Technical Report TR-1708 September 1986

An Evaluation of Expert Systems for
Software Engineering Management *

Connie Loggia Ramsey and Vietor R. Basili

Department of Computer Science
University of Maryland at College Park

ABSTRACT

Although the field of software engineering is relatively new, it can
benefit from the use of expert systems. Four prototype expert sys-
tems have been developed to aid in software engineering manage-
ment. Given the values for certain metrics, these systems will pro-
vide interpretations which explain any abnormal patterns of these
~values during the development of a software project. The four
expert systems, which solve the same problem, were built using
two diflerent approaches to knowledge acquisition, a bottom-up
approach and a top-down approach, and two different expert sys-
tem methods, rule-based deduction and frame-based abduction. A
comparison was performed to see which methods better suit the
needs of this field. It was found that the bottom-up approach
led to better results than did the top-down approach, and the
rule-based deduction systems using simple rules provided more
complefe and correct solutions than did the frame-based abduction
systems.

* Research supported in part by the National Aercnautics and Space Administration Grant NSG-5128 to the
University of Maryland. Computer support provided in part by the Computer Science Center of the University of Mary-
land.

1. INTRODUCTION

The importance of expert systems is growing in industrial, medical, scientific, and
other fields. Several major reasons for this are: (1) the necessity of handling an
overwhelming amount of knowledge in these areas, (2) the potential of expert systems to
train new experts, (3) the potential to learn more about a field while organizing
knowledge for the development of expert systems, (4) cost reductions sometimes pro-
vided by expert systems, and (5) the desire to capture corporate knowledge so it is not
lost as personnel changes.

Although the field of software engineering is still relatively new, it can certainly
benefit from the use of expert systems because of the ability to learn from them. The
development of an expert system for software engineering provides a learning experience
by forcing the knowledge engineer to develop and organize relationships between various
pieces of knowledge, such as metrics and their interpretations, and also by forcing us to
realize how much we do not know yet. '

On another level, the expert systems in this field can be used to train and help peo-
ple, including software managers. They can contain general software engineering
knowledge as well as a history of information from a particular software development
environment which can be particularly helpful to inexperienced managers and develop-
ers. -

Since software engineering is still such a new field, special attention has to be given
to basic research issues concerning the development of expert systems in this field. The
high level goals of this project were to determine: (1) Are expert systems for software
engineering feasible at this time? (2) What methodology should be used for knowledge
acquisition? (3) What type of expert system methodology best suits software engineer-
ing? (4) Do the experts themselves agree on the information to be used? (5) Are certain
software environments more suited for expert systems than others? (6) Are we ready to
develop systems with environment-independent, general truths? (7) What information
should be included in the systems? -

This paper will focus on several prototype expert systems, collectively named
ARROWSMITH-P * Earlier versions of these expert systems are described in [Basili85).
This represents an early attempt at defining the process of creating expert systems for
software engineering.. ARROWSMITH-P is intended to aid the manager of a software
development project in an automated manner. The goal of these systems is to help
detect and assess problems as early as possible. The systems work as follows. First, it is
determined whether or not a software project is following normal development patterns
by comparing measures such as programmer hours per line of source code against histori-
cal, environment-specific baselines of such measures. Then, the “manifestations”
detected by this comparison, such as an abnormally high rate of programmer hours per
line of source code, serve as input to each expert system, and each system attempts to
determine the reasons, such as low productivity, for any abnormal software development
patterns. These systems can be updated as the environment changes and as more is
learned in the field of software engineering.

* Martin Arrowsmith, created by Sinclair Lewis in the novel Arrowsmith, was in
constant search of truth in scientific fields. The “P” stands for Prototype.

The rest of this paper is organized as follows. Section 2 provides a brief overview
of the underlying methodology used to build the expert systems discussed in this paper.
Section 3 details the implementations of ARROWSMITH-P, and Section 4 discusses the
issues and problems associated with this process. Section 5 furnishes the details for the.
evaluation of the expert systems. Section 6 then discusses results and conclusions from
the development and testing of the expert systems. Finally, Section 7 discusses current
and future research needs. ' '

2. BACKGROUND

. In general, an expert system consists of two basic components a domam spec1ﬁc
knowledge base and a domain-independent inference mechanism. The knowledge base
consists of data structures which represent general problem-solving information for some
application area. The inference mechanism uses the information in the knowledge base
along with problem specific input data to generate useful mforma,tlon about a specific
case.

The set of expert systems in ARROWSMITH-P was constructed using KMS
[Reggia82a), an experimental domain-independent expert system generator which can be
used to build rule-based, frame-based and Bayesian systems. The ARROWSMITH-P
systems were built using two different methods: rule-based deduction and frame-based
abduction. These two methods are briefly described below

2. 1. Rule-Ba.sed Deductlon

. A common method for expert systems and essentially the ‘“standard’ in AI today,
is rule-based deductlon In this approach, domain-specific problem solving knowledge is
represented in rules which are basically of the form:

“IF' <antecedents> THEN <consequents>>",

although the exact syntax used may be quite different (e g., PROLOG). If the
antecedents of such a rule are determined to be true, then it logically follows that the
consequents are also true. Note that these rules are not branching points in a program,.
but are non-procedural statements of fact. : :

The inference mechanism consists of a rule interpreter which, when given a specific
set of problem features, determines applicable rules and applies them in some specified
order to reach conclusions about the case at hand. Rule-based deduction can be per-
formed in a variety of ways, and rules can be chained together to make multiple-step
deductions. (For a fuller description, see [Hayes-Roth78].) In addition, in many systems
one can attach “certainty factors’ to rules to capture probabilistic information; and a
variety of mechanisms can be used to propagate certainty measures during problem solv-
ing. MYCIN [Shortlifle76] and PROSPECTOR [Campbell82] are two well-known exam-.
ples of expert systems which incorporate rule-based deduction.

2.2. Frame-Based Abduction

Another important method for implementing expert systems is frame-based abduc-
tion. Here, the domain-specific problem-solving knowledge is represented in descriptive

“frames’ of information [Minsky75], and inference is typically based on hypothesize-
and-test cycles which model human reasoning as follows. Given one or more initial prob-
lem features, the expert system generates a set of potential hypotheses or “causes” which
can explain the problem features. These hypotheses are then tested by (1) the use of
various procedures which measure their ability to account for the known features, and
(2) the generation of new questions which will help to discriminate among the most
likely hypotheses. This cycle is then repeated with the additional information acquired.
This type of reasoning is used in diagnostic problem solving (see [Reggia82b] for a
review). INTERNIST [Miller82], KMS.HT {Reggia82a], [Reggia83a), PIP [Pauker76], and
IDT [Shubin82] are typical systems using frame-based abduction.

In order to simulate hypothesize-and-test reasoning, KMS employs a generalized set
covering model in which there is a universe of all possible manifestations (symptoms)
and a universe which contains all possible causes (disorders). For each possible cause,
there is a set of manifestations which that cause can explain. Likewise, for each possible
manifestation, there is a set of causes which could explain the manifestation. Given a
diagnostic problem with a specific set of manifestations which are present, the inference
mechanism finds all sets of causes with minimum cardinality** which could explain
(cover) all of the manifestations. For a more detailed explanation of the theory underly-
ing this approach and the problem-solving algorithms, see [Reggia83al, [Reggia83b),
[Nau84], [Peng84]. '

3. IMPLEMENTATIONS

In this section, we will first present the methodology developed for building expert
systems for software engineering. Then we will discuss the actual implementations of

ARROWSMITH-P.

3.1. Methodology

The following two methodologies of knowledge acquisition for constructing expert
systems for software engineering management were developed. They can best be
described as a bottom-up methodology and a top-down methodology. (An earlier version
of the bottom-up reasoning was presented in [Doerflinger83].)

| 3.1.1. Bottom-Up Methodology

Given a homogeneous environment, it is possible to produce historical,
environment-specific baselines of normalized metrics from the data of past software pro-
jects. Normalized metrics are derived by comparing variables such as programmer hours
and lines of code against each other. This is done so that influences such as the size of
the individual project are factored out. The baseline for each metric is defined as the
average value of that metric for the past projects at various discrete time intervals (such

** Ockham’s razor, which states that the simplest explanation is usually the correct
one, together with the assumption of independence among causes motivate the require-
ment of minimum cardinality.

as early coding or acceptance testing). Only those metrics which exhibit baselines with
reasonable standard deviations should be used; too little variety in the values of the
measures proves uninteresting, while too much variety is not very meaningful. In addi-
tion, one ideally wants a relatlvely small number of meaningful metrics whose values are
easﬁy obtainable.

Next, experts can determine interpretations, such as unstable specifications or good
testing, which would explain any significant deviation (more than one standard deviation
less than or greater than the a,verage) of a particular metric from the historical baseline.
The deviation of some metric can be thought of as a manifestation or symptom which
can be “diagnosed” as certain interpretations or causes. Furthermore, these relation-
ships between interpretations and manifestations should be made time-line specific
because, for example, an interpretation during early coding might not be valid during
acceptance testing. In addition, measures to indicate how certain one is that the devia- .
tion of a particular metric has resulted from a particular interpretation can be included.

The approach, described above, can be classified as a bottom-up approach because
it seems to go in the opposite direction of cause-and-effect. First the symptoms (deviant
metric values) that something is abnormal are explored, and then the underlying
interpretations or diagnoses of the abnormalities are developed. This approach to
knowledge acquisition is reasonable in a homogeneous environment because the metrics
are homogeneous, and deviations are indicative that something is wrong. However, this
approach contrasts with the development of expert systems in other fields, such as medi-
cine, which typically use a top-down approach.

3.1.2. Top-Down Methodology

A top-down approach to knowledge acquisition can be similar to the bottom-up
approach in that the same manifestations and causes can be used. However, it would
first define the various interpretations or diagnoses and then associate the metrics which
would be likely to have abnormal values for each interpretation.

Using the top-down approach, the experts view the knowledge from a d1ﬂ‘erent per-
spective when defining the relationships that exist between the interpretations and man-
ifestations. This approach can be seen as a more general approach than the bottom-up
approach is to knowledge acquisition in the field of software engineering. In the ‘
bottom-up methodology, the metrics are analyzed first and these are, by their nature,
environment-specific. The focus is automatically limited to the specific environment.
Conversely, in the top-down methodology, the experts think first of the causes or
interpretations and then indicate the effects or likely metrics which would show deviant
values if a certain interpretation existed. This generalizes the problem across environ-
ments somewhat because the emphasis seems to be switched to the interpretations whmh
can be universal.

3.1.3. Using the Expert Systems

"Once the expert systems have been developed, the input to each expert system
would then consist of those metrics from a current project which deviate from a histori-
cal baseline of the same metrics at the same time of development for similar projects.
The knowledge bases consist of information about various potential causes, such as poor
testing or unstable specifications, for any abnormally high or low measures, and the
expert system provides explanations for any abnormal software development patterns.

3.2. Actual Implementations

ARROWSMITH-P consists of four separate expert systems, one using a bottom up
approach to knowledge acquisition and rule-based deduction, a second using the
bottom-up approach and frame-based abduction, a third using a top-down approach to
knowledge acquisition and rule-based deductlon and a fourth using the top-down
approach and frame-based abductlon ' :

The bottom-up methodology described above was based on previous research con-
ducted on the NASA/Goddard Space Flight Center Software Engineering Laboratory
(SEL) environment [Doerflinger83]. Since the SEL environment is homogeneous, it was
possible to produce historical, environment-specific baselines of normalized metriecs from
the highly reliable data of nine software projects. (See [Basili77], [Basili84b], [Basili78],
[Card82] [SEL82] for fuller descriptions of the SEL environment.)

.The bottom-up deve]opment was performed first, and nine metrics, derived from
five variables, proved satisfactory, exhibiting basellnes with reasonable standard devia-
tions. The metrics are displayed in Table 1. These same metrics were later used during
the top-down development to ensure consistency and to allow a comparative study to be
performed. The time-line for the baselines was divided (after a slight modification) into
the following five discrete intervals: early code, middle code, late code, systems test, and
acceptance test. : '

The initial sets of interpretations and the relationships between the interpretations
and the abnormal values of metrics were mainly derived from two experts who have had
a great deal of experience in this field and particularly in the SEL environment
[Doerflinger83]. During the bottom-up development of ARROWSMITH-P, mainly one of
these experts modified the existing sets and made them time-line specific. In addition,
measures to indicate how certain one is that the interpretation and the abnormal metric
value are connected were included. During the top-down development, the same two
experts were again asked to provide the relationships for all five time phases, and the
intersection of their responses was used for the expert systems. Some of their other indi-
cated relationships were used as well; when the experts did not agree on a relationship,
we discussed the situation to understand the reasoning behind the relationship and to
see how certain an expert felt about the relationship. The list of interpretations used
and tested in the bottom-up and top-down expert systems is displayed in Table 2.

TABLE 1 - METRICS USED iN EXPERT SYSTEM -

- Computer Runs per Line of Source Code

- Computer Time per Line of Source Code

- Software Changes per Line of Source Code
- Programmer Hours per Line of Source Code
- Computer Time per Computer Run

- Software Changes per Computer Run

- Programmer Hours per Computer Run

- Computer Time per Software Change

- Programmer Hours per Software Change

(Other interpretations were used as well, but these could not be tested. See [Basilig5] for
the complete list.)

As stated previously, two different expert system methods were used to build the
expert systems for this application in order to determine which method better suits the
needs of this field. The two methods used were rule-based deduction and frame-based
abduction which were described in Section 2. In the rule-based systems, the rules are of
the form “IF manifestations THEN interpretations,” while in the frame-based systems,
there is one frame (containing a list of manifestations) for each interpretation. Please
note that these formats are independent of whether the relationships between manifesta~
tions and interpretations were defined using a bottom-up or a top-down approach to
knowledge acquisition. The rule-based and frame-based systems which used the '
bottom-up approach were intentionally built to be as consistent with one another as pos-
sible. The causes and manifestations used were identical in both cases, as were the rela-
tionships between them. The same was true for the two expert systems which employed
the top-down approach. However, the certainty factors attached to the rules and the
measures of likelihood in the frames could not be directly translated to each other so
some of these measures were omitted. For example, within the bottom-up approach we
were relatively certain that an abnormally high value of computer time per software .
change is caused by good, reliable code so this was given a certainty {actor of 0.75.

TABLE 2 - INTERPRETATIONS USED IN EXPERT SYSTEM

Unstable Specifications

Low Productivity

High Productivity

High Complexity or Tough Problem

‘High Complexity or Compute Bound Algorithms Run or Tested
Low Complexity '
Simple System

Error Prone Code

Good Solid and Reliable Code

Large Portion of Reused Code

Lots of Testing

Little Testing

Good Testing or Good Test Plan

Lack of Thorough Testing

Poor Testing Program

Changes Hard to Make

Loose Configuration Management or Unstructured Development
Tight Configuration Management or Control

Computer Problems or Inaccessibility or Environmental Constraints
Lots of Terminal Jockeys

Note - In the top-down systems, low complezity and simple system were combined into one in-
terpretation as were lack of thorough testing and poor testing program. In addition, the tight
manaegement interpretation was removed.

However, if that particular metric appears abnormally high very infrequently and that
particular interpretation is common, then we would not be able to state that good, reli-
able code generally results in an abnormally high value of computer time per software
change. (For a discussion of similar problems see [Ramsey86].) Figure 1 shows a sample
section of a rule-based and a frame-based knowledge base. Example sessions with the
expert systems are provided in Appendix 1.

4. RESEARCH ISSUES AND PROBLEMS

The field of expert systems is relatively new, and therefore, the development pro-
cess of expert systems still faces many problems. The selection of which method to use
for building them is not generally clear, although an attempt has been made to provide
guidelines for the selection of an appropriate method in [Ramsey86]. Furthermore, most
expert systems are shallow in nature and cannot handle temporal or spatial 1nforma.t10n
well.

In addition to general problems, negative effects are compounded when the
knowledge to be included in such systems is incomplete. The science of software
engineering is not well-defined yet, and therefore many details about the relationships
between various components is often unclear. The experts themselves may not even
agree on the information used in the expert systems. As a result, the knowledge base of
any expert system developed in this field is particularly exploratory and prototypical in
nature. This is in contrast to expert systems developed in established fields such as
medicine where the information contained in the knowledge base is based on many years
of experience.

Due to the uncertainty of the data in the knowledge base for a field such as
software engineering, one must deal with the issues of completeness versus correctness
and completeness versus minimality. When dealing with a diagnostic problem, the more
certain one is of relationships between causes and manifestations, the more exact the .
answer can be, ultimately leading to the one correct answer. However, when dealing
with very uncertain relationships, it is preferable to list many outcomes so as to avoid
missing the correct explanation, and to let the experienced person using the expert sys-
tem decide what the correct explanation really is. Therefore, rules with simple
antecedents were used in the rule-based deduction systems (see Figure 1a) because the
more involved patterns needed for complex antecedents are not yet known. If one tried

“guess’’ what these patterns are without actually being certain, this would lead to
incomplete solutions which miss some of the correct interpretations. For example, a high
value for computer runs per line of code, a high value for computer time per line of code,
and a high value for programmer hours per line of code are all indications of low produc-
tivity. So, we might construct the following rule for this pattern:

IF Computer Runs per Line of Code is above normal, and Computer Time per Line
of Code is above normal, and Programmer Hours per Line of Code is above normal
THEN the interpretation is Low Productivity.

However, what if it turns out that computer time per line of code is almost never above
normal? Then this rule will almost never succeed, and we will miss the interpretation of
low productivity even if it happens to be true.

ATTRIBUTES:

/* INPUT ATTRIBUTES */

COMPUTER RUNS PER LINE OF SOURCE CODE (SGL)
ABOVE NORMAL,
NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE */
INTERPRETATION (MLT):

UNSTABLE SPECIFICATIONS

LOW PRODUCTIVITY

HIGH PRODUCTIVITY

GOOD TESTING OR GOOD TEST PLAN

RULES:

CRLC1 IF COMPUTER RUNS FPER LINE OF CODE — ABOVE NORMAL,
& TIME = EARLY CODING
THEN INTERPRETATION = LOW PRODUCTIVITY <0.252>,
& INTERPRETATION = ERROR PRONE CODE <{(.75>>.

SOLC3 IF SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL,
& TIME = LATE CODING
THEN INTERPRETATION = GOOD TESTING OR GOOD TEST PLAN <0. 25>,
& INTERPRETATICN = ERROR PRONE CODE <0.76>.

Figure 1a - Small Section of Rule-Based Deduction Expert System.

ATTRIBUTES:

/* INPUT ATTRIBUTES */

COMPUTER RUNS PER LINE OF SOURCE CODE (saL):
ABOVE NORMAL,
* NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE - FRAMES */
INTERPRETATION (MLT):
- LOW PRODUCTIVITY
DESCRIPTION:

. COMPUTER RUNS PER LINE OF CODE — ABOVE NORMAL;
COMPUTER TIME PER LINE OF CODE = ABOVE NORMAL;
PROGRAMMER HOURS PER LINE OF CODE = ABOVE NORMAL |,

' GOOD TESTING OR GOOD TEST PLAN
[DESCRIPTION:
SOFTWARE CHANGES PER LINE OF CODE == ABOVE NORMAL;
SOFTWARE CHANGES PER COMPUTER RUN == ABOVE NORMAL;
COMPUTER TIME PER SOFTWARE CHANGE = BELOW NORMAL;
PROGRAMMER HOURS PER SOFTWARE CHANGE = BELOW NORMAL |,

Figure 1b - Small.Section of Frame-Based Abduction Expert System

This issue also leads to concern in the frame-based abduction systems which pro-
vide all answers of minimum cardinality. The inference mechanism works very well for
most diagnostic problem solving, but one must be cautiously aware of the fact that not
all possible explanations are provided by this expert system. For example, if an abnor-
mally high value of computer runs per line of code and an abnormally low value of pro-
grammer hours per software change can be explained by the combination of two
interpretations, low productivity and good tesiing, and also by a single interpretation,
error prone code alone, then only the single interpretation will be provided by this sys-
tem. This is because the single interpretation has a lower cardinality than the two
interpretations together.

One final, but very important, fact should be noted here. ARROWSMITH-P was
built using the data from one particular homogeneous environment. Therefore, the
information in the knowledge base reflects this one environment and would not be tran-
sportable to other environments. However, the ideas and methods used to build
ARROWSMITH-P are transportable, and that is what is important.

5. EVALUATION OF EXPERT SYSTEMS

5.1. Methods of Evaluation

ARROWSMITH-P has been evaluated in several ways. The correctness of the sys-
tems was measured by comparing the interpretations provided by the expert systems
- against what actually happened during the development of the projects, thereby obtain-
ing a measure of agreement. This analysis was performed for ten projects (the original
nine plus a newer project which was completed after the development of the expert sys-
tems) in all five time phases for each of the four expert systems. Each of the original
nine projects was compared against historical baselines of the remaining eight projects to
determine abnormal metric values, and the tenth project, which was tested later, was
compared against the original nine. A total set of 50 cases was tested on each of the
four expert systems.

The actual results of what took place during development were gathered from
information in another section of the database, mostly from subjective evaluation forms
and project statistics forms. The subjective evaluation form contains mostly subjective
information (such as a rating of the programming team’s performance) and some objec-
tive numbers (such as total number of errors) concerning the project’s overall develop-
ment. Since the vast majority of the ratings in the subjective evaluation form is not
divided by phase of the project, there probably exist some discrepancies between the
results indicated in the forms and the actual interpretations for a particular phase.
However, these are the closest data that are available, so we must.assume that most of
the interpretations for each phase are similar to the interpretations for the entire pro-
ject. In addition, some of the interpretations derived from analyzing the data in the
database were very evident, while others were somewhat uncertain. Therefore, these two
classes were partitioned in the analysis of agreement between the expert systems and the
information in the database.

The results from the expert systems were also analyzed statistically by using a
Kappa statistic test [Spitzer67] [Cohen68| on each interpretation. The Kappa statistic

determines whether the results are better or worse than chance agreement. It takes into
account the number of correct answers and the number of incorrect answers with respect
to each interpretation, and it determines the amount of agreement which can be attr-
butable to chance alone. The formula for the Kappa statistic is: :

Po_Pc

K=
1-P,

where Po is the observed proportion of agreement, and Pc is the proportion of agreement
expected by chance. A value of 1 'for K indicates perfect agreement, 2 value of 0 indi-
cates that the results can be due to chance alone, and a value less than O indicates worse
than chance agreement. The Kappa statistic was used for each interpretation in each of
the four expert systems. This was done to determine whether certain interpretations are
better understood than others. : :

In addition to testing the performance of the expert systems, an analysis was per-
formed to compare the information provided by the two experts for the systems. This
was performed by comparing the relationships indicated by each of the experts against
each other and also by comparing the relationships indicated in the bottom-up systems
against those indicated using the top-down approach.

5.2. Results

The first results we would like to discuss are those comparing information provided
by the experts. This is essential because the expert systems can only perform as well as
the knowledge contained in the systems permits. The experts were asked to fill in grids
{one for each time phase for the bottom-up approach and one for each time phase for
the top-down approach) indicating the i‘ela,tions_hips between the interpretations and the
manifestations as described in Section 3. The comparison between the sets of grids for
the top-down approach is provided in Table 3a. (The data for one of the experts using
the bottom-up approach is incomplete, so a comparison between the two experts was not
made there.) The experts only agreed in about 1/3 - 1/2 of their indicated relationships.
Furthermore, the final set of relationships for the top-down approach is very different
from the final set for the bottom-up approach. (See Table 3b.) When deciding on the
relationships during the top-down development, the experts even decided to combine
some of the interpretations used in the bottom-up approach, feeling there was too little
difference in'meaning between them to be significant, and they also dismissed several
interpretations during certain time phases (and tight management during all time phases)
because they felt that the meaning of those interpretations could not be captured by the
available metrics in that particular time period. - We believe that the differences between
the two approaches are mainly due to two facts: {1) the experts were seeing the data.
from a very different point of view, and (2) the metrics are not ideal, and the experts
were not completely certain of all of the relationships that they stated so they changed
their opinions over time. However, there were certain relationships which proved more
consistent than others. For example, the two experts had strong agreement over the
relationships involving programmer hours per line of code, software changes per line of
code, and computer time per computer run. These metrics seem to be better understood
than the others probably because they are often used for evaluation and comparisons in
this field. They also had fairly good agreement with the interpretations of error prone
code, lots of reused code, and loose management. The top-down and bottom-up expert

10

systems had good agreement over programmer hours per line of code and software
changes per line of code and over the interpretations of error prone code and good solid
code.

The results of evaluating the four expert systems are displayed in Tables 4.1 and
4.2. The entries in the agreement column are the number of interpretations which were
indicated by both the expert system and the information in the database. The first
number depicts those interpretations which were explicit in the database, while the
second number represents those which were marginally indicated. The entries in the
disagreement column are those interpretations indicated by the database, but not listed
by the expert system. Again, the first number represents those which are certain and
the second number is those which are marginal. Finally, the column labeled “Extra”
specifies the number of extra interpretations listed by the expert system. This number is
not that meaningful in determining the performance of the rule-based systems at this
time because, as discussed previously, the rule-based systems were built to provide as
complete a list of interpretations as possible. The manager would then have to decide
which interpretations are meaningful and disregard the others. However, in general, 1t is
better to have as few extra interpretations as possible. It should be noted that the total
‘number of interpretations varies from table to table. This is because certain metrics
were not available for some projects in some of the time phases. It would be unfair to
say the expert systems did not detect certain interpretations if they were not given the
manifestations necessary to do so, so these interpretations were not included in the
results of the evaluation for those particular cases.

Table 3a - Comparison of Responses Provided by Experts
in Bach of the Five Time Phases for the Top-Down Expert Systems

' Number of Relationships Indicated by Experts
Time Phase Expert 1 Expert 2 Intersection
Barly Coding 66 60 23
Middle Coding 78 65 28
Late Coding 81 68 38
Systems Test 79 48 30
Acceptance Test 68 .42 23

Table 3b - Comparison of Final Bottom-Up and Final Top-Down Expert Systems

Number of Relationships Used in Each Approach
Time Phase Bottom-Up Top-Down Intersection
Farly Coding 61 35 15
Middle Coding 65 43 19
Late Coding 63 50 23
Systems Test 65 40 17
Acceptance Test 62 37 17

11

" "Table 4.1a - Agreement between Expert System and Information in Database
Bottom-Up Systems, Early Coding Phase

Rule-Based Deduction System

Frame-Based Abduction System

Project Agreement Disagreement Extra | Agreement Disagreement Extra

1 1-0 0-0 2 1-0 0-0 2

2 0-3 3-1 7 S 0-0 3-4 1

3 0-1 0-0 9 0-1 0-0 5

4 0-0 3-1 0 0-0 3-1 0

5 2-0 2-0 5 1-0 3-0 3

6 0-1 1-2 3 0-1 1-2 3

7 1-0 3-2 1 1-0 3-2 1

8 0-0 3-1 0 0-0 3-1 0

9 1-3 2-0 8 .0-0 3-3 1

10 5-2 2-0 4 1-0 6-2 0

Total 10 - 10 19 -7 39 4-2 25 - 15 16
Percent Explicit - 34% (10/29) 14% (4/29)
Agreement | Marginal 59% (10/17) 12% (2/17)
Combined 43% (20/46) 13% (6/46)

Table 4.1b - Agreement between Expert System and Information in Database
Bottom-Up Systems, Middle Coding Phase

Rule-Based Deduction System

Frame-Based Abduction System

Project Agreement Disagreement Extra | Agreement Disagreement Extra

1 2-1 0-0 7 0-0 2-1 1

2 0-0 3-4 0 0-0 3-4 0

3 0-1 0-1 11 0-0 0-2 H

4 1-1 2-0 1 1-1 2-0 1

5 0-0 5-0 0 0-0 5-0 0

6 1-3 0-0 7 0-0 1-3 1

7 2-0 2-2 4 0-0 4-2 2

8 4-1" 1-2 2 1-0 4-3 0

9 C1-1 2-2 2 1-1 2-2 2

10 4-1 3-1 5 1-0 6-2 3

Total 15-9 18- 12 39 4.2 29 - 19 11
Percent Explicit 45% (15/33) 12% (4/33)
Agreement | Marginal 43% (9/21) 10% (2/21)
Combined 449% (24/54) 11% (6/54)

12

Table 4.1c - Agreement between Expert System and Information in Database
Bottom-Up Systems, Late Coding Phase

Rule-Based Deduction System

-Frame-Based Abduction System

Project - Agreement Disagreement Extra | Agreement Disagreement Extra

1 2-0 0-1 6 0-0 2-1 2

2 1-3 2-1 8 1-1 2-3 4

3 0-0 0-2 0 0-0 0-2 0

4 1-0 2-1 3 1-0 2-1 0

5 0-0 6-0 5 0-0 6-0 5

6 1-2 0-1 5 0-1 1-2 1

7 0-1 4-1 0 0-1 4-1 0

8 3-0 2-3 3 1-0 4-3 2

9 1-0 2-3 2 1-0 2-3 1

10 0-1 7-1 3 0-1 7-1 3

Total 9-7 25 - 14 35 4-4 30 - 17 18
Percent Explicit = 269% (9/34) 12% (4/34)
Agreement | Marginal 33% (7/21) 19% (4/21)
' Combined ~ 29% (16/55) 15% (8/55)

Table 4.1d - Agreement between Expert System and Information in Database
Bottom-Up Systems, Systems Test Phase

Rule-Based Deduction System

Frame-Based Abduction System

Project Agreement Disagreement Extra | Agreement Disagreement Extra

1 1-0 1-1 8 1-0 1-1 6

2 0-3 3-1 7 0-90 3-4 1

3 0-0 0-1 0 0-0 0-1 0

4 1-1 2-0 4 1-0 2-1 0

5 - 1-0 5-0 0 1-0 5-0 0

6 1-2 0-1- 5 0-0 1-3 1

7 1-1 3-1 3 1-1 3-1 3

8 3-0 2-3 1 3-0 2-3 1

9 1-1 2-2 6 1-1 2-2 6

10 0-1 7-1 3 0-1 7-1 3

Total 9-9 25-11 37 8-3 26 - 17 21
Percent Explicit 26% (9/34) 24% (8/34)

Agreement | Marginal 45% (9/20) 15% (3/20)

Combined 20% (11/54)

33% (18/54)

;13

Table 4.1e - Agreement between Expert System and Information in Database
Bottom-Up Systems, Acceptance Test Phase

Project

Rule-Based Deduction System

Frame-Based Abduction System

‘Agreement - Disagreement [Extra | Agreement - Disagreement. Extra

1 1-0 3-3 2 1-0 3-3 2

2 0-3 3-1 9 0-2 3-2 3

3 0-0 0-2 4 0-0 0-2 4

4 0-0 3-1 0 0-0 3-1 0

5 3-0 3-0 5 3-0 3-0 5

6 1-1 0-2 2 1-1 0-2 2

7 3-2 1-0 3 1-0 3-2 1

8 1-0 4-3 1 1-0 4-3 1

9 1-0 2-3 2 1-0 2-3 1

10 0-1 7-1 3 0-1 7-1 3

Total 10-7 26-16 31 8-4 28 - 19 22
Percent Explicit 28% (10/36) | 22% (8/36) -

Agreement | Marginal 309 (7/23) 17% (4/23)

Combined 29% (17/59) 20% (12/59).

Table 4.2a - Agreement between Expert System and Information in Database
Top-Down Systems, Early Coding Phase

" Rule-Based Deduction System

TFrame-Based Abduction System

‘Project Agreement Disagreement Extra | Agreement Disagreement Extra
1 0-0 1-2 2 0-0 1-2 2
2 0-1 2-1 5 0-1 2-1 2
3 0-0 0-1 5 0-0 0-1 1
4 0-0 4-0 0 - 0-0 4-0 0
5 1-0 1-0 . 3 0-0 2-0 2
6 0-1 1-1 2 0-1 1-1 2
7 0-1 2-0 2 0-1 2-0 2
8 0-0 1-2 0- 0-0 1-2 0
g 0-2 1-1" 8 0-0 1-3 2
10 3-0 2-0 4 2-0 3-0 i
Total 4-5 15 -8 29 2-3 17 - 10 14
Percent Explicit 21% (4/19) 11% (2/19)
Agreement | Marginal -~ 38% (5/13) 23% (3/13) .
Combined 28% (9/32) 16% {5/32)

14

Table 4.2b - Agreement between Expert System and Information in Database
Top-Down Systems, Middle Coding Phase

Rule-Based Deduction System

Frame-Based Abduction System

Project Agreement Disagreement Extra | Agreement Disagreement = Extra

1 1-1 1-1 6 0-0 2-2 4

2 0-0 2-3 0 0-0 2-3 0

3 0-1 0-1 7 0-1 0-1 3

4 0-0 - 2-0 1 - 0-0 2-0 1

5 0-0 4-0 0 0-0 4-0 0

6 1-2 0-1 B 0-0 1-3 1

7 0-0 2-2 4 0-0 2-2 2

8 2-1 2-2 0 2-0 2-3 0

9 0-1 2-2 3 0-1 2-2 3

10 5-0 1-2 3 3-0 3-2 2

Total 9-6 16 -14 - 30 5-2 20 - 18 16
Percent Explicit 36% (9/25) 20% (5/25)

Agreement | Marginal 30% (6/20) 10% (2/20) .

Combined 33% (15/45) 16% (7/45)

Table 4.2¢ - Agreement between Expert System and Information in Database
Top-Down Systems, Late Coding Phase

Rule-Based Deduction System

Frame-Based Abduction System

Project Agreement Disagreement = Extra | Agreement Disagreement Extra
1 1-1 2-1 6 0-0 3-2 4
2 1-3 -1 8 0-2 2-2. 1
3 0-0 0-2 0 0-0 0-2 0
4 1-0 2-1 1 1-0 2-1 1
5 0-0 5-0 3 0-0 5-0 3
6 1-2 0-1 -5 0-1 1-2 2
7 -0 4-2 2 0-0 4 -2 2
8 2-1 '3-2 1 1-0 4-3 0
g 0-1 1-1 3 0-0 1-2 1
10 1-0 6-2 3 0-0 7-2 1
Total 7-8 24 - 13 32 2-3 29 - 18 15
Percent Explicit 23% (7/31) 6% (2/31)
Agreement | Marginal 38% (8/21) 14%(3/21)
Combined 29% (15/52)

15 -

10% (5/52)

Table 4.2d - Agreement between Expert System and Information in Database
Top-Down Systems, Systems Test Phase

' o Rule-Based Deduction System’ Frame-Based Abduction System
Project - | Agreement Disagreement Extra | Agreement Disagreement Exira
1 1-1 2.1 5 1-0 2.2 4
2 1-3 1-0 8 0-0 2-3 2
3 0-0 0-0 0 0-0 0-0 0
4 1-0 2-1 3 0-0 3-1 1
5 0-0 5-0 3 0-0 5-0 3
6 0-1 1-1 5 0-0 1-2 3
7 0-1 4-1 4 0-0 4-2 3
8 1-0 4-3 - 0 1-0 4-3 0
9 0-1 2.1 5 0-1 2-1 3
10 1-0 5-2 3 0-0 6-2 9
" Total 5.7 26 - 10 36 2.1 29 - 16 21
Percent Explicit =~ 16% (5/31) 6% (2/31)
Agreement | Marginal 41% (7/17) 6% (1/17)
Combined 25% (12/48) 6% (3/48)

Table 4.2e - Agreement between Expert System and Information in Database
Top-Down Systems, Acceptance Test Phase

. - Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra | Agreement. Disagreement Extra

1 0-0 3-2 5 0-0 3-2 5

2 1-2 1-0 8 0-1 2-1 0

3 0-0 0-0 1 -0-0 0-0 1

4 6-0 2-1 0 0-0 2-1 0

) 1-0 4-0 6 1-0 4-0 3

6 0-0 1-1 1 0-0 1-1 1

7 1-1 3-1 4 1-1 3-1 4

8 1-1 2-2 0 1-1 2.2 0

9 0-0 2-1 2 0-0 2-1 1

10 0-0 5-2 3 0-0 5-2 1

Total 4-4 23 - 10 30 3-3 24 - 11 16
Percent Explicit -~ 15% (4/27) 11% (3/27)
Agreement | Marginal - 29% (4/14) "21% (3/14)

Combined 20% (8/41) 15% (6/41)

The expert systems performed moderately well given the following limitations: (1)
so much of the knowledge and relationships are unclear in this field, (2) the experts -
themselves do not agree on much of the knowledge, {3) the expert systems used only five

16

variables and only nine metrics derived from these variables to achieve the list of
interpretations, (4) the metrics used are not ideal, (5) many of the interpretations in the
database are subjective in nature and therefore may not always be correct, and (6) there
may be discrepancies between the interpretations of the particular phase and the overall
interpretations for the project.

The systems which were developed with the bottom-up approach performed better
than those developed with the top-down approach, and the rule-based deduction systems
performed better than the frame-based abduction systems. Both the bottom-up and
top-down rule-based systems performed better than either of the frame-based systems,
The bottom-up rule-based system performed best, agreeing with an average of 36%
(ranging from 29% to 44% depending on time phase) of the combined (both explicit and
marginal) interpretations from the database, and the top-down rule-based system agreed
with an average of 27% (ranging from 20% to 33%) of the database conclusions. The
bottom-up frame-based system agreed with an average of 16% (ranging from 11% to
20%) of the database interpretations, and the top-down frame-based system agreed with
an average of 139 (ranging from 6% to 16%) of the database conclusions. Interestingly,
both top-down systems and the bottom-up rule-based system agreed with more of the
marginal database interpretations than the certain database interpretations. The oppo-
site was true for the bottom-up frame-based system which agreed with an average of
17% of the more certain database conclusions and an average of 15% of the less certain
conclusions. - It should be pointed out that each expert system produced relatively con-
sistent results throughout its five time phases.

The bottom-up systems contained more relationships between manifestations and
interpretations than did the top-down systems. One might assume that the only reason
the bottom-up systems agreed with a higher percentage of the database conclusions was
that the bottom-up systems would list more interpretations for the same input manifes-
tations (test case). If it listed more interpretations, it would get more right by chance.
However, there was not that big a difference between the number of manifestations per
mterpretation for the bottom-up systems which was 3.16 and the number for the top-
down systems which was 2.77. As mentioned before, during the top-down development,
the experts combined certain interpretations and dismissed others altogether during cer-
tain time phases so there were fewer interpretations for each phase. Although the intent
was to throw out inappropriate interpretations and make the top-down systems that
much better, the bottom-up systems still captured a higher percentage of correct rela-
tionships than did the top-down systems. The total number of interpretations listed by
the bottom-up rule-based system was 276 in the 50 test cases. Of these, 95 were in
agreement with the database conclusions. The total number of interpretations listed by
the top-down rule-based system was 216, and of these, 59 agreed with the database con-
clusions. Therefore, the bottom-up rule-based system had an average of 34% (95/276)
correct interpretations out of all those listed, while the top-down rule-based system aver-
aged only 27% (59/216) correct interpretations. ' '

It is interesting to observe that within both the bottom-up and top-down sets of
systems the frame-based system always provided a subset of the interpretations listed by
the rule-based system (although in 48% of the combined bottom-up and top-down cases,
the rule-based and frame-based systems listed the exact same interpretations). As stated
previously, the relationships between the manifestations and interpretations were identi-
cal in the frame-based and rule-based systems within each knowledge acquisition
approach used. Then, by the nature of the expert system methodologies, the rule-based

17

system always listed every interpretation associated with every input manifestation,
while the frame-based system only provided answers of minimum cardinality which
explained all of the manifestations. Since the relationships in the two systems were
identical, the frame-based systems could only list the exact same interpretations or a
proper subset of those listed by the rule-based systems. As a result, the frame-based
systems could not perform better than the rule-based systems with respect to agreement
with the database conclusions. The frame-based systems listed an average of 50% fewer
extra interpretations (ranging from 29% to 729 depending on time phase) for the
bottom-up approach and an average of 48% fewer extra interpretations (ranging from
42% to 53%) for the top-down approach. However, it is better to have extra interpreta-
tions than to miss correct interpretations.

The results of using the Kappa statistic to evaluate the expert systems is shown in
Table 5. According to these results, the bottom-up rule-based system performed best
again, indicating better than chance agreement for more of the interpretations than the
other systems did. A few of the interpretations performed relatively well in all or most
of the expert systems. These were low productivity, loose management, error prone code,
and computer problems. The experts had lairly good agreement with each other and also
over time (between the bottom-up and the.top-down approaches) on the manifestations
for loose management and error prone code. They agreed less on low productivily and
mostly disagreed on computer problems. The interpretations of low complexity, simple
system, and changes hard to make also did a little better than chance agreement. The
experts had fair agreement with each other and over time concerning changes hard to
make, but mostly disagreed over low complexity and simple system. It is interesting to
note that the interpretations involving testing performed better in both bottom-up sys-
tems than in the top-down systems in general. Perhaps testing is better understood
using a very environment-specific approach. Several of the interpretations did not per-
form well in any of the expert systems, doing worse than chance agreement in all or
most cases. These were high complezity (tough problem), compute bound algorithm, good .
solid code, lots of reused code, lots of testing, little testing, lack of thorough testing, and
tight management.

6. DISCUSSION

The goal of this study was to determine whether it is possible to build useful expert
systems for software engineering. Some of the questions which we tried to resolve
involved determining how to do the knowledge acquisition and what type of expert sys-
tem methodology might be best suited for this field.

It was found that the major limitation to developing expert systems for software
engineering is the fact that much of the knowledge in this field is not well understood
yet. Knowledge was gathered from two experts who havé had a great deal of experience
in this field, and it was found that they did not agree with each other about many of the
relationships we were trying to determine. Furthermore, they did not always agree with
themselves when looking at the data from a different point of view at a later date.

Two approaches to knowledge acquisition were used and compared. The bottom-
up approach produced better results than the top-down approach. This may well be
because the bottom-up approach is more environment-specific. ‘Since the field of

18

Table 5 - Kappa Statistic Values of Each Interpretation
in Each of the Four Expert Systems

Bottom-Up Systems | Top-Down Systems

Interpretation RBD FBA | RBD FBA

Unstable Specifications - 0.120 0.000 -0.065 -0.158

Low Productivity 0.270 -0.065 0.369 0.023

High Productivity 0.000 0.000 0.000 0.000

High Complexity (Tough Problem) | -0.261 -0.236 -0.346 -0.160

Compute Bound Algorithm -0.139 -0.154 -0.253 -0.168

Low Complexity 0.122 -0.066 6.016 | 0.155
Simple System " 0121 0.124 Hokok *E¥

Error Prone Code 0.178 0.118 0.048 0.130

Good Solid: Code -0.134 -0.174 -0.372 -0.082

Lots of Reused Code -0.121 -0.109 =0.075 | -0.163

Lots of Testing - | -0.040 0.000 -0.273 -0.205

Little Testing 0.051 -0.144 -0.308 -0.238

Good Testing - : 0.231 - 0.296 -0.326 -0.198

. Poor Testing 0.186 0.188 -0.241 -0.267
Lack of Thorough Testing -0.190 -0.061 *Ak T kR
Changes Hard to Make - 0.000 -0.092 0.211 0.149

Loose Management 0.124 0.123 0.427 0.194
Tight Management -0.062 -0.114 Hkok wkk

Computer Problems 0.235 0.091 0.104 -0.092

- Lots of Terminal Jockeys 0.049 -0.087 0.052 0.107

Note - K > 0 indicates better than chance agreement; K == 0 indicates chance agree-
ment; K < 0 indicates worse than chance agreement.

RBD - Rule-Based Deduction; FBA - Frame-Based Abduction
#** - these interpretations were not used in the top-down systems

software engineering is still new, it is probably better to develop expert systems for one
homogeneous environment rather than trying to determine general truths across environ-
ments.

The two expert system methodologies, rule-based deduction and frame-based-
abduction, were also compared with respect to ease of implementation and accuracy of
results. The initial knowledge was derived from empirical software engineering research
and organized in a table format, so the very first sets of simple rules and frames which
were not time-line specific were straightforward o develop. The situation became more
complex when the interpretations were made time-line specific. Each frame-based sys-
tem was divided into five systems based on time period because the second dimension of
time could not be incorporated into the frames in a reasonable manner. Furthermore, an
attempt was made to rewrite the rules to contain more meaningful and complex relation-
ships among the manifestations in the antecedents. However, it was decided to retain
the format of simple rules in order to be as complete as possible. It should be noted that
for this type of diagnostic problem in a well-defined domain, it is generally much easier
and more natural to write frames than to encode the same information in complex rules

19

[Ramsey86!.

In 489 of the cases, the rule-based and frame-based systems provided the same
interpretations. However, when analyzing the results from all projects, the rule-based
systems provided more interpretations and exhibited a higher rate of agreement with the
database than did the frame-based systems. This is directly attributable to two facts:
(1) simple rules were used in the rule-based systems, allowing completeness of the list of
interpretations, and (2) the frame-based systems only provide those explanations of
minimum cardinality. Therefore, we conclude that the rule-based system with simple
rules is probably more applicable to the field of software engineering at this point in
time. However, this may very well not be true in the future, as more is learned in this

field.

The expert systems performed moderately well, especially when one considers that
many of the relationships between the metrics and the interpretations are unclear. The
experts did not agree on many of the relationships, and the expert systems cannot per-
form better than the information included in them. Indeed, the bottom-up rule-based
system performed about as well as the experts agreed with each other. In addition, a
relatively small number of metrics were used to suggest many interpretations, and the
metrics used were not ideal. The experts felt that some of the interpretations could not
be adequately described in terms of the available metrics. For example, it was felt that
the complexity interpretations could not be adequately captured without error metric
data. The experts even threw out one of the interpretations altogether when they were
determining relationships using the top-down approach. However, the five variables
used in the metrics were easily obtainable, and this is also an important factor when
creating expert systems.

Another fact we would like to stress is that the expert systems for the earlier time
phases also performed well. This is especially important because a manager should learn
of potential problems as early in the development process as possible. Expert systems
can be very helpful because they may detect problems which a manager may not recog-
nize early on.

This study has provided many additional new insights into the development of
expert systems for software engineering. It is feasible to develop prototype expert sys-
tems at this point in time, but we need to define better the relationships that exist
between the components. In particular one must define what development characteris-
tics would result in what types of abnormal measures, how this changes through various
project development phases, and how certain one is that an abnormal measure results
from a certain characteristic. As more is learned in this area, more can be incorporated
into useful expert systems.

7. FUTURE RESEARCH DIRECTIONS

The development of ARROWSMITH-P was a preliminary attempt at constructing
expert systems for soltware ‘engineering management. The information contained In the
knowledge base can be refined, and new knowledge, such as information about error
metrics [Weiss85|, [Basili84a|, can be incorporated into these systems as more is learned.
As incorrect relationships are brought to the surface, the systems can be changed to -
incorporate the knowledge gained from testing. Eventually, the rules should become

20

more complex as relationships between manifestations and causes become better defined.
In addition, the testing of current, ongoing projects can be performed on the expert sys-
tems. The data from the new projecis can then be incorporated into the environment-
specific baselines of metrics so the systems continue to be upda,t;ed as the envn'onment
changes.

In a more general sense, a theoretical framework for developing expert systems for
software engineering is needed. For example, a categorization scheme, which would
address such issues as when a top-down system is better than a bottom-up system and
vice versa, should be built. Also, perhaps a new and different type of inference mechan-
ism or method for building expert systems would better suit the needs of some aspects in
this fleld. All of these issues require a great deal of further research and analysis.

8. ACKN OWLEDGEMENT

The authors are grateful to Frank McGarry, Dr Jerry Page Dr. James Reggia,
James Ramsey, Bill Decker, and Dave Card for their invaluable assistance in this pro-
ject. The authors would also like to thank the members of thelr research group for.
enhghtenmg comments and ideas. : :

21

. References

Basili??]

[Basili78!

Basili, V. R.,, ML V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr., W. F.
Truszkowski, and D. M. Weiss, The Software Engineering Laboratory, SEL-
77-001, Software Engineering Laboratory, NASA/Goddard Space Flight

Center, Greenbelt,Maryland, May 1977.

'Basili; V.R. and M. V. Ze.lkowitz, Analyzing Medium-Scale Software

- Developments, pp. 116-123 in Proceedings of the Third International Confer-

[Basili84a)
[Basili84b)]

‘Basilig5!

ence on Software Engineering, Atlanta, Georgia, May 1978.

Basili, V. R. and B. T. Perricone, Software Errors and Complexity: An Em-
pirical Investigation, Communications of the ACM 27, 1, pp. 42-52, Jan.
1984. o ' ' : : o

Basili, V. R. and D. M. Weiss, A Methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on Software Engineering SE-10, 6, pp.
728-738, Nov. 1984.

Basili, V. R. and C. L. Ramsey, ARROWSMITH-P - A Prototype Expert Sys-
tem for Software Engineering Management, pp. 252-264 in Proceedings of the
Expert Systems in Government Symposium, IEEE, MclLean, Virginia, October
1985.

[Campbell82]

[Card82]

[Cohen68|

Campbell, A. N., V. F. Hollister, R. O. Duda, and P. E. Hart, Recognition of
a Hidden Mineral Deposit by an Artificial Intelligence Program, Science 217,
pp. 927-928, 3 September 1982,

Card, D. N, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, The
Software Engineering Laboratory, SEL-81-104, Software Engineering Labora-
tory, NASA /Goddard Space Flight Center, Greenbelt, Maryland, Feb. 1982.

Cohen, J., Weighted Kappa: Nominal Scale Agreement with Provision for
Scaled Disagreement or Partial Credit, Psychological Bulletin 70, pp. 213-220,
1968.

22

[Doerflinger83|
: Doerflinger, C. and V. Basili, Monitoring Software Development Through
Dynamic Variables, pp. 434-445 in Proceedings of the IEEE Computer
Society’s International Computer Software and Applications Conference, Nov.
1983. (also to appear in IEEE Transactions on Software Engineering).

Hayes-Roth78] - '
' Hayes-Roth, F., D. Waterman, and D. Lenat, Principles of Pattern-Directed
Inference Systems, pp. 577-601 in Pattern-Directed Inference Systems, ed.
Waterman and Hayes-Roth, Academic Press, 1978.

[Miller82! : S : :
Miller, R., H. Pople, and J. Myers, Internist-1: An Experimental Computer-
Based Diagnostic Consultant for General Internal Medicine, New England
Journal of Medicine 307, pp. 468-476, 1982,

[Minsky75]
Minsky, M., A Framework for Representing Knowledge, pp. 211-277 in The
Psychology of Computer Vision, ed. P. Winston, McGraw-Hill, Inc., 1975.

[Nau84| ' o ‘

Nau, D. S. and J. A. Reggia, Relationships Between Deductive and Abductive
Inference in Knowledge-Based Diagnostic Expert Systems, pp. 500-509 in
Froceedings of the First International Workshop on Ezpert Database Systems,
1984,

{Pauker76] __
Pauker, S. et al, Towards the Simulation of Clinical Cognition, American
Journal of Medicine 60, pp. 981-996, 1976.

[Peng84] :
Peng, Y., A General Theoretical Model for Abductive Diagnostic Expert Sys-
tems, Tech. Report TR-1402, Computer Science Department, University of
Maryland, May 1984.

[Ramsey86]
Ramsey, C., J. Reggia, D. Nau, and A. Ferrentino, A Comparative Analysis
of Methods for Expert Systems, International Journal of Man-Machine Stu-
dies, 1986. Accepted for publication.

[Reggia82a) ‘
Reggia, J. and B. Perricone, KMS Reference Manual, Tech. Report TR-1136,
Computer Science Department, University of Maryland, 1982.

[Reggia82b]

Reggia, J., Computer-Assisted Medical Decision Making, pp. 198-213 in Ap-
plications of Computers in Medicine, ed. M. Schwartz, IEEE Press, 1982.

23

[Reggia83a)
Reggia, J., D. Nau, and P. Wang, Diagnostic Expert Systems Based on a Set
Covering Model International Journal of Man-Machine Studies, pp 437-460,
Nov.. 1983. .

[Reggia,SBb]
Reggia, J., D. Nau, and P. Wang, A Theory of Abductive Inference in Diag-
nostic Expert Systems Tech. Report TR-1338, Computer Sei. Dept Univ. of
Maryland, College Park, MD, December 1983. .

[SEL82]
Annotated Bibliography of Software Engineering Laboratory (SEL) Litera-
ture, SEL-82-006, Software Engineering Laboratory, NASA/Goddard Space
thht Center, Greenbelt Ma,ryla,nd Nov. 1982. : _

[Shortliffe76]
Shortliffe, E., Computer-Based Medical Oonsultatwns MYCIN, Elsev1er
1976.

[Shubin82|
Shubin, H. and J. Ulrich, IDT: An Intelligent Diagnostic Tool, pp. 290-285 in
Proceedings of the Natwnal Conference on Artificial Intellagence AAAI
1682,

[Spitzer67]
Spitzer, R., J. Cohen, J. Fleiss, and J. Endicott, Quantification of Agreement
in Psychiatric Diagnosis, Archives of General Psychiatry 17, pp. 83-87, 1967.

[Weiss85]

Weiss, D. M. and V. R. Basili, Evaluating Software Development by Analysis
of Changes: Some Data From the Software Engineering Laboratory, I[EEE
Transactions on Software Engineering SE-11, 2, pp. 157-168, Feb. 1985.

24

APPENDIX Ia - A sample interactive session with the rule-based deduction expert system.

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.
PLEASE ANSWER THE FOLLOWING QUESTIONS. n .

COMPUTER RUNS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

= 7

2.

COMPUTER TIME PER LINE OF SOURCE CODE:
(1JABOVE NORMAL

{2)NORMAL

{8)BELOW NORMAL

— 7

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=1

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

{3)BELOW NORMAL

=1

2.

COMPUTER TIME PER COMPUTER RUN:
(1)ABOVE NORMAL
(2)NORMAL
(3]BELOW NORMAL
?

2,

SOFTWARE CHANGES PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

—1

2,

PROGRAMMER HOURS PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

{3)BELOW NORMAL

=7

3.

PROJECT TIME PHASE:
(1)EARLY CODE PHASE
(2)MIDDLE CODE PHASE
(3)LATE CODE PHASE
(4)SYSTEMS TEST PHASE
(5)ACCEPTANCE TEST PHASE
=1

2.

COMPUTER TIME PER SOFTWARE CHANGE:
(1JABOVE NORMAL

(2)NORMAL"
(3)BELOW NORMAL
=1

2.

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=7
3.

POSSIBLE INTERPRETATIONS ARE:
ERROR PRONE CODE <0.94>
EASY ERRORS OR CHANGES BEING FOUND OR FEXED < 0.81>>
LOTS OF TESTING <0.76>
LOTS OF TERMINAL JOCKEYS <«0.75>
UNSTABLE SPECIFICATIONS <<0.50>
NEAR BUILD CR MILESTONE DATE <0.50>
GOOD TESTING OR GOOD TEST PLAN <(.25>>
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE <0.25>

Note - User answers are in boldface.

APPENDIX 1b - A sample interactive session with the frame-based abduction expert system.

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.

THIS PARTICULAR SYSTEM SHOULD BE USED FOR THE MIDDLE CODING PHASE.
PLEASE ANSWER THE FOLLOWING QUESTIONS.

FOCUS OF SUBPROBLEM:
+THIS SUBPROBLEM IS CURRENTLY ACTIVE*
GENERATOR:
COMPETING POSSIBILITIES:

UNSTABLE SPECIFICATIONS
LATE DESIGN
NEW OR LATE DEVELOPMENT
LOW PRODUCTIVITY
HIGH PRODUCTIVITY
HIGH COMPLEXITY OR TOUGH PROBLEM
HIGH COMP OR COMPUTE BOUND ALGORITHMS RUN OR TESTED
LOW COMPLEXITY
SIMPLE SYSTEM
REMOVAL OF CODE BY TESTING OR TRANSPORTING
INFLUX OF TRANSPORTED CODE
LITTLE EXECUTABLE CODE BEING DEVELOPED
ERROR PRONE CCODE
GOOD SOLID AND RELIABLE CODE
NEAR BUILD OR MILESTONE DATE
LARGE PORTION OF REUSED CODE OR EARLY AND LARGER TESTS
LOTS OF TESTING
LITTLE OR NOT ENOUGH ONLINE TESTING BEING DONE
GOOD TESTING OR GCOD TEST PLAN
UNIT TESTING BEING DONE
LACK OF THOROUGH TESTING
POOR TESTING PROGRAM
SYSTEM AND INTEGRATION TESTING STARTED EARLY
CHANGE BACKLOG OR HCOLDING CHANGES
CHANGE BACKLOG OR HOLDING CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE
LOOSE CONFIGURATION MANAGEMENT OR UNSTRUCTURED DEV
TIGHT MANAGEMENT PLAN OR GOOD CONFIGURATION CONTROL
COMPUTER PROBLEMS OR INACCESSIBILITY OR ENV CONSTRAINTS
LOTS OF TERMINAL JOCKEYS

COMPUTER RUNS PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7

2,

COMPUTER TIME PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2.

SOFTWARE CHANGES PER LINE OF SOURCE GODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=1

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

= 7

2.

SOFTWARE CHANGES PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7

a.

COMPUTER TIME PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=

2.

PROGRAMMER HOURS PER COMPUTER RUN:
{1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

= ?

3.

FOCUS OF SUBPROBLEM:
GENERATOR:
COMPETING POSSIBILITIES:

LOTS OF TERMINAL JOCKEYS
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
LOTS OF TESTING
ERRCR PRONE CODE
UNSTABLE SPECIFICATIONS

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(1) ABOVE NORMAL .

(2) NORMAL

(3) BELOW NORMAL

=1

3.

FOCUS OF SUBPROBLEM:
GENERATOR:
COMPETING POSSIBILITIES: .
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
ERRCR PRONE CODE

COMPUTER TIME PER SOFTWARE CHANGE:
(1) ABOVE NORMAL
(2) NORMAL

(3) BELOW NORMAL
=1

2.

POSSIBLE INTERPRETATIONS ARE:

EASY ERRORS OR CHANGES BEING FOUND COR FIXED <H>
ERROR PRONE CODE <L>

Note - User answers are in boldface.

- Both interpretations listed as solutions can explain all of the manifestations, but the first is

given a high measure of likelihood {shown by the <<H>>) of being correct, while Error Prone
Code is rated low. :

Coay

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION - 1b. RESTRICTIVE MARKINGS |
UNCLASSIFIED _

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) -
TR-1708

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 1 7a. NAME OF MONITORING ORGANIZATION |

] . (If applicable)
University of Maryland CMSC

6¢. ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science .
College Park, MD 20742

8a. NAME OF FUNDING /SPONSORING - 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER |
ORGANIZATION (f applicabie)
NASA |
Bc. ADDRESS (City, State, and ZIPCodg) |10, SOURCE OF FUNDING NUMBERS —
‘ PROGRAM PROJECT TASK WORK_UNIT
Greenbelt, MD 20771 ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (include Secunty Classification) Unclassified
AN EVALUATION OF EXPERT SYSTEMS FOR SOFTWARE ENGINEERING MANAGEMENT

1
2. PERSONAL AUTHOR(S) Connie Loggla Ramsey and Victer R. Ba5111

"

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [iS. PAGE COUNT
FROM TO September 1986 28

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROQUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number) Although the field of software engineer-'
ing is relatively new, it can benefit from the use of expert systems. Four
prototype expert systems have been developed to aid in software engineering management. Given
the values for certain metrics, these systems will provide interpretations which explain any

abnormal patterns of these values during the development of a software project. The four
expert systems, which solve the same problem, were built using two different approaches to
knowledge acquisition, a bottovm-up approach and a top-down approach, and two different expert
system methods, rule-based deduction and frame-based abduction. A comparison was performed
to see which methods better suit the needs of this field. It was found that the bottom-up
approach led to better results than did the top-down approach, and the rule-based deduction
systems using simple rules provided more complete and correct solutions than did the
frame-based abduction systems.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT ‘ 21. ABSTRACT SECURITY CLASSIFICATION
RIUNCLASSIFIED/AUNLIMITED 3 saME AS RPT. CloTic UseErs
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) [22¢c. OFFICE SYMEOL -
Connie Loggia Ramsey 301-454-6154 CMSC
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.

SECLRITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

