AND. Y<X
THEN
Yi=
ELSE
X:=%+1
Y:=¥-1
IF X>Y
THEN
Xi=Y
END
END

Note.that the, ELSE part of the main IF statement also contains an IF
statement that will be executed only if the ELSE part is executed.

Example.
IF X THEN Y:=Y/X ELSE Y:=Y/2 END

This statement divides Y by X if X 1is nonzero and divides by

2 if X is zero.

2.3.3 While Statement

The WHILE statement provides a means of iteration {looping):

WHILE. <expression> DO <statement list> END

" The value of the <expression> determines the action 'at execution time,
‘just ‘as for the IF “statement. If the value of <expression> 'is non-

“ zero, then <statement list> 1s executed; otherwise - <statement list> is

skipped and execution proceeds with the statement following END . How-

10

ever, if <statement list> is executed, then execution proceeds with
- the WHILE statement again. Thus if <expression> 1is nonzero, then

<gtatement list> 1is executed until - <expression> . becomes zero.

Example. The following statemeﬁt list sums the odd and even integers
from 1 to 100. ' : o : ' S

WHILE I<100
DO
I :=I+1
IFI/2 % 2 =1
THEN /% EVEN INTEGER */
EVEN := EVEN + I
ELSE /% ODD */
ODD := ODD + I
END
END

2.3.4 Case Statement

Exactly one of a group of statement lists may be executed by using

the CASE statement. The syntax is illustrated by

CASE <expression> OF
\nl\ <gtatement 1lis t>l
\nz\. <statement la.st>2

.
.
-

Vﬁ& <statement 1ist>k

{ELSE <statement lj_st>k+l} END

where each Dys TgyeeesTy is a constant or a negated constant.

If the value of <expression> is nj, then '<statement'list>j is
executed and the other statement lists are not executed. If <expression>
does not evaluate to any of the ni's , then the ELSE part (<statement

Clist>) .is executed, if there is an. ELSE part,'and none of the state-

k+1

11

ment lists is executed if there is no ELSE part. The cases may ‘be in
any order,'and more than one case designator \nb. may be used with

the same statement list, as is illustrated in the following example.

CASE X*Y+Z OF
ATAR
o X ::.3
\2\
IF X<Y
 THEN
X i= Y
END
Y = V4L
\4\ \6\ /* CASES 4 AND 6 COINCIDE */
.X HEI
o Y= 3
RLSE

5
't
o

END

2.3.5 ‘Call Statement

The CALL statement
CALL <identifier> {{(<argument list>)}
causes the procedure named <identifier> to be executed, Each argument
in the argument list may be an expression or an array, and the arguments
must agree in number aﬁd?type,with the parameters in the procedure defi-
nition for the procedure that is called. Arguments in <argument list>

are separated by conmas.

Upon: completion of the execution of the procedure, execution resumes

with the statement following the CALL statement.
Example. To invoke the procedure DOIT ”ﬁith'afguments X+Y and
the array A , the statememt =~~~ .
CALL DOIT (XY, A)

is used.

12

2.3.6

Example

PROC SORT (INT N, INT ARRAY A)

/% THIS PROCEDURE USES A BUBBLE SORT ALGORITHM TO SORT THE
ELEMENTS OF ARRAY 'A' INTO ASCENDING ORDER. THE VALUE
OF THE PARAMETER 'N' IS THE NUMBER OF ITEMS TO BE SORTED. */

INT SORTED, /* SWITCH TO INDICATE WHETHER FINISHED */
LAST, /* LAST ELEMENT THAT NEEDS TO BE CHECKED */
I, /% FOR GOING THROUGH ARRAY #/
SAVE /# FOR HOLDING VALUES TEMPORARILY %/

IF N>1
THEN /* SORT NEFDED %/
SORTED := O /* INDICATE NOT FINISHED */
LAST := N-1 /% START WITH WHOLE ARRAY */

WHILE .NOT. SORTED
DO /#* CHECK CURRENT SEQUENCE FOR CORRECTNESS %/
SORTED := 1 /% ASSUME FINISHED */
I =1 /* INITIALIZE ELEMENT POINTER */

WHILE I <= LAST
DO /* COMPARE ADJACENT ELEMENTS UP TO 'LAST' %/
IF A(I-1) > A(T) ' |
THEN. /* OUT OF ORDER */

SAVE := A(I) /* INTERCHANGE */
A(T) 1= A(I-1) /% A(T) D %/
A(I-1) i= SAVE /% A(I-1) %/
SORTED := 0 /% MAY NOT BE FINISHED */
- | | R -
I := I+]

END /# LOOP FOR COMPARING ADJACENT ELEMENTS */
/% A(LAST),..., A(N-1) ARE NOW OK */ |
LAST := LAST -1
END #/ LOOP FOR CHECKING CURRENT SEQUENCE #/
END /% IF N>1 %/

/* END PROC 'SORT' */

13

2.4 Integer Expressions

" An integer expression represents an integer value. An integer ex-
pfeééiﬁﬁ'may be o - IR
1) a scalar integer variable (either a simple variable or a subscripted
array variable); '
2) an integer constant;

3) an integer function call; ‘
4) an integer operation (such as + or -) where each operand may also

be an expression;

5) an integer expression enclosed in parentheses.

,12.4,1, Subscripted Array Variables

v ‘An- array .element is designated by following the array name with a.
subscript, enclosed in parentheses, whose value designates the number of

the array element to be used. The subscript can be any integer expres-—

sion.
.For example
A
_iéésignatg#wfhe _AthL_eiement ;f_érray VA_, ﬁhiiéf

ACX + A®Y))

“'designates the element whose number is the value of X . plus the value of

the array element deéignated by A(Y) .

2.4.2 Tunction Calls

A function ecall has the form
‘<identifier>-{(<argument list>)}
1whété_ <identifier> 1is the name of the function. The rules for_'<argument

E__,1:i7_s_‘.=t_>_,"_afe-.”“t:'l';e same as for the CALL statement.

2.4.3 Constants

An integer'constant may be designated by any sequence of decimal

14

digits representing a valid non-negative integer value.. Note that nega-
tive constants may usually be used where desired although such a con-
stant is formally viewed as the unary minus operation on a nonnegative

constant in integer expressions. .
For example, the following are valid SIMPL-T integer constants.
3
35927

0
123456789

2.5 Basic Integer Operators

The operators described in this section all have integer expressions
as operands and yield ‘an integer result. Any arithmetic overflow ‘that

occurs in a ‘calculation is ignored.

2.5.1 Arithmetic Operators

Addition (+) , subtraction (~) , and multiplication (%) are binary
operators with the usual meaning. The integer divide (/) operator
yields the integer quotient of its operands. Thus 1f the result of X/Y
'is Q , then X = Q*Y + R , where R is the remainder that was discarded

in the integer divide.

The unary minus (-) operator yvields the negative of its operand.
Note that the expression -3 1is formally viewed as the unary minus opera-
tion on the comstant 3 although it would probably be logically {and
equivalently) viewed as the constant "minus three" by the programmer.

There is no unary plus operator in SIMPL-T.

2.5.2 Relational Operators

The relational operators are equal (=) , not equal (<>) , less than

(<) , less than or equal (<=) , greater than (>) , and greater than or

equal (>=) . The expression X=Y has value 1 if X and Y aré'éqﬁal, and

value O otherwise. The remaining relational operators are similarly defined.

Note that the result of a relational operation always has value 1

15

or zero, depending on whether the relation is true or false, resPectively.
The relational operators can also be denoted by .EQ. , .NE, , .LT. ,
.LE. , .GT. , and .GE. , respectively. o

(A note of cautlon regardlng arithmetlc overflow generated by a

relational operatlon is in 7. 5)

2.5.3 Logical Operators

The 10g1ca1 oPerators .AND. , .OR. , and NOT.‘ are defined by:
X.AND.Y is._l 1f beth. X and. Y 'are nonzero, and lS Q.:etnerwise
X.0R.Y is 0 4if both X and Y are zere, and is 1 otherwise

.NOT.X is 1 1f X ie zero and is 0 otherwise o

As is the case for relational operations, a loglcal Operatlon always yields

the result 1 or O .

Note that the logical operators yield the "natural® resdlt. For

.example, the expression
X<Y .AND. Y<Z

~will have the value ‘I (i.e., will be "true") if Y _ 4is both greater than
X and less than Z , and will have the value 0 (i.e., will be "false")

otherwise.

2.5.4 Precedence_-

The precedence of the basic integer operations, from highest to lowest, is

NOT. =~ (unary) _ . unary
k] o :
. arithmetic
+ ‘- (binary) :
e <> %0 > <= >= -+ - relatiomal . .
) IANDI -: . . B . |
. - . logical |
.OR. b T

The order of evaluation between operators of equal precedence is left to

rlght (except between unary operators, which is right to left).

" As an example, the expression)

16
-A+B+C%D
would be evaluated by

(1) negating the value of A

(2) adding the value of B to the result from (1)
(3) multiplying the value of € by the value of D
(4) adding the results from (2) and (3)

Parentheses may be used to alter the normal precedence. Thus
(A+B)*C would cause the values of A and B to be added and the re-

sult to be multipliéd Ey the value of C

2.5;5 Eﬁamgles
The following ére examples of va1id SIMPL—T expressions.
(1) X+71/7 %2 o | -
(2) X<3 .OR. X>8 .
(3) X3 .ANDT X+Y<10
(4) X + (X*(Y+1)<500)

For - X=9 and Y=12 these expressions have the values ..

(1 11
2 1
(3) 0
(4) 10

2.6 Identifiers

Identifiers (i.e., names) in SIMPL-T may be any string of letters
or digits that begins with a letter. For usage in an idéntifier, the
symbol § is considered to be letter. Identifiers are used to denote
variables, arrays, procedures, functions, and other entities in a program.
A1l identifiers used in-a ﬁrogram {except SIMPL-T intrinsic identifiers,

such as READ) must be declared.

There is no formal restriction on the length of identifiers.- How-
ever identifiers may not cross the boundary of a source input record (e.g.,

card), so that there is an actual restriction to the length of an input

17

record (e.g., 80 characters).

| Cettéin reserved words (keywords) ggx_ggg be used as identifiers
in a SIMPLFT program. These keywords (such as IF , INT) are 1isted
in Appendix V. Due to the SPecial meaning given to these keywords,
rather disastrous results may occur if a keyword is used as an 1dent1f1er
in a SIMPL-T program. This is espec1ally true of keywords used in decla-
rations (such as INT , ARRAY , PROC). The resulting diagﬁostics gene-
rated by the compiler may not be too helpful for such an error, primarily
because the programmer often overlooks this type of error as a possible

cause of the diagnostics.

- Since many keywords are used for more specialized features of the
SIMPL-T language, the list in Appendix V. should be consulted before-

writing g SIMPL-T ptrogram.
2.7 Basic I/0

2.7.1 READ

_ READ wmay be used to read values from job streém input (card, tele-
type, etc.) into integer variables. Values to be read are placed on in-
put records (cards, teletype lines, etc.) as decimal constants separated
by blanks or commas (or both). Negative values are indicated by placing
a minus sign before the number to be read. A value may not cross the

boundary of an input record.

To illustrate the READ statement, the statements

READ(X,Y ,A(I+J)) -
READ(I,J)

and the input

3, =2, 5 7
10 , 12

would cause the same results as _ .

X :=3
Y 1= =2
A(I+J) =5

18

Thus the input to be read in is considered to be a stream of numbers
rather than a sequence of cards (or lines, etc.). The numbers are read
one by one and numbers are not skipped unless‘explicit directions to do
so are specified. Skipping to the beginning of an input record can be
specified by using the arguments SKIP » SKIPO , SKIPl , SKIPZ2 ,...,
SKIP9 . (SKIP is the same as SKIPL .) | | |

The effect of a skip argument is as follows:
SKIPO - skip to the beginning of the current card (for reread)
SKIP , SKIPl - skip to the beginning of the next card
etc. '
¢ The skip directive is relative to the last value read from.the input

stream. Thus, for example, successive

READ(X, SKIP)
statements would cause the first value to be read from each card that has

a value on it, regardless of the number of values on a card.

To illustrate further, the statements

' READ(X, SKIP, Y)

' READ(SKIP, Z)
READ(SKIP)
READ(I)

and the input

3, 5,7
2

0

1, 4

10

would be the same as the assignments

H N_ Y
I

3
2
=0
1

The READ statement can also be used to read in values for an entire

array. For example, if X 1s an integer variable and A is an integer

~array of 10 elements, the statement

19
READ(X, A)

would read the next input item inte X , and the following 10 items into
AO), A(1),..., AC9) . o

The intrinsic function EOI may be used to determine the end of the

input. The result of the function EQI is given by

20T = [1 if no motre items are available for READ

) v 0 if one or more items remain to be read

Note that the value of EOI is determined on the basis of values, not
input records (such as cards), remaining to be read. The use of EOT

is illustrated in 2.7.3.

2.7.2 WRITE

Values of expressions may be printed by using WRITE . The values
to be printed are con51dered to be a stream of values that are placed
at tab p051t1ons that provide columns 8 characters in width. A line is

not printed until it is fllled unless a skip or EJECt argument is used.
 The carriage control parameters that can be used are

EJECT - skip to the top of the next page

. SKIPQ - start over on the .current line (overprint)
SKIP , SKIP1 - print the current line
SKIP2 =- print the current line and double-space
SKIP3

: similar to SKIP2
SKIP9 |

Each argument of WRITE may be an expression, an array, or a car-
riage control specification. As an example, if X =3, Y=2, and

= 10 , the statements

WRITE(X, 2%X + 3*%Y)
WRITE(I, I/X, SKIP, Y)
WRITE (SKIP)

. would cause

20

3 .12 10 3
2

to be printed.

To illustrate the use of WRITE with an array argument, if A is an

array with 20 elements, the statement
WRITE(A)
is equivalent (assuming that I is not used for something else) to

T :=20
WHILE I<20
DO WRITE(A(I))
I := T+1 END

2, 7 3 Examgle
_/* THIS PROGRAM READS IN A SET OF UP TO 100 NUMBERS SORTS
- THEM INTO ASCENDING ORDER AND PRINTS ouT TWO COLUMNS IN
WHICH THE LEFT COLUMN IS THE ORIGINAL SET QF NUMBERS AND
THE RIGHT GOLUMN IS THE SORTED SET. THE PROCEDURE 'SORT'
FROM 2.3.6 IS USED. %/ o . '

INT N /% NUMBER OF VALUES TO SORT */
INT ARRAY A(100), /% INPUT SET */

B(100) /% SORTED SET */
PROC READINPUT '

N :=0
WHILE .NOT. EOL .AND. N<100
DO /% PUT NEXT VALUE INTO ‘A' AND 'B' */
" READ (A(N))
B(N) := A(N) - _
N := N+1 /* COUNT VALUES */
END
PROC PRINT
INT I

I1:=0
WHILE I<N
DO /* PRINT LINES OF OUTPUT */
WRITE (A(I), B(I), SKIP)

I := I+1 21
END

. Proc SORT from 2.3.6

.

* PROC READSORTANDPRINT

CALL READINPUT
CALL SORT(N,B)
CALL PRINT

START READSORTANDPRINT

An example of the result of executing this program is

5 .. =25
=2 : T-2
0
10
-25 _ 10
17 .17
2.8 Example

/% THIS PROGRAM READS A SEQUENCE OF NOT MORE THAN 100 NONZERO INTEGERS.
THE INTEGERS MUST BE IN INCREASING ORDER AND MUST BE FOLLOWED BY A
0 (UNLESS 100 INTEGERS ARE 70 BE READ). THE LIST OF_VALUES READ
IS PRINTED. ADDITIONAL VALUES ARE THEN READ AND A 'BINARY SEARCH'
IS USED TO DETERMINE IF EACH VALUE 1S A MEMBER OF THE SEQUENCE
READ INITIALLY. EACH VALUE IS PRINTED WITH ITS POSITION IN THE
SEQUENCE (0 IF NOT IN THE SEQUENCE). */ C

. INT FUNC SIGN(INT X)
/* FUNCTION WHOSE VALUE IS: 1 IF X>0
| | ' 0 IF X=0
’—1 1F X<0 . */
IF X<0
THEN
RETURN(-1)

ELSE

RETURN(X>0)

END

/#* END FUNC 'SIGN' %/

PROC SEARCH

/% MAIN PROCEDURE */

INT N, /* NUMBER OF VALUES READ */

FOUND,
INDEX,
Lo,
HI,
KEY

/*

s
/* L

/®
/*

SWITCH TO, INDICATE WHETHER VALUE WAS FOUND */
POSITION OF VALUE IN SEQUENCE */

OWER BOUND OF INTERVAL FOR SEARCH */

UPPER BOUND OF INTERVAL FOR SEARCH */

VALUE READ TO BE LOOKED FOR */

INT ARRAY TABLE(10l1l) /* SEQUENCE #*/

N :=0
TABLE (0) :

/% INITIALIZE */

1 /* FIX UP FOR FIRST READ */

WHILE N<100 .AND. TABLE(N)<>0
DO /* READ SEQUENCE */

N := N1
READ (TABLE(N))

IF TABLE(N)<>0

THEN

END

| WRITE(TABLE(N))

END /# LOOP FOR READING SEQUENCE %/

IF TABLE(N) =

THEN

N = N-

END
WRITE(SKIP)

1

/* FIX UP FOR:COUNTING THE ZERO */

/* END LINE OF SEQUENCE VALUES #*/

WHILE .NOT. EQI

23

DO /* READ AND LOOK UP VALUES %/
READ (KEY)
WRITE (KEY)

/* INITIALIZE FOR SEARCH */

FOUND := 0
HI := N
LO :=1 /* INITIAL INTERVAL IS WHOLE ARRAY */

WHILE LO <= HI .AND. .NOT. FOUND
Do /% BINARY SEARCH */
INDEX := (LO+HI)/2 /* LOOK AT MIDPOINT OF INTERVAL *f

CASE SIGN(TABLE(INDEX)~KEY) OF

\O\ /% TABLE(INDEX)=KEY -~ (FOUND) */
FOUND := 1
\1\ /% TABLE(INDEX)>KEY */
. HI :=.INDEX—1 /#* TRY LOWER INDICES */
\-1\ /% TABLE(INDEX)<KEY */
LO := INDEX+l1 /% TRY HIGHER INDICES */
END
END /* LOOP FOR BINARY SEARCH */
IF FOUND
THEN
' WRITE(INDEX,SKIP)
ELSE '
WRITE(O, SKIP)
END '

END /* LOOP FOR READING AND LOOKING UP VALUES */
/% END PROC 'SEARCH' */
START SEARCH

For this .program, the input

2 3 5 8 10
2 1 o0 8 7

1
“15

15 0
18

would produce the output

24

i5

11

10

- O O & O ™~ O

(o B B o T ¢

15
18

25
3. String Data

3.1 Introduction

In this chapter a second data type, string, is discussed. A string
is' a (finite) sequence of characters. The number of characters in the
sequence is called the.length'of.the‘strihg;'an& thelstring dfflength
0 is called the null string. The characters may be any. of the ASCII
characters (see Appendix III) although most of the 1108 perlpherals do.
not allow the use of all ASCII characters.

3.2 Constants

A string constant is denotéd by enclosing the string in apostrophes.
(Note that computer people usually call apostrophes “quotes”.) Any
apostrophe in the string is indicated by using two apostrophes. Examples

dare

'THIS IS°A STRING"
'THERE IS AN APOSTROPHE ('') IN THIS STRING'

‘The length of the first string above 1s 16. ‘Thé'length'of'thé second is
41, and printing it would yield '

 THERE IS AN APOSTROPHE (') IN THIS STRING

The null string constant is denoted by '' .

- A string constant may not exceed 256 characters in length. . .
3.3 Variables |
A string variable has a maximum length associated with it. The
value of a string variable is a strlng, and the maximum length llmlts

the length of the string value.

3.4 Declarations

3.4.1 8Scalar

A string declaration includes the specification -of the maximum length

for thé value of the string variable. This specification is:'made by en~

26

closing the maximum length (a positive integer constant) in brackets

following the string identifier. The maximum length may not exceed 4095.

Examples are

STRING S[5], T[50] o
STRING MESSAGE [10] = 'HELLO', RESULT[20]

The first declaration defines strings::S with'maximnm'length 5, and

T with maximum length 50. In the second declaration, the maximum length
of MESSAGE is specified to be 10, and MESSAGE is initialized with the
value 'HELLO' (so that the current length is initially 5).

‘The value of an uninitialized string variable is undefined.

3.4.2 Array

All elements of a string array must have the same maximum length.
Thus a string array declaration must include the maximum length specifi-

cation as well as the number of elements (number of strings).in‘the array.

String array declarations are illustrated by

STRING ARRAY INPUT [50] (100)
STRING ARRAY MESSACES [20] (10) = ('MESSAGE.-0', 'MESSAGE 1'),
SA[13] (25) = ('ABC', 'XYZ' (3), 'CAT')

In these declarations, the array INPUT - contains 100 strings of maximum
length 50 each. MESSAGES (0) is initialized to "MESSAGE 0' and _
"MESSAGE 1' is the initial value of MESSAGES (1) . Execution of the

statements

I:=20
WHILE I<5
DO
WRITE (SA(I), SKIP)
I = I+1
END

at the beginning of the program would produce the output

27

3.5 Operators

3.5.1 Concatenate

The concatenate operator .CON. generates a string by joining to-

gether its two operand strings end-to-end. As an illustration,

'ABCD ' .CON. 'EFG' = 'ABCD EFC'

3.5.2 Substring
The substring operator generates a strlng by extractlng a substrlngJ
from its (strlng) operand In the form ' ' o '
[Fl F2]
this'operator extracts the substring of length F2 beginning with char-
acter number Fl of the operand string. (The first character is char-

acter number 1,)

To illustrate the substring operator, consider. the folidﬁiqg.

'ABCDEF' [3, 2] = 'ep?
'XYzZ'[3, 1] = 'z
"ABCD' [1,4} = 'ABCD'

The two fields F1 and F2 of the substring operator may be any
integer expressions. The F2 field may be omitted, in which case the

substring from character F1 to the end is implied. For exemple,

'DOGCAT' [4] = 'CAT'
(Note: The symbols << and >>. may also be'uéed fer"[and] , re—

spectively.)

28 If the value of F2 1is nonzero, then the substring defined by [F1, F2]

must lie within the current bounds of its operand string; otherwise execu-
tion is terminated with an "invalid substring' error. The following are

not wvalid.

'ABC' [3 ,2]
'ABC' [0, 2]
'ABC' [2,-1]

If the value of F2 is zero, then the substring operator is always
valid and returns the null string. Additionally, S[F1] returns the null

string whenever the value of ‘¥l _is greater :than the length.of §
(Note: Assignment to a substring is discussed in’ 3.12) :

3.5.3 Relational Operators

The relational operators (=, <>, <, <=, >, »>=) may be used with
string operands. The result 1s e1ther the integer ZQ or the integer
1, just as for integer operands, as. determlned by the ASCII collating .

sequence (see Appendix III), Strlngs of unequal 1ength are never equal.

Some examples illustrating these operators are given below.

'TABC' < 'ABD'-
"TABC' < TABCD'
"ABC' < 'ABC '
'ABA'”> 'ABl"=

123" < 124!
TP I Y

3.6 String Expressions

The string operators may have Strlng expre581ons as operands The

precedence for unparEnthe81zed expre351ons is (hlghest to 1owest) -

1) substrlng
2) concatenate

. 3) relational operators .

(Note that the result of a relational operation with string operands is

of type integer, and hence a relational operation (even with string

P

29
operands) is an integer expression.)
Thus a string expression is

1) a string constant, string variable (simple or subscripted), or
string function callj;

2) a substring or concatenate operation, whose operands can be
string expressions; | -

3) a string expression enclosed in parentheses.

Examples are given in later sections of this chapter.

3.7 Assignment Statement
The assignment statement for stringé is similar to the assignment
statement for integers. Its syntax is given by N '
<string wvariable> := <string expression>
Mo automatic conversion between string and integer exists in SIMPL-T.
Thus strings may not be assigned to integer variables and integers may
not be assigned to string variables.

If the string represented by <string expressioh> has a length that
does not exceed the maximum length of the variable, then the value of the
variable is set to the value of . <string expression>, 1If the value of
<gtring expression> is too long for <string variable>., then the Value
of <string expression> is truncated to the maximum length -of <string

variable> before the assignment is made. For example, if S - is declared

by

STRING S{5]
and the assignment

S::= '123456'

is made, then S will have the value '12345" , regardless of the value

of 8§ before the assignment.

3.8 Example
This example uses the built-in function LENGTH , that returns the

length of a string value. . The following procedure REMOVE removes

30

a given substring from a given string.

PROC REMOVE (STRING SUB, STRING STR)
/% THIS PROC PRINTS THE RESULT OF REMOVING THE (SUB)STRING
'SUB' FROM THE STRING 'STR'. %/

INT CHARPTR, FOUND

CHARPTR := 1
FOUND 0 | o |
WHILE CHARPTR + LENGTH(SUB) <= LENGTH(STR) + 1 .AND. .NOT, FOUD
DO /# CHECK FOR OCCURRENCE OF 'SUB' BEGINNING AT 'CHARPIR' */
IF STR[CHARPTR, LENGTH(SUB)] = SUB | -
THEN /* FOUND */
FOUID := 1
ELSE
" CHARPTR := CHARPTR + 1
- END
END /% LOOP %/

H

" IF FOUND
THEN /% SUBSTRING 'SUB' IS AT POSITION 'CHARPTR' OF 'STR' */
WRITE (STR[1, CHARPTR -1] .CON. STR[CHARPTR + LENGTH(SUB)])"
" ELSE /* NO OCCURRENCE OF 'SUB' IN 'STR' */
© WRITE(STR) -
END

/* END PROC 'REMOVE' #/

3.9 I1/0

READ and WRITE (and EOI) also may be used for strings. The

rules for strings are similar to those for integers.

31

Strings to be read in must be indicated on the input medium jusf
as a string constant would be indicated in a SIMPL-T program (i.e., en-
closed in apostrophes with any apostrophe in the string being indicated
by two apostrophes). ' Commas and blanks or both may be used to separate
input items, and strings and integers may be freely intermixed.

If the length of a string that is read In is greater than ;he maximum
length of the string variable into which it is read, the input string is
truncated to the maximum length of the variable. Thus.if S is a‘string

variable,

READ(S)
with input
"ABCD'
would be completely equivalent to
S := TABCD'
-Just asufor.assignments,‘no mixed types are permitted in a READ .
Thus, for example, if X 1is an integer variable and the statement
READ(X) -

is executed with
"345°
as .the next input item, an error termination will occur.

WRITE w111 cause string expre531on values to be prlnted at prede-
termined tab positlons, just as for integers. However string values
are lEft—JUStified in the columns, rather than rlght Justlfled as for
integer values. Tf a strlng is too long for the current line, it will

be contlnued on the folloW1ng llne

3,16' Exaﬁﬁie.”
/* THIS PROGRAM'READS‘iN A LIST OF UP TO 99 NAMES AND PRINTS THEM
OUT IN ALPHABETICAL ORDER._ THE NAMES MA¥ NOT BE MORE THAN 50
_CHARACTERS LONG. */ . |

32

STRING ARRAY IN[50](100) = ('') /* FOR HOLDING THE NAMES */
INT N = 0, /% NUMBER OF NAMES */

I, /% FOR GOING THROUGH 'IN' */

SAVE, /* FOR REMEMBERING A SPOT IN 'IN' */

FINISHED = O /* SWITCH %/ |

PROC SORT

WHILE .NOT. EOI
DO /* READ NAMES INTO '"IN' #*/
N:=N+1
IF ¥ < 100
THEN /* NOT TOO MANY */
READ (IN(N))
END
END
IF N > 99
THEN /* TOO MANY NAMES INPUT */
WRITE ('TOO MANY NAMES - ONLY FIRST 99 USED', SKIP)"
N := 99 |
END

WHILE .NOT. FINISHED
DO /% PRINT OUT SORTED NAMES */
SAVE := 0
I:=1

CWHILE I <= N , . .
DO */ GO THROUGH AND GET FIRST NAME IN ALPHABETICAL ORDER */
_ iF IN(I) <>''".AND. (SAVE = 0 .OR. IN(I) < IN(SAVE))

. THEN /* THIS NAME HASNT BEEN PRINTED, AND IT IS THE |
FIRST ONE FOUND OR SHOULD COME BEFORE THE CURRENT |
CANDIDATE */ |

SAVE := I /% USE THIS ONE AS THE FIRST ALPHABETICALLY
SO FAR */ o
- e

T :=I+1 /% GO ON TO NEXT NAME %/

'END /* LOOP TO GO THROUGH AND GET FIRST NAME IN ALPHA. ORDER %/

33

IF SAVE <> 0
THEN /% A NAME WAS FOUND %/
" WRITE (IN(SAVE), SKiP) /% PRINT IT */

IN(SAVE) := "' - ——/% MARK ET-AS~'PRINTED!#/
ELSE /* ALL NAMES HAVE BEEN PRINTED #/ |
FINISHED := 1
ED
END /* LOOP TO PRINT OUT NAMES */

START SORT

An exémple of the results of executing the program are indicated below.

Input: Qutput:

"HERZOG' : o ~ BUTLER
'MCKISSICK' * R ' COOLEY
'BUTLER' R .- HERZOG

'COOLEY .- LIEBERSOHN

. "MANSFIELD' | . MANSFIELD

'LIEBERSOHN' | . MCKISSICK

'SCHMEISSNER' - " ROSE

'ROSE' o SCHMEISSNER

-3.11 String Functions

3.11.1 User Defined Functions

A_string'fﬁnctidn is a function those value is a string'(i.e., the
functioﬁ "returns"_a.string). The rules governing the use of string

fﬁhctions are analogous to the rules for integer functions (2.1.2.2).

* The following illustrates the use of string functioms.

STRING FUNC ALPHABETIZE(STRING S)
/% THIS FUNC REARRANGES THE CHARACTERS OF STRING 'S' INTO ALPHABETICAL
ORDER. 'S' MAY HAVE A MAXIMUM OF 256 CHARACTERS. */

. STRING RESULT[256], /% FUNCTION RESULT %/

NEXTCHAR[1] /* NEXT CHARACTER IN ALPHABETICAL ORDER */

INT CHARNUM, /* FOR LOOKING THROUGH CHARACTERS IN 'S' */

NEXTNUM /* POSITION OF 'NEXTCHAR' IN 'S' */

34

RESULT:=""
WHILE §<>'!
DO /% EXTRACT NEXT CHAR (IN ALPHABETICAL ORDER) OF 's! #/

NEXTCHAR := S[1,1] /* START WITH FIRST CHAR #/
NEXTNUM:=1
CHARNUM:=2
WHILE CHARNUM<=LENGTH(S)
DO /* LOOK THROUGH CHARS OF 'S' FOR "SMALLEST" #*/
IF S[CHARNUM,1] < NEXTCHAR '
THEN
NEXTCHAR := S[CHARNUM,1]
NEXTNUM : =CHARNUM
END
CHARNUM : =CHARNUM+1
END /* LOOP TO LOOK THROUGH CHARS OF 's' */
RESULT := RESULT .CON. NEXTCHAR /# ADD NEXT CHAR TO RESULT */
S8 := REMOVE(S,NEXTNUM) s
END /* LOOP TO EXTRACT NEXT CHAR #*/

It

RETURN (RESULT)
/* END FUNC 'ALPHARETIZE' #/

STRING FUNC REMOVE(STRING S, INT CHARNUM)

/* FUNC TO REMOVE CHARACTER NUMBER 'CHARNUM' FROM 'S' %/
RETURN (S[1,CHARNUM~1] .CON. S[CHARNUM+1]):

/% END FUNC "REMOVE' #/

35

-3.11.2 Intrinsic Functions

In this section some intrinsic (bullt-in) functions that facilitate

programming with strings are described.

3.11.2.1 LENGTH

The function LENGTH returns the length of the value of its argument.
The argument may be any string expression, and the result is of type

integer.
Exampié | | |
 LENGTH ('ABC') = 3

LENGTH ('ABC' .CON. 'DE') = 5
3.11.2.2 MATCH

The MATCH function is used to find an occurrence of a'substring

in a string. The syntax is of the form

MATCH" (S1, S2)

. wheré S1 and SZ'.may be any stringfekpreSéions. 'MATCH treturns the

character number in S1 of the first character of (the first occurrence
‘of) the string $52. If 82 is not a‘'substring of 81 , then MATCH
returns 0 . ' o 7

As an.illustratibn, suppose that § § *ABCATDO§f: én& T =.fAI'_.
Then | | o

MATCH (S, T) = .4

MATCH (T, S8) =0

MATCH (S, 'A") =1

MATCH (S, 'CAT') = 3

MATCH (S, 'DOGS')

MATCH (S, 'CATS')

Il

3.11.2.3 INTF

INIF is used to convert a string of decimal digits (or a minus

'éigﬁ followed by'deciﬁai aigité) into an integer'valué. If the string

36

contains a character that is not a digit (other than a leading minus)

then the program is terminated.
“In the following example, let 51 = 123" and .82 = '017' . Then

INTF (S2) =
INTF (S1 .CON. $2) = 123017
INTF ('-' .CON. 82) = -17

INTF ('12345' [2, 3]) 234

3.11.2.4 STRINGF

STRINGF is the inverse of INTF . That is, STRINGF converts the.
value of an integer expression to string. As examples, let I = 22 and

J = ~15 . ‘Then

STRINGF (I) = '22'

STRINGF (J) '-15"
STRINGF (I+J) = '7°'
STRINGF (I~I) = '0'

]

The result of STRINGF is a string with no leading'zeros. . Thus
the 1ength of the string returned by : STRINGF is the number of 51gn1f— ‘

icant dlglts in the 1nteger value, plus 11if the value is negatlve.

3.11.2.5 LETTERS

The function call LETTERS (<str1ng expression>) vreturns a 1 (in-
teger) if each character in the string is a letter (A-Z) and a 0 other-

wise. The letters may be upper or lower case (or both).

3.11.2.6 DIGITS

The value of DIGITS (<string expression>) 1is 1 if each character

in the string is a digit (0-9) and 0 otherwise.
3.11.2.7 TRIM
The result of

TRIM (<str1ng expre331on>)

is. the value of <str;ng_express;on> trupeated_tq remove trailing blanks.

37

3.12 Substring Assignment '
The substring indicator may alsc be used on the left side of an

assignment statement:
<string variable> [<first char>, <length>] := <string expression>

- The rules for <first char> and <length> are the same as for the sub-
string operator in string expressions (3.5.2). The second fiéld (, <length>)
may also be omittéd, just as for the string expression opeérator.

When the substring indicator is used in this manner, the substring
specified by [<first char>, <length>] is replacea by the .first. <length>
characters of the'(string) value of <string expression>.. The remaining
characters of <string variable> are not changed. If needed, the value
of <string expression> is extended on the right with blanks so that

its length is not less than <length> .,

To illustrate, let S1 = 'ABCDE' and 52 = '123456' . Then after

the assignments

s1 [2, 3] = 'XvZ'
s2 [2, 2] := '?°
82 [5] ;= TRAYX!

" the values of 81 and S2 will be

51 "AXYZE'
§2 = 17 4%%!

If

N..Ote _that the lengthof the value of. <5trj_ﬁg variable> cannot be

éhéﬁged b§ a substring assignment.

3.13 String Parameters

Strings passed as arguments to (user) procedures and functions are
‘passed by value unless otherwise specified as in 4.2 . String arrays
are passed by‘reference. These conventions are the same as for integers
and integer arrays, as explained in '2;1.2:im.” 7 ' o

The maximum length of a string parameter passed by value is: set

' to the maximum length of the argument. when the call occurs. Note that

38

a string expression that is not a string variable (such as S.CON.T ,

S[I,J], or 'STRING CONSTANT') has a maximum length equal to the length
of its wvalue. 7
All arguments passed to intrinsic functions are by value. That

is, an intrinsic function will not change the value of a parameter.

3.14 Example
/* THIS PROGRAM REPLACES ALL SUBSTRINGS BETWEEN '/*' AND '#/' BY
BLANKS */

STRING INPUT [80]
INT PTR1, PTR2

. PROC REMOVECOMMENTS -

WHILE .NOT. EOI
o
READ (INPUT)
PTR1 := 1 /* INITIALIZE FOR SEARCH %/
WHILE PTRL <> O |
DO /* REMOVE SUBSTRINGS */
PTR1 := MATCH (INPUT, '/%')
IF PIR1 <> O
THEN /* FOUND BEGINNING */
PTR2 := MATCH (INPUT, '#/')
IF PTR2 > PTRL + 1
THEN /* FOUND END (AFTER BEGINNING) */
INPUT [PTR1, PTR2 - PTR1 + 2] := '' /% BLANK IT OUT %/
END N | } '
END
END
WRITE (INPUT, SKIP)
END ' -

/% END PROC 'REMOVECOMMENTS' */
START REMOVECOMMENTS

For the input

XXX /* COMMENT 1 %/ YYY /* COMMENT 2 %'
'PTR1 := 1 /% INITIALIZE FOR SEARCH */'
'"WHILE PTR1 <> O

' DO /% REMOVE SUBSTRINGS */'

the program would produce the output

XXX YYY
PIR1 := 1

WHILE PTR1 <> Q .

. DO

39

40

4. Additional Language Features

4.1 Escape Mechanisms

4,1.1 Exit Statement

The EXIT statement provides a means of escaping from a WHILE loop.

In its basic form, the statement

EXIT

causes the immediate termination of the (innermost) ‘WHILE .Statement
containing the EXIT statement. Executlion proceeds as if the WHILE

statement has terminated normally.

The use of EXIT is illustrated by the following function.

INT FUNC FIND (INT NUMBER, INT ARRAY VALUES, INT SIZE)

/* FUNC TO RETURN THE SUBSCRIPT OF THE ELEMENT OF 'VALUES' HAVING
VALUE 'NUMBER'. IF 'NUMBER' IS NOT IN 'VALUES', THEN O IS RETURNED.
THE VALUES TO BE CHECKED ARE IN VALUES(1), ..., VALUES(SIZE). */

INT I

I:=1
WHILE I <= SIZE
Do
IF VALUES(I) = NUMBER
THEN /# FOUND */

EXIT
ELSE
I1:=1+1
END
END
IF I > SIZE |
THEN /* NOT FOUND */
I :=0
END
RETURN(I)

/* END FUNC 'FIND' */

41

An exit of more than one level of nesting can also be-performed by

using an EXIT statement. To do so, the exit statement has the form
EXIT (<designator>)

where <designator> denotes the WHILE statement to be terminated. A ~

<designator?_ is an identifier tha; is specified in the form
\<designator>\ WHILE ...
to designate the WHILE loop to be exited.
‘Consider the following program segment:

\L00P1\ WHILE I <= N /#% LOOP 1 */
DO

-
.
.

WHILE 1 /% LOOP 2 (WILL NOT TERMINATE WITHOUT AN EXIT) */
Do

IFI+J =K
THEN
EXIT
ELSE
IFI+J>K
THEN
EXIT (LOOP1)
END
END

END /* LOOP 2 %/
I : =1+ 2
END /* LOOP 1 */
"_.X):; I B LN

If the statement EXIT is executed, then the next statément to be executed
would be I :=T1 + 2 (which is in the WHILE statement degigngted_by
\LOOP1\). However if the statement EXIT(LOOP1) is execﬁte&; the next

statement to be executed would be X := I (the next statement after'the

42

WHILE loop designated by \LOOP1\).

A WHILE désignator may be any identifier that has no other meaning

in the segment (procedure or function) in which it is used.

4.1.2 Return Statement

The RETURN statement causes a return to the calling procedure or

function. It may be any statement in a segment. ‘The form
RETURN

is used for procedures, and the form
RETURN (<expression>)

is used for functions.

The function FIND of 4.1.1 may be rewritten to illustfate this

statement:

INT FUNC FIND (INT NUMBER, INT ARRAY VALUES, INT SIZE)
INT I

I:=1
WHILE I <= STZE
DO
IF VALUES (I) = NUMBER
THEN /% FOUND #/

RETURN (I)
ELSE

I:=1+1
END

END
RETURN (0) /% NOT FOUND */

/* END FUNC 'FIND' #/

Note that the last statement in a function need not be a RETURN
(<expression>) if the structure of the function's statement list is such

that a return is always.made”from,withinVthe_statement3list.__

4.1.3 Abort Statement

_..The.statement

43

ABORT
causes the immediate (abnormal) termination of an entire SIMPL-T program,

regardless of the location of the ABORT ' statement ot the depth of segment

call nesting.

4.2 Parameter Passing By Reference

Procedures may communicate scalar (integer or string). results through
the parameters passed to it by specifying that a parameter is a reference
parameter. .. Loglcally, this means that the scalar variable. 1tself is passed
to the procedure rather than the value of the varlable, just as for array
parameters.. Thus a procedure can then.change the value of a variable in .

a CALL argument list.

_ A procedure declares a scalar parameter to be a reference parameter
by means of the keywoxrd REF . The following program illustrates the dif-

ference between normal parameter passing (by value) and reference parameters.
INT X

PROC ADD1 (INT X, INT Y)

X i= X + Y

'PROC ADD2 (REF INT X, INT Y)
X i1 =X+Y

PROC MAIN

X =3 = L

CALL ADD1 (X, 2)

"WRITE " (X)

‘CALL ADD2 (X, 2)
- WRITE (X)- -

START MAIN

This pfogram would ﬁfinfﬁ.':

Note that only variables (simple orlsubspriptqd)_maj be passed by

reference. That is, neither constants nor expressions (that do not consist

44

of a variable only) -may be.passed. by reference. (In particular, a sub-

string may not be passed by reference.)

Functions may also have reference parameters.

4.3 Recursive Segments

A 'segment that calls itself, either directly or indirectly, must be
declared recursive. This is done by including the keyword REC before
the segment definition. A éegment that does not call itself can also be
declared recursive in order to' cause the dynamic (rather than static) al-
location of locals (thus using ne storage for the locals of the segment

until the segment is invoked).

The following recursive function computes the factorial of an integer.

'REC INT FUNC FACTORIAL (INT .N)

IFN < 2
THEN
RETURN (1) /* 0! = 1, 1! = 1 %/
ELSE
RETURN (N* FACTORIAL (N-1)) /* N! = N* (N-1)1 #/
END

/% END FUNC 'FACTORIAL' */

4.4 Access Between Separately Compiled Program Modules

It is often convenient to construct a program in two or more separ-
ately compiled modules rather than as a single compilation. The modules
are compiled separately and then combined by the collector (@MAP) for
execution. However, in this type of program construction it is often
required that not only procedures and functions but also data in oﬁe
module be accessible from within another moduie.

Since separate compilations are independent (that is, identifiers
from one compilation are not known in any other compilation), special
facilities are needed in order to provide the desired capabilities. 1In
order for a SIMPL-T module {(module 2} to access a procedure, functlon, or

data from another ‘module (module 1), “two thlngs are requlred

45

a) the module (module 1) that contains the procedure, function;
or data must make it available to ‘other modules by specifying
it as an entry point; o o

b) the module {(module 2)_tha;eﬁishes-tcveccesé the_p?cceccre,
function, or data must scecify‘that it isian:egte;nel_i'
reference. ' o o

If these requlrements are met, module 2 may use the 1dent1f1er denoting

the procedure, functlon, or data 3ust as if the identifier were declared

normally in module 2.

4.4.15.Entry Points

Segments and data in a SIMPL-T pfograﬁ module may be made accessible
to separately compiled program modules by declarlng such a segment or data

item as an entry p01nt. Thls is done by precedlng the usual declaratlon by

the keyword ENTRY Q
ExamEles .
"ENTRY INT I, J' = 2
ENTRY STRING ARRAY S[10](20)
ENTRY REC PROC P(INT X) ...

Only global identifiers may be entry points. Due to an EXEC 8 re-
strlctlon, entry p01nt names may not exceed 12 characters in length

Truncation to 12 characters is perfprmed 1f needed

4.4,2 External References

In order to access an entry peint of a separately .compiled program
module, the identifier to be accessed must be declared an external refer-
ence. The keyword EXT is used for this purpose. o '

External declarations for data items are similar . to normal declara-

tions. The differences are that infjtialization of externels-is—nct allowed,

and the size specification for strings and arrays may be omitted {since they

are defined in another module). Examples of external data declarations are

EXT INT ARRAY VALUES
EXT STRING S, T
EXT STRING ARRAY SA[17](32)

46

External segment declarations must include a specification of the

types of the parameters. Illustrations are .

EXT PROC P(INT, STRING)

EXT INT FUNC FIND (INT INT ARRAY)

EXT PROC REMOVE (REF INT, STRING),

INITIALIZE
External declaratioms may be globai‘of local. Just as for entry

points, an external name may not exceed 12 characters and trunéation is
used, if needed, to meet this restriction. The " START specification
at the end of a program may name an external procedure as the procedure

to be initially invoked.

4.4.3 Nonexecutable Programs

Only one of a group of separately complled program modules may
specify a START procedure. The remaining modules are called nonexecu-
table, and are so designated by omitting the procedure name following
START . (A nonexecutable module must have at least ome ENTRY deciara—

tion to be of value.)

A nonexecutable module may consist of (entry p01nt) data items only.

That is, a nonexecutable module need not have any segments.

4.4, 4 ExamEle 1
The two modules glven here 1llustrate the use of external references

and entry poeints. The comblned program reads in 50 numbers, sorts them

into increasing order, and prints them.

Module 1:

ENTRY INT ARRAY NUMBERS(SO)
- EXT PROC SORT

PROC MAIN -

READ (NUMBERS) -
" CALL SORT

WRITE (NUMBERS)

START MAIN

Module 2:

EXT INT ARRAY NUMBERS -

~ ENTRY PROC SORT L
. INT I, SAVE, LAST, INTERCHANGED.

 INTERCHANGED =1
"LAST = 49

WHILE INTERCHANGED
DO /* BUBBLE SORT */
I:=1
INTERCHANGED := Q
WHILE I <= LAST

DO
IF NUMBERS(I) < NUMBERS (I-1)
THEN '
SAVE := NUMBERS (I-1)
NUMBERS (1—1) := NUMBERS(I)
NUMBERS (I) := SAVE
INTERCHANGED := 1
XD .
I:=1+1
END
LAST := LAST -1

END

/* END PROC SORT */ -
~ START.

47

48

4.4.5 Example 2

The ability to access data in a separately compiled module is not
absolutely necessary, since data can be accessed through argument lists.
(The capability of data access between modules is needed for préctical
considerations, however.) As an illustration, consider the following
modifications to the program in the previous example. The program ob-
tained by combining modules 1A and 2A is equivalénf.to the program

consisting of modules 1 and 2 above.

Module 1A:

INT ARRAY INPUT(50)
EXT PROC SORT(INT ARRAY)

PROC MAIN
READ (INPUT)
CALL SORT (INPUT)
WRITE (INPUT)

START MATIN

Module 2A:
ENTRY PROC SORT{INT ARRAY NUMBERS)
INT I, SAVE, LAST, INTERCHANGED

same as module 2 above

4.4.6° Executing a Program Having Multiple Modules

The procedure for executing a SIMPL-T program consisting of sepa-
rately compiled modules is similar to that for other languages. For
example, the program consisting of modules 1 and 2 above could be

compiled and executed by

@SIMPLT, I PROGL

» module 1 source .

49

@SIMPLT,I PROG2

* module 2 source

@MAP .
@XQT

+ data

Additiomal information can be found in wvarious EXEC 8 .uéér.doeumentation.

4.5 DEFINE Facility

A restricted macro capability exists in tﬁe compiler. This facility
exists regardless of optidﬁs.specified. Macros are declared in-a manner sim-
ilar to that for other SIMPL declarations, and are invoked whenever the macro
name, 1s used as an 1dent1f1er in the program Macro parameters and nested

macro calls (1nclud1ng recur51ve calls) are allowed

- A brief deseription of this fac111ty follows

4.5.1 Macro Definition -
A macro deflnit1on has the syntax

" DEFINE . <define llst>

where: <define 1list> . is a llst of one or more deflnltlons, separated by

. commas. Each.definitlon has the form. ' '
<identifier> =" <string constant>

where <didentifier> is a normal SIMPL identifier,'and f<string=c0nstant5

is a normal SIMPL string constahtﬁ(enclqsed in aﬁostrOphes); Macro para-

‘meters are denoted in the'defining_‘<8triﬁg constant> by &n , where n

is'a'digitbetWeeﬁ 1 and'9;'ihtlusivé, that refers to theférgument ﬁumber.

The &n 1is replaced by the'argument when the macro is invoked.
‘4.5.2‘_Examgle 7
The following program.(written £erﬂlllasrration inyl_prlarsathe.

integers 1-10, modulo 4.

50

DEFINE
INCR = T§1 = &1+1' ,
ASSIGN = '"&1 := &2' ,
FOREVER = 'WHILE 1' ,
MOD = "&1-&1/&2%82°
INT I=0, J
PROC MATN
FOREVER
)]0]
IF I »>= 10
 THEN EXIT
" ELSE
INCR(I)
ASSTGN(J,MOD(I,4))
WRITE(.J)
~END
END
- START MAIN

CUULU5.3 7 Macro Expan51on'“

Arguments to a macro are separated by commas and the argument llSt

is enclosed in parentheses. Each argument may be

1)

2)

a string constant (enclosed in apostrophes), in’ which case the value
of the string constant is substituted for the formal parameter in

the defining <string constant> ;

any string of characters not including a comma or right parenthesis,

except that nested parentheses are allowed and a comma may appear be-

‘tween nested parentheses. In this case, the'character string minus

leading and trailing blanks is substituted for the formal parameters.

When a macro identifier is found during.the processing of source text,

the following-occurs:

2)

3)

A -copy is made of the macro. def1n1t10n,.

The formal parameters:in the .copy. of the defining string are replaced

by -the actual parameters from:the-argumeqt list of,phe_macro,lnyoca—

tion;

The expanded macro then replaces the macro invocation (macro id and

argumenit list) in the source text, and proce351ng of the source text

"‘reeumes with the expanded ‘macro.

51

4.5.4 Conventions and Restrictions

1) SIMPL comments (f%* ;. */) are removed from a <string-constant> .
that defines a macro. ‘. . _

2)_'The usual scope rules apply for macro declaratlon This meﬁns that

macros may be deflned as ‘locals 1f de51red Note, hbwévér;“fhat'é:‘
global macro identifier cannot be redefined as a locél'witﬁﬁut first
turning off the macro expansion fécility (see below) since the occur-
rence of the identifier in the iccal declaration list would invoke the
global macro. |

3) A macro invocation oceurs whenever a macro identifier is found in the
text. This means that a macro canndt be invoked within a string con-
stant or comﬁent,-fdr example,

4) The érgument list for a macro invocation is optional. An empty list
()} is allowed. '

5) An argument that is not a string constant may not cross an input line
boundary. An argumeht‘list must begin on the same line as the macro
identifier. . -

6) No more than 9 formal parameters are allowed. . Missing arguments are
considered to be null, and arguments corresponding to no fdrmal para-
meter afe ignored.

7) The total length of all macro definitions (concatenated) cannot exceed
4000 characters, |

8) Apn expanded macro plus the remainder of the line_where‘the macre is
invoked cannot exceed 400 characters. The length of all arguﬁents
concatenated cannot exceed 400 characteré.

9) If an expanded macro plus the remainder of the line ﬁill not fit on
one line, the expanded text is split as needed at the last blank be-
fore a line boﬁndafy. |

10) No more than 50 macro invocations (including nested invocations) can
occur from a single llne of source text.

11) Note that neither ENTRY nor EXT may be used with DEFINE.

4,5.5 Options
The directives .

/+ EXPANDOFF +/° and /+ EXPANDON +/

52

can be used to disable the expansion facility for any portion of source

text. The expansion is initially ON. The directives
/+ EXPANDPRINTON +/ and /+ EXPANDPRINTOFF +/
can be uséd_to obtainra‘listing_of macro expanéioné.' The print facility

is_initially OFF.

53

5. Some Special-Purpose Language Features

5.1 Character Data Type .

5.1.1 Introduction _
' In order to facilitate a more efficient implementétion of some string

handling algorithms, SIMPL-T has a third data type: character. A charac-

ter is any ASCII character (see Appendix III}.

The addition of character data does not facilitate the writing of
SIMPL-T programs. In fact, just the opposite may be trﬁe: scme algorithms
are more difficult to code using character data than if strings were used.
However some computers, such as the 1106 and 1108, do not have machine
instructions that facilitate the efficient implementation of string operations
such as substring extraction. Thus the character data type exists in SIMPL-X so
that character-oriented algorithms can be implemented more efficiently

(with respect to execution time) on such machines,

In general, the addition of character data to SIMPL-T involves mostly
straightforward extensions of the integer and string handling concepts. Some
of these extensions, and the variations that are needed for character data,

are explained below.

5.1.2 Constants
Character constants are denoted by enclosing the character in quotation

marks ("). A character constant may also be denoted by C '<integer constant>’
where <integer constant> specifies the numerical value of the ASCII enceoding

of the character.

Examples of character constants are

nan npn Hon nn oc'13! C‘@'l'?)_/”

5.1.3 Declarations

Scalar character declarations are similar to scalar integer declara-

tions. Examples are

CHAR C, C1 = "x"
ENTRY CHAR C2
EXT CHAR C3

54

Character array declarations are also similar to those for integer
arrays. One difference is that a string constant can be included in the
initialization list for a character array. The meaning is that the elements
of the array are to be initialized with successive characters of the string.

Examples are:

CHAR ARRAY CAI(10),

CA2(20) = ("A", 'CAT', "X")
ENTRY CHAR ARRAY B(10) |
EXT CHAR ARRAY CA

In this example,: CA2(1) 1is initialized to "Cﬁ., CA2(2) to At
and CA2(3) to "T".

5.1.4 Statements

The assignment statement has the form
<character variable> := <character expression> . .

for character data. Both sides of the assignment statement must be of

type character.
The case statement can be used in the form

CASE <character expression> OF

< >
\cl\ statement list 1

\c \ <statement list>
n n

{ELSE <statement list> .} END
n+l

where cl,..f,cn are character constants. The form of the character case

statement is illustrated by

CASE NEXTCHAR OF
\"A"\ CALL CASEA"
B\ \"X"\ CALL CASEBX
“\"2"\ CALL WHAT
ELSE CALL OTHERCASE
END S

55

5.1.5 Operators

The only operators that may have character operands are the relational
(=, <, etc.) operators. Both operands must be of type character, and the
result is the same as it would be for single character strings consisting

of the operand characters.

Thus a character expression can only be a character variable (simple

or subscripted), a character constant, or a character function call.

5.1.6 Intrinsic Functions and Procedures

5.1.6.1 INTVAL
INTVAL (<char expr>)

returns the integer whose value is the binary ASCII encoding of the charac-

ter argument (see Appendix III), Examples are
INTVAL ("A") = 65

INTVAL (" ") = 32
INTVAL ("a') 97

5.1.6.2 CHARVAL
The result of

CHARVAL (<int expr>)
is of type character and is the inverse of INTVAL . Thus, for example,

CHARVAL (65) = A"
CHARVAL, (32) =" "

The value of the argument must have a2 value between 0 and 127, inclusive.

5.1.6.3 INTF
The INTF function alsd'may be applied to character data. As-examples,

INTF ("1") = 1
INTF ("9") =
The value of a character argument must be one of the characters- "o" , '1" .

C‘I’ |'9" -

56

5.1.6.4 STRINGF
STRINGF also may have a character argument although no function
is required for this conversion (see 5.1.8). The result is a string of

length 1 ‘consisting of the character. TFor example

-JAI :
13!

STRINGF ("A"Y
STRINGF ("3™)

5.1.6.5 CHARF

The function CHARF converts a string or integer argument to character.
For string arguments, CHARF (<string expression>) is the first character

of the string. For integer arguments,
CHARF (<int expr>) = CHARF (STRINGF(<int expr>))
Thus, for example,

" CHARF ('ABC') ="A"
CHARF (7) = "7"
CHARF (___17) = Tttt

5.1.6.6 LETTER ‘
LETTER is an integer function defined By

LETTER (<char expr>} = LETTERS (STRINGF(<char expr>))

5.1.6.7 DIGIT
‘The integer function DIGIT is defined by

DIGIT (<char expr>) = DIGITS (STRINGF(<char expr?))_

5.1.6.8 TUNPACK
* UNPACK is an intrinsic procedure that stores the successive characters
of a string into successive elements of a character array. The format is
 {cAIL} DNPACK (<string’expr>, <char array”)
For example, if S8 = 'CAT' and A is a character array, then the statement
UNPACK (5,A)
would result in A(0Q) =:"C",. A(1) = "A":, etc.

The string %rgument is extended on the right with blanks or truncated

57

so that its length is the same as the number of elements in the array.
Thus every element of the array is given a value. Note that the string

argument is first and the character array second.

5.1.6.9 PACK

The intrinsic procedure PACK is the reverse of UNPACK. The format
is

{CALL} PACK (<char array>, <string variable>)

All characters of the character array are used unless the maximum length
of <string wvariable> 1is too small, in which case only the first k
characters of the array are used, where k is the maximum length of

<string variable® .

5.1.7 I/0 _
READ and WRITE are extended in a straightforward manner for charac-
ter data, except as noted below. Characters to be read are enclosed in

‘quotation marks just as for character constants in a SIMPL-T program.,

One difference in I/0 for character data is that a string can be
read into a character arra&. This works just as if the string were‘read
into a string variable and then UNPACKed into the array. Similarly, a
WRITE of a character array is the same as doing a PACK and a WRITE of
the resulting string.

5.1.8 Characters as Strings

The set of characters is considered to be a subset of the set of
strings. Thus a character is also considered to be a string (of length
1) and may be used as a string without explicit conversion {STRINGF).
Note that the converse is not true: no string may be used as a character
without explicit conversion {CHART). '

5.1.9 Summary

o Due to"the special nature of character data, its usage has not been
explained fully. It is expected that those who wish to use it will be
advanced enough to extend the integer and string features logically to

character. Other features not mentioned above, such as character functions,

58
character parameters, etc., extend in a straightforward manner (e.g., charac-
ters are passed by value unless declared by reference, but character arrays

are passed by reference).

5.2 Bit Representation for Integer Congtants

Integer constants may be sPecified in binary, octal, or hexadecimal

as well as decimal. However, these additional representations specify the
bit pattern for the word in which the integer is stored, rather than the
value of the integer. Thus a maximum of 36 bits may be specified for the

1106/1108.

A bit representation consists of the letter B, 0, or H , followed
by the binary, octal, or hexadecimal, respectively, constant enclosed in
quotes. (Embedded blanks are permitted.)._For‘examplg, ipteger_valpe__ZB
can also be specified by any of the following:

B'10111' B'010 111’

o'27'

o H|l7l
Similarly, -23 can be specmfled as 0 777777777750"'or H‘FFFFFFFEB' .

Trailing zeros may conveniently be spec1fled by ending the constant in
quotes by the letter Z followed by the dec1mal number of zeros to be
included. For example, | ' o '

B'11000"
0' 75000000

"B'11Z3"'
0'75z6"'

A bit representation may occur anywhere in a SIMPL-T program that an
integer constant may occur. A bit representation may not be used for

READ , however. No blanks may be imbedded in a bit representation for an

integer constant.

STRINGF may be used to convert an'integer.value to a string whose

characters are the digits of a bit representation by using
STRINGF (<int expr>, <base indicator>)}

where <base indicator> hasrvalué 2, 8, or 16. (10 is also permissible
and is the default value.) Leading ééroa'are not included in:a result

from = STRINGF .. Similarly,
- INTF (<string expr>, <base indicator>)

. may be used to convert a string of binary, octal, or hex digits to integer.

59

5.3 Bit Operators

5.3.1 Shift Operators .
There are four shift operators in SIMPL-T: left logical shift

(.LL.), left circular shift (.LC.), right logical shift (.RL.), and
right algebraic shift (.RA.) These are binary operators that are used

in the form

<integer expression> <shift operator> <ghift count>

where <shift count> is an integer expre551on whose value is the number

of bits to shift.

-These operations are similar to the corresponding 1106/1108 hardware

instructions as illustrated below.

. 0'3275Z4' .RA. 6 = 0'327522'
0'73z10' .RL. 5 = 0'16628"
0'73710' .RA. 5 = 0'776628'
0'77' .LL. 6 = 0'7700"
0'327524' .LC. 15 = 0'275000000003"

n

5.3.2 Bit Logical Operators :
The bit logical operators complement (.C.), and (.A.), or (. Vo),
and exclusive or (.X.) also function the same as the corresponding_llOﬁ/

1108 hardware instructions. Examples are

.C. 0'1234567' = 0'777776543210"
B'110101' .A. B'11001' = B'0L000L’
B'110101' .V. B'011001' = B'111101"
B'110101' .X. B'0I1001' = B'101100'

5.3.3 Precedence _
Bit complement (.C.) has the same precedence as the other ‘unary operators
but the binary bit operators have precedence over all other binary integer

operators. Among the binary bit operators, the precedence (highest first) is

60

.LL. .LC. .RL. .RA, shift

bit logical

5.4 Partwords L o _ _
The partword operator is similar to the substring operatbr."In'the_

form
<int expr> [F1, F2]

the partword operatlon has an integer value whose binary speciflcation
consists of the F2 bits beginning at bit ¥l of the value of the expres—
sion. Thus the partword operator extracts F2 bits beginning at bit Fl
and generates an integer value by adding leading zero bits to fill a word.
F1 and F2 may be any integer expressions. The first bit of a word
is bit number O (mot 1 as for the first character of a strlng) ' Thus

the values of Fl and F2 must satisfy all of the following.

0 =F1 =35
1 =F2 =36
1 =Fl+F2=36

The F2 field may be omitted, in which case F2 = 36. - Fl (the rest of,
the word).

As examples, consider the following:

17 [31,3] =
0'573201577123" [6,6] = 0'32'
0'573201577123"' [18] = 0'577123"

Partwords mey also be specified on the left of an assignment:
<integer variable> [F1,F2] := <integer expression>

In this case, F2 bits of the value of the variable, beginming with bit
'F1 , are replaced by the rightmost F2 bits of the value of the expression.

“himself).

61

The remaining bits in the wvariable value remain unchanged.
For example, if integer variable X has value 0'6327'", then after
X[27,6] := 0'7415'

X would have the value O0'6157' .
5.5 Record T/0
5.5.1 Introduction

Since 1/0 using READ and WRITE is not very flexible, there is

also recdrd—oriented I/0 in SIMPL-T. This allows a program to read input

images into string variables and write one line of output text from a

string expression. Thus while record I/0 is more primitive than stream

~"1/0, it gives the user complete flexibility as to the format of input and
'output (although he must scan the input images and build the output images

- 5.5.2 READC

" The intrinsic procedure READC may be used to read an entire input

‘record (card, line, etc.) into a string variable. . The syntax of a READC

statement is
{CALL} READC({<skip>,} <readec item>{,<int variable>})

A <skip> for READC is the same as for 'READ , except that SKIPO

‘has no meaning for READC . The effect of a skip specification is different

for READC ', however, since a READC operation includes an implicit SKIP .

Thus, for example, successive
READC (SKIP, S)
statements would read every other card.

A <readc item> may be a string variable, character array, or string

array. These function as follows:

1) string variable - The next input record is read into the string
variable. The input image is placed into the string just as it

appears in the input (e.g., the character in the first card column

62

becomes the first character in the string, ete.). All of the

trailing blanks atre removed. The input string is truncated, if

needed, to the maximum length of the string‘variable.

2) character array ~ The characters of the inpiut image are placed into
successgive elements of the array, beginning with element 0. If
the input image is too long, it is truncated. If it is too short,
it is padded with trailing blanks, so that the entire array is

filled, unless the <int variable> is included.

3) string array - Successive input records are read into the (strlng)
elements of the array There must be enough input records to flll

the array

The optlonal <int variable> is designed for use Wlth a character array.
If included in a character array read _the array will not be padded_our with
blank characters. Instead, the integer variable will be set to the number

of characters read.

If used with a string variable, the integer variable is set to the length
of the image read. Note that this can.also be obtained by using the LENGTH
function after the READC . For a string array, the integer variable is set

to the length of the last image read.

End of file for record input is determined by the intrinsic function
ECIC , which is similar to EOI . The difference is that EOIC asks "Is

there another input record?", while EOI asks "Is there another input item?"

READ and READC * (and hence EOI "and EOIC) are not de51gned to be

intermixed, and a user does so only at his own risk.

5.5.3 WRITEL ;
The analogue to WRITE for record output is WRITEL . This intrinsic
may be used to write out a string onto'a line of output, with each string

written on a new line. Thus the statement
- WRITEL(S)

is roughly the same as

63

WRITE(SKIP, S)
The syntax for WRITEL is
{CALL} WRITEL (<writel list>)

where. <writel list> is one or more items, separated by commas. . The

items that may be used in <writel list> are
1) a skip or eject specification -~ Note that = SKIPO permits overprinting
with WRITEL , and successive WRITEL (S, SKIP) statements would
print on every other line. ‘ o
2) a string expression — The string is printed on the next.line, trun~
cated to 132 characters if needed.

3) a character array - The array is PACKed and the resulting string

is printed on the next output line."

4) a string array — The array elements (strings) are printed on suc~

cessive output lines.

WRITEL and WRITE are not intended to be intermixed, although the

problems are somewhat less severe than for intermixing READ and READC .
5.6 File I/0-

5.6.1 Introduction

_ External data files can be used by a SIMPLwT program., The files must
be EXEC 8 SDF files 1f not generated by a SIMPL-T program. Flles _ _
generated by a SIMPL-T program will be EXEC 8 SDF ASCII flles prov1ded only

strings are written out.

Logically, a SIMPL-T file is considered to be a sequence (stream) of
scalar data items. A,preViously created file can be used‘provided it'is
assigned to the‘run before executibn of the SIMPL-T program. If no file
with the proper name is assigned, then the SIMPL-T file routines ﬁill assign

a temporary file and free it at the end of the program,

5.6.2.’File Declaration _ ‘ S
Files must be declared. A file declaration contains the keyword FILE
followed by a list of identifiers. The identifiers are the (internal) file

64

names to be used in the standard manner for EXEC 8 files. (Note that the
qualifier is not included and that file name identifiers may not exceed
12 characters in length.)

Files may also be declared as’ entty points or external references, A
file may not be loecal unless it is an external reference: A file may be used
as a parameter to a Segmen;.

Examples of file declarations

FILE DAfAl DATAZ2 |

ENTRY FILE DATA3

EXT FILE DATA4

. 5.6.3 READF
Files are read using READF . The syntax for this statement is

{CALL} ‘READF (<file name>, <readf 1list>)
Each item in <readf list> may be
1) an'integef;:sffing, or'charaeéef.?afiabie;ﬁn
2) aﬁ.integer, string, or character array, in.which case successive
values are read into Succeesive elements of the array. i

The types of the items in the file must be compatible with the types

of the items in the <readf list> . No error checking is performed.

End of flle may be determined by EOIF , Whlch has value_ll_ if all

items have been read and value D otherwise._ The syntax for this function is

EOIF (<f11ename>)

5.6.4 WRITEF
- Items are written into a file using WRITEF . The syntax
{CALL} WRITEF (<filename>, <writef list>) ~
is similar to that for READF . Each item in the <writef list> may be an
expres51on of any data type or an array of any data type. -WRITEE: funepions

as a counterpart for READF .

65

5.6.5 Control Operatioms
A file is viewed logically as a sequence of items ending with a special

end~of-file indicator. Two control operations are used in creating and posi-

tioning files.

ENDFILE is used to generate an end-of-file indicator. The statement

{CALL } ENDFILE (<filename >)

must be used after the last WRITEF statement that is used in generating

the items in a file.

In order to return to the beginning of a file, REWIND is used. The

statment
{CALL } REWIND (<filename>)

repositions the file at its first item

5.6.6 Example

To illustrate the use of files, the following program reads in a set
of integers, writes them into a file, and then reads them from the file

and prints them.

INT NUMBER
FILE DATA

PROC- MAIN

WHILE .NOT. EOI
DO /* READ IN NUMBERS AND CREATE FILE #*/
READ (NUMBER) | |
WRITEF (DATA,NUMBER)
END S
ENDFILE (DATA)
REWIND (DATA)

WHILE .NOT. EOIF(DATA)

' DO /* READ FROM FILE AND PRINT */
READF (DATA,NUMBER) =~ =
WRITE (NUMBER)

END

START MAIN

66

5.6.7 Conventions and Restrictions

As mentioned above, SIMPL-T files are compatible with SDF ASCII
fileé, provided only strings are used. SIMPL-T can read any SDF'file,
and'any program that caﬁ read.SDF ASCIT files'can read SIMPL-T

files if only string data is read and written by the SIMPL-T prdgréms.

The sequence of file operatiohs is important: ' The normal sequence
for creating and then reading a file is illustrated in the example of

5:6.6 . The restrictions are

1) a READF may only follow another READF or a REWIND , unless

it is the.initial operation on an already existing file;

2) a WRITEF may be the first operation on a file or may follow a
REWIND (or another WRITEF);

i

3) an ENDFILE may be the first operation or may follow a WRITEF.
or a REWIND ;

4) a REWIND may only follow an ENDFILE , a READF , or another
REWIND . :. B ' '

For thesé rules, EOIF is equivalent to READF .

The READF statements that read a file are completely independent
from the WRITEF statements that create the file. A file is a sequence
of scalar data items so that, for example, the elements of an array may
be written out using WRITEF of an array and then read back in using

READF into scalar variables.

3.7 Multiple Input-stream Files

Input stream files may be partitioned by use pf_the_.@EOF control
statement (or other equivalent statement)}. When this statement is éncounw
tered, the SIMPL~T input routines will cause a 1 to be returned_by EOI
or EOIC . However this is considered to be a "soft" end-of-file, and

reading may then continue with the next set of data.
There is no way to distinguish between a "soft" and "hard". end-of-file

in a SIMPL-T program. (Any attempt to read after a "hard" end-of-file causes

the program to be terminated.) However since repeated calls to . EOI or

67

EQOIC are allowed, a variable number of partitions can usually be handled
by making a second end-of-file test. A "hard" end-of-file would cause
successive values of 1 to be returned, while Q@EOF followed by more

data would cause the second end-of-file test to return the value 0 .

This paftitioning capability applies only when the SIMPL-T program
is executed via an @XQT control statement. Programs invoked by a pro-
cessor—-call control statement. (such as the S5IMPL-T compiler) cannot use

this facility.

5.8 Obtaining the Execution Time Options

The options specified on the @XQT or processor—call statement that

causes a SIMPL~T program to be executed can be obtained by the program as

it begins execution as described below.

The procedure initially invoked (via the START <identifier> specifica-
tion) may have one parameter. The type of this parameter must be string.
If the procedure does have this parameter, then it will initially be passed
a string whose characters are the option letters specified on the control

statement that invoked the program execution.
For example if a program has the procedure

PROC MAIN (STRING S)

and the START specification
START MAIN

and is executed via the control statement.
@XQT,ABX

then the value of the parameter $ when the procedure . MAIN - is initially

called will be 'ABX' .

5.9 Generating Relocatable OQutput

5.9.1 Introduction

To support its use as a compiler-writing language, there are statements

68

in SIMPL-T that can be used to generate relocatable output. These very
special-purpose statements are described in this section. General informa-
tion regarding the execution of a SIMPL-T program that uses these state-

ments and the relocatable element to be generated are included in 5.9.8 .

To create a relocatable element the OPENOBJ ,- DEFEP , DEFXREF ,
GENOBJ , DEFLC , AND CLOSEOBJ intrinsic procedures are used, OPENOBJ
and CLOSEOBJ initiate and terminate, respectively, the relocatable
output. DEFEP , DEFXREF , and DEFLC are used to define entry points,
external references, and location counters. GENOBJ 1s used to generate

relocatable text.

The reader is assumed to have some knowledge of the terms "entry peoint",
"external reference'", "location counter', and "relocatable text' as they

apply to EXEC 8 relocatable elements.

5.9.2 OPENOBJ
OPENOBJ must be the first relocatable intrinsic procedure used and

may be called only once. The syntax is indicated by
{CALL} OPENOBJ (<locctrs>, <xrefs>)

where <locectrs> is the number of location counters to be used, and <xrefs>

is the maximum number of external references to be used.

5.9.3 DEFEP and DEFXREF
These procedures are used to define entry points and external refer-

ences, respectively, of the relocatable element. An entry point or external

reference may be defined at any time between the OPENOBJ and the CLOSEOBJ .
DEFEP is used as indicated by
DEFEP (<name>, <locctr>, <offset>)

where <name> is a string whose value is the entry point name, and <locctr>,

<offset> gives the location counter and offset of the entry point.
The syntax for DEFXREF is

DEFXREF (<name>, <number>)

69

where <name> 1is the (string) name of the external reference, and <number>
is the number by Whlch the external reference will be referenced in the
relocatable text. ' '

DEFEF and DEFXREF may he used at any time (between OPENOBJ_ and
CLOSEOBJ) during the generation of the relocatable element. The sequence

in which the definitions occur is not important, except that an external

reference must be defined before it can be used in a. GENOBJ statement.

5.9.4 GENOBJ
The GENOBJ procedure is the primary generator of the object program.

The syntax is given by

‘GENOBJ (<text> <tle>, <offset> {, <rlc> {, <xref>}})

This generates the data <text> into the relocapable element at location
counter <tlc> ,» offset <offset> . The argument <text> may be of type
integer, character, or string. Integer and character data generate one
word of relocatable text. (The ASCII 7-bit code, right-justified with
leading zeros, is generated for CHAR data.) A string is generated into
zero or more Successive wsrds;.using the 9-bit ASCII encoding (4 characters

per word).

If the <rle> argument is included (without the <xref>), the
address portion (rightmost 16 blts) of the 1nteger argument <text> 1is
relocated with respect to locatlon counter <rlc> . If the <xref> argument

is included (i.e., if there are 5 arguments), relocatlon is with respect to

external reference number <zref> ,
For example
-GENOBJ (NEXTWORD, CTR, ADDR)
would generate the contents of NEXTWORD at the offset given By ADDR
relative to the location counter whose value is in CTR . Similarly,_
GENOBJ (INSTRUCTION, 1, IC, 2) .

would generate the contents of INSTRUCTION at offset IC -relative to
location counter 1, and the rightmost'lﬁ—bits of the word will be relocated

with respect to location counter 2.

70

5.9.5 DEFLC
DEFLC 1is used to specify the number of words to be reserved for a

location counter. The syntax is indicated by
DEFLC (<loc ctr>, <size>)

DEFLC may be used any time between OPENOBJ and CLOSEOBJ . The number
of words to be reserved for a location counter need not be specified before

text is generated for that location counter.

5.9.6 CLOSEOBJ .

The end of the relocatable output is specified by CLOSEOBJ . If
arguments are included, they specify the start address of the generated
program If the argument list is omitted, a nonexecutable relocatable

element is produced. The syntax for CLOSEOBJ is

CLOSEOBJ{(<1DC ctr>, <offset>)}

5.9.7 Exalee

In this example, location counter 1 is used for instructlons and 2

for data. Loops are not indicated but would clearly be used.

INT IC = O, /* INSTRUCTION COUNTER */ _
XREF = 0, /% NEXT AVAILABLE EXT REF NUMBER */
INSTRUCTION, /* INSTRUCTION TQ BE GENERATED */
XREFNO, _ /*_XREF NUMBER FOR RELOCATION */
TYPE, /* RELOCATION TYPE */

DC = 0, /* DATA COUNTER */
MAXXREFS, /* MAXIMUM NUMBER OF XREFS #*/

ENTRYPOINT = O /* SWITCH %/
STRING NAME [12] /% ENTRY/EXTERNAL NAME */.
Determine max number of external refs
OPENOBJ (3, MAXXREFS) “
. Find external ref and put into 'NAME'
DEFXREF (NAME, XREF)
XREF := XREF + 1 .

. Save XREF number

¢ Set up instruction

71

| CASE TYPE OF
\0\ /* NO RELOCATION */
;. GENOBJ (INSTRUCTION, 1, IC)
\1\ /* LC 1 RELOCATION */
GENOBJ (INSTRUCTION, 1, IC, 1)
\2\ /% LC 2 RELOCATION */
 GENOBJ(INSTRUCTION, 1, IC, 2)
\3\ /* XREF RELOCATION */
" GENOBJ (INSTRUCTION, 1, IC, 0, XREFNO)
END S S |
IF ENTRYPOINT
THEN
DEFEP (NAME, 1, IC)
ENTRYPOINT := O
END
IC := IC + 1 |
Generate daﬁa
DEFLC(1, IC)
DEFLC(2, DC)
CLOSEOBJ (STARTLC, STARTADDR)

5.9.8 Conventions and Restrictions

Location counters 0-63 may be used. Even-numbered location counter
text is placed in the D-bank, and odd-numbered location counter text is
placed in the I-bank. (Location counters 1 (for instructions) and 2 (for
data) are more or less standard.) If n locationrcounters are specified
as being "used" (by. OPENOBJ), then location counter numbers 0,1;...,n-1
are allowed.: Note that not 'all of these must actually have text generated

for them. No DEFLC i1s needed for an unused counter.

The external reference numbers begin with zero.. If .n is specified
(via OPENOBJ) as the maximum number of external references, then external

reference numbers 0,1,...,n-1 may be used.

72

External reference and entry point names may not exceed 12 characters

in length. Truncation is performed if needed.

A SIMPL-T program that generates a relocatable element must be exe-

cuted by a processor-~call EXEC 8 control statement:
@<processor>{,<options>} {<specl>}{,<spec2>}

The usual default rules apply. The <specl> field identifies the source
input element and <speci> identifies the relocatable output element.

(Note that the source input records are read by READC in this case.)

The intrinsics PROPEN and PRCLOSE must be used to set up the processor

call conventions. These intrinsics are described in section 5.10.

5.10 Programs That Execute as Processors

A SIMPL-T program can be made to execute as an EXEC 8 Processor. Such

a program is invoked by a processor call card
@<name>{, <options>} {<spec 1>}{ ,<spec 2>}

rather than by @GXQT . SIMPL-T programs thét execﬁte as processors have
the standard EXEC 8 source input options performed for them. For example,
the input (READ or READC) comes from the <spec 1> element unless the
"I" option is specified, in which case it comes from the run stream and is
copied into the <spec 1> element.

A SIMPL~-T program can be made to execute as a processor by calling the
intrinsic PROPEN before any I/0 operation is done, and calling PRCLOSE
after the coﬁpletion df'all I/O operations; This will establish the re-
quired interfaces for source input as well as for relocatable (5.9) or
symbolic (5.11) output.to'the' <gpec 2> file.

2.11 Symbolic Qutput

The intrinsics WRDATA and WREND may be used to write symbolic output

into the <spec 2> element of a processor call card. The statement
< WRDATA (<string>).

writes out a string, and

73

WREND

closes the output.

A program that uses WRPATA and WREND must be‘executed as a processor

(see 5.10).

74

6. Using SIMPL~T on the 1106/1108

6.1 Source Input Format

The normal scan of SIMPL-T program text is the first 80 characters of
each input record (e.g., card columns 1-80). This text is free format and

is essentially viewed as one continuous string of program text.

Keywords are reserved identifiers and may not be used as identifiers

in a SIMPL~T program. Keywords are listed in Appendix V.

Input record (e.g., card, teletype line) boundaries are meaningful
only in that no keyword, identifier, integer or character constant, ot
symbol may be split across a record boundry. This restriction does not

apply, however, to string constants and comments,

Comments can be nested; that is, a comment can contain other comments.
Thus a comment consists of all text between the characters /% and the
first occurrence of the characters %/ for which all occurrences of /%
and */ in the text of the comment are themselves comment delimiters.
(Thus, for example, it is always possible to temporarily remove a portion

of a program by enclosing it in comment delimiters.)

Several compiler directives are available for program listing control,
debugging aids, etc. Some of these may be specified by using EXEC 8 con~
trol card options (these are listed in Appendix I) and some may be speci-
fied by using a compiler directive in the source program text. A compiler
directive is delimited by the characters /+ and +/ , and may occur any-

where that a comment may occur (except within a comment).

The scan width for input text can be changed at any time by using

’

the directive
/+ SCANLIMIT {<value>} +/

where <value> is the positive decimal integer number of the last character
to be included as program text om each input record. The new scan limit
becomes effective on the next input record after the one on which the direc-
tive occurs. If <value> is omitted, then 80 is assumed. (The initial

“value is also 80 .) This feature is included primarily to allow the in-

75

clusion of information other than program text (e.g., Sequence numbers)

on the input records.

No wvalidity checks are performed on <value> . Thus, for example,

/+ SCANLIMIT 1 +/

would render the remaining input text records useless.

6.2 Debugging Aids

6.2.1 Traces

6.2,1,1 Program Flow Traces

? . Two traces for program fiow are available: a trace of proc/func:calls
and a line number tracé. The call trace prints.a message whenever a call

to a pracedure or function is executed and also prints a message when a
return occurs. The messages include the names of the calling and called
segments as well as the line ﬁumbers involved. (Only the first 8 charac-
ters. of a éegment name are printed.) |

A line trace causes the number of a line to be printed when the state-

ment on it is executed. The segment names (first 8 characters) are also

printed as the segments are invoked.

The call and line traces can be activated by compiling with the T
and Y options, respectively. They can also be activated and deactivated

by using the compiler directives

" /+ CALLTRACEON +/
/+ CALLTRACEOFF +/
/+ LINETRACEON +/
/+ LINETRACEQOFF +/

These directives bracket the program statements for which a trace is to be

activated. A call or line trace will be in effect for all statements between

ON and OFF directives, .

76

6.2.1.2 Variable Trace

. An’ execution trace for the value of variables is also available, This

trace is activated by the directive
/+ TRACE <id list> +/
and is turned off by
/+ TRACEOFF <id list> +/

The <id list> is a list of identifiers, separated by blanks or commas; these
jdentifiers must be known by the usual scope rules at the place.where the
TRACE oxr TRACECFF occurs.) .

The TRACE and TRACEOFF directives bracket the part of the program for
which the trace is to be performed. At executlon,‘the name and value of a
_traced varlable is prlnted after execution of an a551gnment statenent in
whlch the varlable was the left 51de, and’ after ‘exécution of a call that
passes ‘the variable as an argument by reference. The line number ‘of the”
statement 1s also prlnted R c '

o An array ‘trace w1ll prlnt values of elements used ds scalars whose-
velue may be changed and will 1nclude the value of’ the subscript. = Arrays
passed as arguments will be signalled by a message, but no values will be
printed.'

Note that only data‘identifiers-may-appear in <id list>. Thus-an .
array element may not be traced. If <id list> is.empty. in a TRACEQOFF

directive, all active traces are terminated.

ﬂ6 2.2 Subscrlpt Checking

Subscript checking can be requested for an entlre program by u51ng the

C compilation option, and for portions of a program by using the directives

/+ SUBSCRIPTON +/
/+ SUBSCRIPTOFF +/

“The directives function similarly to those for theﬁtrace‘options. When
‘sibscéript checking is activated, the value.of any subscript that is out-
side the bounds of the array is printed, along with-line number where ..

the error occurred.

77

6.2.3 Omitted Case Check

Compiling with the D option causes checking for'the occurrence of -
an unspecified case value in a' CASE statement. If the expression value
for a CASE statement does not correspond to any of the case numbers (or
characters) and no ELSE part was specified, then a message is printed.
This check can also be activated for portions of a program by using the

directives

/+ CASECHECKON +/
/+ CASECHECKOFT +/

6.2.4 Conditional Text

In many 1nstances the best Way to debug a program is to 1nclude extra
statements in the program that prov1de 1nformation about the e&ecutlon of
a program as it executes. (An example - of such a statement is a WRITE
statement that prints the values of certain key variables.) -Spch statements
are often somewhat cumbersome to put into a2 program at the right places,
only to be removed after the bug has been found. - The conditional text fea-

ture of ‘the SIMPL-T compiler provides a convenient means for handling such

a situation.

The conditional text facility allows any string of source text to be

either included or ignored as program text by the compiler. Such text is

denoted by
/+ <indicators> <text> +/

where : <indicators> 1is a string of digits and <text> _is_any SIMPL-T pro-

gram text that would be valid if the delimiters /+ and +/ , and the

<indicators> - were removed. ' For example, :

[+ 23 WRITE (X, Y, SKIP) +/

78
is an example of the conditional text

WRITE(X, Y, SKIP)

with indicators. 2 and 3..

The "indicators" 0 - 9 ‘are all initially off. To turn one or more

indicators on, the directive-
7+:SETl<in@icétors; %/

is used. To turn indicators off,
/+ CLEAR <indicators> +/

is used,
~ Whenever conditional text is encountered by the compiler; the <text>
is included in the program if,'and:oﬁly if, aﬁy-of its <indicators>
1s on. Note that <text> need not be éwéompiéte statement. For ékaﬁple,
WRITE ('X=';'X ./+ 6",'Y=_t" ¥ +/)
could be used to easily compile a program to print either the valueloﬁ X
only, or the values of both X and Y .

Note that a conditional compiler directive would be specified, for

example, by

J+ 7 /+ LINETRACEON +/ +/

6.2.5 User Contingency Interrupt

A contingency interrupt from teletype (@@X C) during execution
of a SIMPL—T program will generate a message that gives the line number
where the interrupt occurred. The user will then be given the option of
resuming or terminating execution. ‘Note that inpﬁt.that_has already been
entered will be read as a response to the resume query. Also note that
the @@X C dinterrupt cannot be serviced if the program is waiting for in-
put until after the input has been read.

If execution is terminated following a contingency interrupt, all us-

ual end-of-execution functions are performed. Thus, for example, execu-

tion statistics are printed if they were specified at compilation.

— -

79

6.3 Messages Generated by SIMPL-T

Both compile~time and execution-time diagnostic messages attempt to
give the line number where the error occurred. The execution time error.
messages also include the first 8 characters of the segment name of the

segment that was executing when the error occurred.

The messages generated by the compiler actually give the line number
at which the error was discovered. (Thus it is possible that the spacing
of the text of a program can cause a line number to be given in a diagnostic
message that is one or more lines after that on which the error occurred.)
Similarly, splitting statements across card boundries can sometimes meke '
it difficult for the exact line number to be given in an execution-time

diagnostic message.

6.4 .Source Lietihg.

A source llstlng may be requested by u51ng the SV option;_ If the
S option is not specified, no listing of the source program will be
printed (unless a print directive is used) but diagnostic messages will
be given. The N option may be used to suppress the printing of diag-
nostics. | o S . :

Program listings include up to 3 numbers to the left of each line.of
source text. The first (leftmost) number is the line numberr The second
number (if any) is the statement number for the first statement that begins
on that line. The third number (if any) is the nesting level number for the
first statement that begins on that line. The statement number and level
number are omitted if no statement.begins on that line.

Statements are numbered conqecutlvely throughout a compllatlon, begln—
ning with statement 1. The first statement in a procedure or function has

nesting level 1, and the level increases by 1 1n51de a WHILE,_IF or CASE
statement. ‘
Several directives are available to gontrol the printing ofue source
listing. The directives | ' ' |
" J+ PRINTON +/
/+ PRINTOFF +/

80

may be used to print selected portions of a program. The directive
/+ EJECT +/

will cause the next line to be printed at the top of the next page. Similarly,
[+ SKIP‘i<c0unt>} +/ R | |

or
/+ SPACE {<count>} +/ .

Willleause <count> blank lines to be sklpped before printing the next

line, where <count> is a positive decimal 1nteger with 1 as the default.

If a listing control directive begins at the first character of a line
of program text and if the line contains no text other than the directive,
then that line will not be printed. Otherwise, the line will be priﬁted

as usual, For example the llne
/+ SPACE 2 +/
will not be printed, but the lines

/+.SPACE +/ X 1= 3
" /+ SPACE 3 +/

will be printed.

6.5 Attribute and Cross-reference Listing

 An attrlbute and cross-— reference llstlng may be requested by u51ng

the F optlon or by 1nclud1ng the directive
/+ ATTRIBUTES +/

in the program text. The attribute listing includes ‘the characteristics,
(relative) core address or internal number, and line number where defined
for each identifier in the program. The cross-reference listing gives

the line numbers where each identifier was used. If;the value of a variable

may be changed, an asterisk follows its. line number.

81

6.6 Keywords and Intrinsic Identifiers

Keywords (see Appendix,V)‘may ﬁoﬁ_be_used as identifiérslin a SIMPL-T
program. However, intrinsic identifiers (Aﬁpendix YI)_ﬁay 5e:redefined by
the user. An intrinsic identifier is consideréd tb be globai;' Thus if a
program redefines an intrinsic in a global dgclaration (incl@ding segment
names) then that intrinsic cannot be used anywhere in the prégram; A local

redefinition, however, only prohibits the use of the intrinsic in the seg-

. ment containing the local redefinition.

6.7 Other Options

The B option can be used to turn off the debug aids; such as keeping
track of line numbers, that are otherwise performed:. This would normally

be used only on "debugged" "production' programs.

The directives

 /+ RECURSIVEON +/
/+ RECURSIVEOFF +/

may be used to specify that all segments in a portion of a program are to
be recursive, whether or not the keyword REC is included in the declara-

tions.

The R option causes no relocatable output to be generated. This is
useful for doing syntax checks and generating listings when no reloéatable
output is needed since it is faster than a full compile. . Note that normal
control card rules apply even when the R option is used. This means that
a valid relocatable element (<spec 2> or default) must be specified even

though it i$ not generated.

6.8 Program Analysis Facilities

6.8.1- :Program Statistics

“If the directive
R “/+ STATISTICS +/

ig included anywhere in the program text, the SIMPL~T compiler.will print

82

statistical information about a program. The statistics include

a) counts of the number of each type of statement (assign-
ment, IF, etc.) wused in the program;
b) counts of the number of procedures, functions, and

function calls;

¢) the average nesting level for statements in the program;
d) the number of tokens generated for the program;

e) the average number of tokens per statement.

(A token is a syntactic entity, such as a keyword, operator, or identifier,

that occurs in a program statement.)

_6.8.2 Execution Statistics

A statistical summary of program execution will be printed following

the execution of a SIMPL-T program if the directive
/+ EXECUTIONSTATISTICS +/

is included anywhere in the source text. The following are included in

the statistical summary:

a) counts of the total number of times each type of statement
”(aSSignment, IF, etc.) was exXecuted;
.b) " counts of the number of times certain compound statement
components (THEN parts, WHILE statement lists, etc.)
were executed; ‘
¢) counts of the number of times executed for the first
statement in each statement .list;
~d)..maximum recursion level for each procedure or function
that was actually called recursively. (The initial entry

to a procedure is at level 0 . The first recursive call

is at level 1 .)

Execution statistics for a program execution are printed, if re-
quested, even if the execution is terminated by a program contingency.
(At the present time this does not include exceeding the estimated run

time, but this contingency will also_be_included_as soon as EXEC 8

facilities permit.)

83

It should be noted that the use of the execution statistics fea-
ture will Sigﬁificantly increase the size of most programs. The use of

this facility with an overlay structure is discussed in 6.8.4.

6.8.3‘ Execution Timing

Execution timings for each procedure and function are provided if

the directive
[+ TIMING +/
is included in the program text. Two timings are given:

‘a) - CPU time excluding non—intrinsic calls. This
“represents the time actually spent in the code
-for a procedure or function, plus the time spent
-in library {intrinsic) calls.

b) CPU time including all calls. This represents
‘the time from entry at recursion level' O to

exit at the same level.

. The tlmes glven are in seconds, rounded te 3 places (msec.).
n- Slnce large fluctuatlons in tlmlng can occur, depending mostly

on system loadlng factors, several runs on the same data should be
done, preferably when the system is not heav1ly loaded, in order to
obtaln more rellable results. These tlmlngs are intended for use in
determlnlng program bottlenecks and for most programs are accurate‘
enough for that purpose. Procedures that execute for very short times
(less then-_l meec.) efe more likely to incur inaccuracies than are |
procedures that require more execution time.

| The overhead required for execution timing is quite eignificant
if the number of procedure and function calls is high. Since it is not
unusual for execution times to be several times higher with timing, this
feature should be used only when the timings are worth the extre cost.in

execution time.

6.8.4 Execution Statistics or Timing with Multiple Modules

Execution statistics may be specified for any of the separately
compiled modules of a program that uses more than one separate compila-

tion. Timing may also be specified for any module desired, except that

84

if used in any of the modules, it must be specified for the module con-
taining the START procedure designation in order to properly initial-
ize the timing routines. Only those modules specified are monitored for
statistics or timing.

To use the execution statistics or timing facility with-an over-
lay structure, location counters 4 and 6 of the SIMPL modules must
be placed in the root segment (by using appropriate collector (E@MAP)

control statements).

6.9 Macro Pre—compile Pass

The macro pre~processor described in the University of Maryland Technical
Report TR~297 has been incorporated into the compiler as on.optional pre-
compilation pass. The initial pass creates a source text file which is then
fed to the compiler.

Some relevant information for the macro pre-processor are:

1) The macro pass is invoked by using the '"M" option.. If this option is
not specified, no pre-compile pass will be performed.
2) 1If the magro pass is done, the <spec l> field on the processor call

card denotes the macro source flle, and the <spec 2> field denotes the

relocatable output.. There is no way to create a SIMPL soﬁfce file or
element by using the macro pre—compllatlon pass. o .

3) If the macro pass is done, all line numbers (source llstlng and dlag—
nostics) will refer to the macro source, rather than the generated SIMPL
source. | - - .:. B

4) The "S" option generates a listing of the SIMPL source oﬁly} To list the

macro source, the macro directive !OPTION(LIST) must be used.

6.10 Program Execution Time

The'executidn time (memory time) is printed at program termination. This

can be elihinated if desired, by settlng
EXT INT S$TIMEMSG

to zero.

85

7. Additional Notes on the 1106/1108 Implementation of SIMPL-T

7.1 SIMPL-T Object Code

A relocatable element produced by a SIMPL-T compilation has instruc—
tions in the IQBénk under location counter 1 and static data in the D-
Bank ‘under location counter 2 . A small dynamic area is initially included
for the allocation of locals for recursive segments and for string work-

space. MCORE is used as needed to obtain additional core.

The SIMPL-T compiler generates re-entrant cdde, and the SIMPL~T li-

brary routines are re—entrant.

7.2 Interface with Other Languages

Programs that use FORTRAN calling conventions can be called from a

SIMPL-T program and may call a SIMPL-T segment. The following rules apply:

1) To call a FORTRAN subroutine or function, the subroutine or function

name must be declared as

- EXT OTHER PROC

2) A SIMPL-T segment to be called from a FORTRAN program must be specified

. as
_ OTHER ENTRY PROC ...~

~ An OTHER segment can also be called from another SIMPL-T segment.

3) A recursive SIMPL-T segment can be called only if the initial execution
began with a SIMPL-T program.

4) A nonrecursive SIMPL-T segment may be called from an execution that was
not initially in a SIMPL-T program, but only if compiled with the B
optiom. '

5) Only integér or integer array arguments can be passed to an OTHER
proecedure or functiom. = - :

.Arrays passed between SIMPL-T and FORTRAN programs will retain the

subscript numbering of the program in which they'%ere:detlared.' Thus if

86

a SIMPL-T array is passed to a FORTRAN program, then element number O of
the array would be logically inaccessible in the FORTRAN program. Similarly,
if a FORTRAN program passes an array to a SIMPL-T program, then element 0

of the array may not normally be used in the SIMPL T program.

The standard SIMPL-T linkage conventions are available upon request

for those who wish to use. these conventions in assembly language subroutines.

7.3 Some Comments on Efficiency

This section contains some random comments regarding the efficiency

of certain SIMPL-T features.

1) Recursive procedures and funetions inecur relatively little additional
‘overhead. It may well be reasonable, in fact, to declare nonrecursive
. segments that use a large amount of local storage as recursive in order
 to avoid the statlc allocation of the local storage. A possible ex-
ception here is that local strlng arrays in a recur51ve segment require
the initialization of the dope vectors for the elements at entry, and

this could prove costly if a recursive segment is invoked often.

. -2) .The passing of a string argument by value (the default)_means that the
string must be copied into the called segment, whereas an argument
passed by reference is not copied. This is unlikely to be significant

unless segments with value string parametets are very heavily used.

3) . If the value of a logical operation can be determined from the first
operand only, then the second will not be evaluated. For ekample, for

“the operation-

<expr>, .0OR. <expr>,

1

if <expr> is nonzero, then .<expr>2..will not be evaluated. Thus the
operands in a sequence of logical operations should be in the order that
. would usually determine the result most quickly, if possible.
4) Hardware partword operations are used when a partword operator specifies
~a (constant) half-, quarter-, ot_sixthjwerd. (All_SIMPL—T‘ptograms are

_quarter-word sensitive.)

87

7.4 Functions with Side Effects

Functions are assumed to have no side effects. Thus some function
calls may be eliminated in order to optimize the code generated. For ex-—

ample, function calls involved in an unevaluated operand of a logical
operation (see 7.3) and successive function calls whose arguments are

unchanged need not be made under the assumption of no side effects.

Those who write functions that have side effects should insure that
the elimination of function calls by an optimization process will not

adversely affect their program.

7:5 Arithmetic Overflow

Arithmetic overflow that occurs in calculating the results of an
integer operation is ignored. This applies to intermediate, as well as

final, results. For example, in calculating
A+ B ~-C

not only the final value, but also the intermediate value of A + B , must

be in the proper range of integer values or the result will be incorrect.

88

Appendix I - Executing a SIMPL-T Program on the 1106/1108

The following illustrates a run stream sequence for compiling-and

executing a SIMPL-T program.

@SIMPLT, IS

D SIMPL-T program .

exQr

. Data for program

Normal processor source input options and conventions are used. The

primary input options are

I - source input is from the run stream

U - update source element (<spé61> field of @SIMPLT card)

and the usual EXEC 8 conventions regarding correction cards apply.

The compiler options are

- go even if severe errors ére found

- turn all debug aids off

— check for array subscript out of bounds

- check for omitted case

- generate attribute and cross-reference listing
print object code

- suppress printing of diagnostics

~ do not generate a relocatable element

- print source listing

— activate call trace initially

- gbort if any diagnostic occurs

Mok oH oo " g W b
1

- activate line number trace initially

Note that the sequence of control cards given above applies only to

the situation in which only one execution is to be done in a run. If ad-

