Technical Report TR-1728 - November 1988
NSG-5123

TAILORING THE SOFTWARE PROCESS
TO PROJECT GOALS AND ENVIRONMENTS *

Victor R. Basili and H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park MD 20742
(301) 454-2002 or -8974

* Research for this study was supported in part by the National Aeronautics and Space Administration grant NSG-5123
to the University of Maryland. Computer time wes supported in part through the facilities of the Computer Science
Center of the University of Maryland.

ABSTRACT.

This paper presents a methodology for improving the software process’
by tailoring it to the specific project goals and environment. This
" improvement process is aimed at the global software process model as
well as at the methods and tools supporting that model. The basic idea
is to use defect profiles to help characterize the environment and evalu-
ate the project goals and the effectiveness of methods and tools in a
quantitative way. The improvement process is implemented iteratively
by setting project improvement goals, chara.cterlzmg those goals and
the environment, in part, via defect profiles in a quantitative way,
choosing methods and tools fitting those characteristics, evaluating the
actual behavior of the chosen set of methods and tools, and refining the
project goals based on the evaluation results. All these activities
require analysis of large amounts of data and, therefore, support by an
automated tool. Such a tool - TAME (Tools for an Ada Measurement
Env1ronment) is currently being developed '

KEYWORDS: software process, methods, tools, measurement, evalua-
tion, improvement, tailoring, goals, :environment,
errors, faults, failures. '

- 8 SUMMARY AND FUTURE RESEARCH ..o

TABLE OF CONTENTS:

1 INRODUCTION ..o, e AR R R e e 4
2 IMPROVEMENT METHODOLOGY o.oooovoovoeeeeeeeeeseeeseveeeesseesessesesssonessess e esessesoas — 5
3 LIFE CYCLE OF DEFECTS oeoeoeeeeeeeeeeeeeseeveseseesessessssessssssssssesssssanns S e 8
4 CLASSIFICATION OF DEFECTS ..o.veooviorreevreenn, eieeeereseesaneananas o e N
4.1 ERROR CLASSIFICATIONoov.. oo S, e eetenerennens 10
4.1.1 TIME OF ERROR OCCURRENCEcoovvvrvvenrirrreeressnsisessesnnn. e 10
4.1.2 DOMAINS CAUSING ERRORS ...cooorneermeeeererrerssnssnroree. e oot 11,
4.2 FAULT CLASSIFICATION oooooosceeeeeeeeeeeivsesesesaesenssesssasessssens eevreessererasee it e 12
4.2.1 TIME OF FAULT DETECTIONcoovvevenn. oo eearerarerararnaen eeerereenrenne 12
4.2.2 OMISSION/COMMISSION ...covuvermsmmieeensrnsiemmiserssssessesasssesssssssssssrsssnscsieese 19
4.2.3 SOFTWARE ASPECTS AFFECTED BY FAULTS ..voovoeeeeeeeeeveveeecssesesseneeene 12
4.3 FAILURE OLASSIFICATION .ooovoveevsvevsssenssteressssesssssssesssssssssssessssssssssesssssssssssen. 13
4.3.1 TIME OF FAILURE DETECTIONooomrmrivcmmeremsmssmssseressisesseen e, 18
4.3.2 SEVERITY OF FAILURES ..oeovuoveeeevvereeeseesresseseesseeessssssssessssessssessssessesssiosed 13
5 TAILORING TO PROJECT GOALS AND ENVIRONMENToooveeeeeeeeeeevereesseaeennes 14
5.1 CHARACTERIZING IMPROVEMENT GOALScccuvumreeeeseesisneecerenesmneceseeronne 14
5.2 CHARACTERIZING THE ENVIRONMENTccovvivesreessesressiessessesssssssssssesnssoens 17
5.3 CHARACTERIZING METHODS AND TOOLScouiuviecrmermrmmemscmmemeseseraesecines 18
6 APPLICATION OF THE TAILORING PROCESS ...c.ccnerreemicrimecransmesecressinecerones 20

7 TOOL SUPPORT FOR THE IMPROVEMENT METHODOLOGY ...oovmevvevssrrrrirnr. 24

27
9 ACKNOWLEDGEMENTS <.vovevovevesesestosssstesessesesssessssesssessesssesesssssensotessasssssessssssmnessses 28
10 REFERENCES oooooeoeeeeoveveveveseressesseretessssesssessessesasesssssssssseessssssssssnessesassesmnsassseseasonns. 28

1. INTRODUCTION.

One of the major problems in software projects is the lack of management’s abil-
ity to (1) find criteria for choosing the appropriate process (global process model
and methods and tools supporting those models), (2) evaluating the goodness of
the software process, and (3) improve it. In a survey of the software industry,
[Thayer and Pyster 80] listed the twenty major problems reported by software
managers. Of these twenty, over half (at least thirteen) delineated the need of
management to find selection criteria for the choice of technology or to be able to
judge the quality of the existing software process.

For many cases, there does exist a fair amount of technology available for soft-
ware projects. However, it is not always apparent to the manager which of these
methods or tools to invest in, and whether or not they are working as predicted
for the particular project. What is needed .in almost all cases is a quantitative
approach for software management and engineering,. o

In this paper we preseilt‘ a methodology for improving the software process; we
emphasize the aspect of improving the set of methods and tools in the context of
a given process model. The criteria for improvement of the set of methods and
tools to be used in a project are their support of project goals and environment.
This tailoring process requires our ability to characterize project goals, environ-
ment, and the effect of methods and tools on goals and environment in a quanti-
tative way. One quantification approach is to use defects (errors, faults, and
failures). :

In section 2 we introduce the improvement methodology. In section 3 we discuss
the relationship of errors, faults, and failures with the software process. The
effectiveness of the improvement methodology depends on the availability of
classification schemes for defects which allow us to classify methods and tools by
their degree to which they can prevent or detect, isolate, and correct defects. A
selection of such classification schemes is presented in section 4. Our approach for
characterizing goals, environments, and methods and tools in the contekt of the
improvement methodology of section 2 is presented in section 5 and applied to

real world project in section 6. The real world: project is from the NASA/SEL

environment. Finally, we describe the TAME (Tools for an Ada Measurement
Environment) project. This ongoing project aims at the development of a proto-
type for supporting all kinds of measurement,. evaluation, and improvement. In
particular, all the steps of the improvement ‘methodology are going to be sup-
ported by the TAME prototype. :

The objectives stated in this section reflect ‘what the SEL originally set out to do.
Over the last ten years improvement approaches were developed and more and

* The SEL (Software Engineering Laboratory) is a joint project between NASA Goddard Space Flight Center, the Univer-
sity of Maryland, and Computer Sciences Corporation. The objective of this project is to evaluate and improve the soft-
ware process and its resulting products.

more formalized [Basili 85/2]. The general improvement methodology (section 2)
as well as the tailoring approach presented in this paper are two important steps
along this path.

' 2. IMPROVEMENT METHODOLOGY.

The improvement process requires a mechanism for characterizing the project
- environment and the candidate process models, methods, and tools. The process
requires an organized mechanism for determining the improvement goals; defining
those goals in a traceable way into a set of quantitative questions that define a
specific set of data for collection. The improvement goals flow from the needs of
the current project and, as far as possible, knowledge from previous projects.
Based on a check to what degree the established improvement goals can be met
by candidate process models, methods, and tools in the particular project
environment, the most promising ones are chosen for the current project.
Throughout the project the set of prescribed data is collected, validated, fed back
into the current project, and subsequently evaluated for the purpose of improving
~ future projects. This evaluation determines the degree to which the stated
improvement goals were met by the chosen software process. Based on these.
findings recommendations for improvement are made as input for the next pro-
ject.

This whole improvement processl [Basili 85/1] is structured into five major steps:

1. Characterize the approach/environment.
This step requires an understanding of the various factors that will influence
the project development. This includes the problem factors, e.g. the type of
problem, the newness to the state of the art, the susceptibility to change, the
people factors, e.g. the number of people working on the project, their level of
expertise, experience, the product factors, e.g. the size, the deliverables, the
reliability requirements, portability requirements, reusability. requirements, the
resource factors, e.g. target and development machine systems, availability,
budget, deadlines, the process and tool factors, e.g. what methods and tools are

- available, training in them, programming languages, code analyzers. In addi-
tion, basic characteristics of past projects in the same or similar environment
such as typical productivity, typical error, fault, failure profiles, or life cycle
followed might be helpful for predicting characteristics of the ongoing or future
projects.

2. Set up the goals, questions, data for successful project development
and improvement over previous project developments.
It is at this point the organization and the project manager must determlne
what the goals are for the project development. Some of these may be specified
from step 1. Others may be chosen based upon the needs of the organization,

e.g. reusability of the code on another project, improvement of the quahty,
lower cost.

3. Choose the appropriate methods and tools for the project.
Once it is clear what is required and available, methods and tools should be
chosen -and refined that will maximize the chances of satisfying the goals laid
out for the project. Tools may be chosen because they facilitate the collection
of the data necessary for evaluation, e.g. configuration management tools not
only help project control but also help with the collection and validation of
error and change data.

4. Perform the software development and maintenance, collect the

prescribed data and validate it, and provide feedback to the current
project in real time. -
This step involves the transfer of new technologies chosen in the previous step
into the current project environment, and the application of the new software
process. Throughout the project data have to be collected by forms, inter-
views, and automated collection mechanisms. The advantages of using forms
to collect data is that a full set of data can be gathered which gives detailed
insights and provides for good record keeping. The drawback to forms is that
they can be expensive and unreliable because people fill them out. Interview
can be used to validate information from forms and gather information that is
not easily obtainable in a form format. Automated data collection is reliable
and unobtrusive and can be gathered from program development libraries, pro-
gram analyzers, etc. However, the type of data that can be collected in this
way is typically not very insightful and one level removed from the issue being
studied. Besides the post mortem analysis in step 5 for the purpose of suggest-
ing improvements for future projects, we are also interested in tuning the soft-
ware process of the ongoing project based on real time feedback from measure-
ment activities.

5. Analyze the data to evaluate the current practices, determine prob-
lems, record the findings, and make recommendations for improve-
ment for future projects. 7
This is the key to the mechanism. It requires a post mortem evaluation of the
project. Project data should be analyzed to determine how well the project
satisfied its goals, where the methods were effective, where they were not
effective, whether they should be modified and reﬁned for better application,
whether more training or different training is needed, whether tools or stan-
dards are needed to help in the application of the methods, or whether the
methods or tools should be discarded and new methods or tools applied on the
next project. Proceed to step 1 to start the next project, armed. with the
knowledge gained from this and the previous projects.

This procedure for developing software has a corporate learning curve built in.
The knowledge is not hidden in the intuition of first level managers but is stored
in a corporate data base available to new and old managers to help with project
management, method and tool evaluation, and technology transfer.

-

STEP 1: - characterize environment - (*)
P - characterize candidate
models, methods, and tools (*)

v

STEP 2: - set up improvement goals (+)
- quantify goals (+)®)
- check consistency between
improvement goals and
candidate models,
methods and tools (*)

Sy y i

STEP 3: - choose appropriate models (**)
- choose appropriate '
methods and tools (**)

h 4
STEP 4: - transfer chosen technology
- perform software project {+)
- collect data (+)
- validate data {+)
- provide feedback in real time (+)

L

STEP 5: - analyze data post mortem (+)
- recommend new improvement
goals for future projects (+)
- proceed to step 1

v

Figure 1: Improvement Methodology.

As indicated earlier the effectiveness of this improvement methodology depends
on the ability to quantitatively characterize the improvement criteria 'goals’ and
‘environment’ as well as the effectiveness of our improvement vehicles 'process
models’, 'methods’, and 'tools’ in meeting those criteria. The following sections
of this paper propose an approach to support the activities in figure 1 marked
with ’*’ by analysis of error, fault, and failure profiles. The steps concerned with
setting up improvement goals, data collection and validation, data analysis, and
interpretation are performed according to a separate evaluation methodology
[Basili and Weiss 84]; these steps are marked with '+ in figure 1. The choosing
of appropriate models, methods, and tools (see steps marked with "**’ in figure 1)
is made based on characteristics of the of improvement goals and the environ-
ment and sound knowledge concerning the qualification of models, methods, and
tools of meeting those characteristics [Basili, Turner 86].

W

3. LIFE CYCLE OF DEFECTS.

The use of methods and tools is supposed to improve software quality and pro-
ductivity by reducing the number of defects. To make effective use of methods _
and tools one has to be aware of the nature of defects. Defects exist in three

different instances according to [IEEE 83]:

Errors are defects in the human thought process made while trying to under-
stand given information, to solve problems, or to use methods and tools. Faults
are the concrete manifestations of errors within the software. One error may
cause several faults; various errors may cause identical errors. Failures are the-
departures of the software system from software requirements (or intended use
respectively). A particular failure may be caused by several faults together; a par-
ticular failure may be caused by different faults alternatively; some faults may
never cause a failure (difference between reliability and correctness).

METHODS + TOOLS

\ .
. .'- - ~
".' * R ~ el
' PREVENT] I ISOLATE] DETECT]
. e e, "] .
.: Y. . * - - 7 H :
ERRORS cayse FAULTS} _mav cause } FAILURES
. : . 9.0‘ i '. \ co
; ",T\'/Ie‘t:hods and TOC.’.]S deal?n\ vith Defects \..
Problem Solution Mode}, of Softwaie {’rocess Models |
: ot : *
_ : - . . "ANALYZE
__ d e . N
! constguch, Fesulis]
UNDERS\T::ND '::- execute
HR |
. DOCUMEN -
. - _ :
' UY\IDERSTAND_ / h
L MANAGE _ o

© Figure :2:_Methods, Tools - Errors, Faul_ts, Fa,ilures - Process Model.

In Figure 2, the above defined relationship between errors, faults, and failures,
their relationship with a general problem solving model incorporated in each con-
crete process model, and their relationship with preveation, isolation, or detection

methods and tools is outlined.

A generel problem solving mqdel incorporated in each process model consists (or
should consist) of an iteration of the following sequence of general activities:

¢ Understanding of given information such as problem, requlrements or des1gn
documents

e Constructing some new (in general more concrete) solution

¢ Documenting the new solution :

e Analyzing the new solution, and possibly startlng a new iteration of develop- -
ment or executing the product

e Managing the development and maintenance process and all resultmg docu—
‘ments {data) :

The relationships between errors, faults, failures on the one hand and the preven-
tion or detection approach on the other hand are as follows: :

e Errors can be prevented (e.g. by tramlng) ‘

e Faults can be prevented from entering a software product (e g. by a syntax
directed editor).

e Faults can be detected during non-operational analy51s all related faults can
be isolated and corrected.

¢ Failures can be detected durlng ‘execution (test or opera.tion) all related
faults can be isolated and corrected.

4. CLASSIFICATION OF DEFECTS.

Numerous classification schemes for defects are proposed for various purposes. In
the context of this paper we are interested in schemes that classify defects by the
ease with which they can be prevented or detected and isolated by various
methods and tools. In this section several classification schemes for errors, faults,
and failures will be presented. Some of these schemes were already presented in
the literature, others are new.

The usefulness of each classification scheme is evaluate‘d with respect to three cri-
teria: 1) is it possible to decide the defect class for each defect, 2) ean the infor-
mation necessary for the decision be collected easily, and 3) for each class, are
there methods and tools that can either prevent or detect, isolate, and correct the
defects in that class. The first criterion determines whether a scheme is of any
practical use, the second criterion just formulates the characteristics of a real
classification scheme (for each defect there exists one and only one class it
belongs to), whereas the third criterion defines the goal of schemes in this con-
text.

* The number of iterations depends on the chosen process model.

The following - classification schemes represent the state-of-the-art in the SEL.
This does not exclude future refinement. It is intended to apply the classification
schemes to data from more SEL projects, evaluate the usefulness. of the schemes
according to the three criteria stated above, and, if necessary, to refine those
schemes. " This iterative refinement process will allow us to identify those
classification schemes which allow us best to explain and predict the impact of
the specific SEL project environment on quality and productivity.

4.1. ERROR CLASSIFICATION.

The criterion for a classification of errors.in this context is, to define classes of
errors by the ease with which they can be prevented by different (types of)
methods and tools. The presented error classification schemes all try to allow the
identification of certain problem areas within the project environment. The first
classification scheme indicates the phases in which errors occurred; the second
classification scheme indicates domains of the project environment which resulted
in errors. There exist many more schemes in the literature [Basili, Weiss 82],
[Basili et al. 84], most of them being refinements of the following two schemes;
refinements of these two schemes might be appropriate in order to represent
specific environment characteristics. or 'problem-solution’.

The practical use of error classification schemes in general is tricky because error
data can’t be collected by analyzing documents. By nature, identifying errors
means to understand the defect in the thought process of a human being after
the fact [Johnson et al. 82]. The problems, and consequently sources for
misclassification, lie in the attempt to reconstruct the thought process of human
beings as well as in the fact that this classification of errors is usually done after
the fact. The usual procedure is, that fault data are collected, and error data are
derived based upon interviews with the original programmer or subjective
guesses. An additional problem lies in the complex interrelationship between
errors and faults: One error can result in different faults (an application error
might result in a control fault as well as in a computation fault), one fault might
be caused by different errors (a computation fault- can be caused by an applica-
“tion error as well as by a clerical error), one single error can result in a number of
faults at the same time. Faults are classified depending on how they were
corrected. It is well-known that a given fault in many cases might be corrected in
different ways (e.g., changing a control construct or changing a computation)
which would result in classifying this particular fault in different ways (e.g.,
either as a control or computation fault). : :

4.1.1. TIME OF ERROR OCCURRENCE.

Classification of errors by the time of their occurrence allows you to attribute cer-
tain errors to methods and tools used at this time. Because methods and tools are
usually used during certain phases or activities according to some process model,
the virtual time scale used for error classification is phases. BE.g., for NASA pro-
Jects monitored by the University of Maryland errors were classified, according to

- 10 -

NASA’s process model, as 1) requirements, 2) specification, 3) design, 4)
code, 5) unit test, 8) system test, 7) acceptance test, and 8) maintenance
errors. Whenever one of the classes in such a classification scheme shows an
above average number of errors we know what phase to emphasize for the pur-
pose of error prevention. This clasmﬁcatlon scheme fulfills all three criterion for
being useful.

4.1.2. DOMAINS CAUSING ERRORS.

Classification of errors by the project aspects that caused problems allows you to
attribute certain errors to methods and tools dealing with these aspects of the
software project. Typical problem domains can be the application area, the
methodology to be used, the environment of the software to be developed, ete.
The following classification is a slight modification of the scheme developed by
Basili and others [Basili et al. 84]:

e Application errors are due to a misunderstanding of the application or prob-
lem domain. Application errors are possible during all life cycle phases, but are
more likely during early development phases.

o Problem-Solution errors are due to not knowing, mlsunderstandmg, or
misuse of problem solution processes. This kind of errors occur in the process
of finding a solution for a stated and well-understood problem; this solution. is
then going to be represented using the syntax and semantic rules of some lan-
guage. Practically, these problem-solution errors can occur in the process of
specifying, designing or coding a problem. : :

¢ Semantics errors are due to a misunderstanding or misuse of the semantic
rules of a language (for representing code, des-igns, speciﬁca.tions, or require-
ments).

e Syntax errors are due to a mlsunderstandmg or misuse of the syntactlc rules of
a language (for representing code, designs, specifications, or requirements).

¢ Environment: errors are due to a misunderstanding or misuse of the hardware
or software environment of a given project. Environment comprises all
hardware and software used but not developed within a given pro_]ect (for -
example, operating systems, devices, data base systems)

¢ Information Management errors are due to a mlshandllng of certain pro-
cedures.

e Clerical errors are due to carelessness while performmg mechamca} transcrip-
tions from one format to another or from one medium to another. No interpre-

tation or semantic translation is involved. Examples are typing errors using an
editor.

This classification scheme has its problems with respect to criterion 1. It is not
always easy to decide whether an error is of type ’application’ or of.- type
'problem-solution’. : :

-11-.

4.2, FAULT CLASSIFICATION.

The criterion for a classification of faults in this context is, to define classes of
faults by the ease with which they can be detected or isolated by different (types
of) methods and tools. The presented fault classification schemes try to allow.the
identification of certain problem areas within the project environment. The first
classification scheme indicates the phases in which faults are detected; the second
scheme indicates whether a fault was due to omission or commission; the third
classification scheme indicates various software aspects affected by faults. A
- number of fault classifications exist [Lipow 79], [Ostrand, Weyuker 82], [Basili,
Weiss 82], and [SEL-81-102]. ' :

4.2.1. TIME OF FAULT DETECTION.

Classification of faults by the time of their detection allows you to attribute cer-
tain faults to methods and tools used up to this time. Because methods and tools
are usually used during certain phases or activities according to some process
model, the virtual time scale for fault classification is phases or activities. In the
case of the NASA/SEL environment the same classification scheme is used as in
the case of errors (see section 4.1.1.). This classification scheme fulfills all three
eriteria for being useful. ' '

4.2.2. OMISSION/COMMISSION.

Classification of faults depending on whether something is missing completely
(omission) or whether something is incorrect (commission) proved to be very
helpful with respect to classifying methods and tools. It is obvious that omission
faults are harder to detect by detection methods and tools solely based on the
source code such as structural testing, whereas functional testing or code reading
are more successful based on the fact that these methods include the correspond-
ing specifications into the detection process [Basili, Selby 85]. This classification
scheme is useful according to our three eriteria. : -

4.2.3. SOFTWARE ASPECTS AFFECTED BY FAULTS.

Classification of faults by the product aspects affected allows us to attack certain
faults by methods and tools aiming at exactly those aspects. It is obvious that a
large number of control flow faults is better detected by a detection method or
tool which is based on dynamic simulation of the program (such as testing) rather
than static checks (such as code reading by.stepwise abstraction) [Basili, Selby
85]. How many classes exist depends heavily on the language used. It doesn’t
‘make sense to create classes for faults that cannot be identified easily because the
corresponding aspects are not represented by language features explicitly. One
example is that in Fortran environments it is harder to identify control flow
faults of global character (affecting more than one program unit) than it is in
Ada, where interfaces are explicit. Therefore, the following classification scheme,
used in the NASA/SEL Fortran environment is of higher granularity (especially

-12 ..

as far as interface or global faults are concerned) than the corresponding scheme
for an Ada env1ronme11t would be

. Control Flow faults are: related to 1ncorrect control How within one module
Exa,mples.are incorrect - sequences of statements, incorrect branching, use of
incorrect branching condition, or incorrect computation of branching condition.

o Interface faults are related. to problems--affecting more than one module.
Examples are incorrect -module. interfaces, incorrect implementation in more
than one module due to a bad design decision, or incorrect definition or initiali- -
zation of global data. An interface fault might require correctlons in only one -
or in more than one module.

e Data faults are related to incorrect data handhng One can chstmgulsh between
three types: : - :

- Data Definition faults are related to 1ncorrect name, type or memory
specification,
- Data Imtlallzatlon faults are related to incorrect 1n1t1al1zatlon of a vari-
able.
- Data Use faults are related to wrong use of a variable.

o Computation faults are related to incorrect mathemamcal expression (if not a

branching condition). : '

This classification scheme is useful with respect to our three criteria. If a fault
seems to fit into more than one class, the first applicable one is to be chosen.

4.3. FAILURE CLASSIFICATION.

The criterion for a classification of failures in this context is, to define classes of
failures by the ease with which they can be detected by different methods and

tools. The presented failure classification schemes allow the identification of the -
failure time and the impact of failures on the production of a system.

4.3.1. TIME OF FAILURE DETECTION.

Classification of failures by the time of their detection allows you to attribute
_certain failures to methods and tools used up to thistime. Because methods and
tools are usually used during certain phases or activities according to some pro-
cess model, the virtual time scale for failure classification is phases or activities.
" In the case of the NASA/SEL environment a subset of the classification scheme
in 4.1.1. is used; only those phases or activities are used which include execution:
(1) unit test, (2) system test, (3) acceptance test, and (4) ma.mtenance
ThIS classification scheme is useful accordlng to all three of our crlterla '

4.3.2. S—EVERITY OF FAILURES.

Classification of failures by their impact on the environment of the system under
consideration allow us to decide on the degree to which those failures can be '
tolerated. A possible clasmﬁcamon scheme is (1) stops production completely,
(2) impacts production significantly, (3} prevents full use of features, but

-138 -

can be compensated, and (4) minor or cosmetic. This classification scheme
is useful for characterizing the impact of failures, but it does not allow the
classification of methods and tools with respect to the ease with which those
failures can be detected.

5. TAILORING TO PROJECT GOALS AND ENVIRONMENT.

Supporting the improvement methodology for the purpose of tailoring the set of
methods and tools to be used in a project, requires quax_itiﬁcation of how to
- characterize (1) project improvement goals, (2) the particular project environ-
ment, and (3) the effect of candidate methods and tools on those goals and
environment. The approach chosen in this paper is to utilize ‘error, fault, and
failure analysis. ‘ '

5.1. CHARACTERIZING IMPROVEMENT GOALS.

The approach to quantification of goals is the goal/question/measure paradigm
[Basili, Weiss 1984], [Basili, Selby 84], [Basili 85/1], [Basili 85/2] developed. to
help us define the areas of all kinds of studies, in particular studies concerned
with improvement issues, and help in the interpretation of the results of the data
collection process. The paradigm does not provide a specific set of goals but
‘rather a framework for stating goals and refining them into specific questions
about the software development process and product that provide a specification
for the data needed to help answer the goals. -

The paradigm provides a mechanism for tracing the goals of the collection pro-
cess, i.e. the reasons the data are being collected, to the actual data. It is impor-
tant to make clear, at least in general terms, the organization’s needs and con-
cerns, the focus of the current project and what is expected from it. The formu-
lation of these expectations can go a long way towards focusing the work on the
project and evaluating whether the project has met those expectations. The need
for information must be quantified whenever possible and the quantification
analyzed as to whether or not it satisfies the needs. This quantification of the
goals should then be mapped into a set of data that can be collected on the pro-
duct and the process. The data should then be validated with respect to how
accurate it is and then analyzed and the results interpreted with respect to the
goals. : .

* The actual goal/question/measure paradigm is visualized in figure 3.

=14 -

Goal_1

Question_1 Question_3 Question_4 Question_B Question_8

/ Question_2 uest.lon 5 Question_7 \
m/]

m2 m_3 m$ d2m4m__2d3 mb m.l mb

Figure 3: Goal/ Questioh / Measure Par'adigm.

Here there are n goals shown and each goal generates a set of questions that
attempt to define and quantify the specific goal which is at the root of its goal
tree. The goal is only as well defined as the questions that it generates. Each
question generates a set of measures (m_i) or distributions of data (d_i). Again,
the questions c¢an only be answered relative to and as completely as the available
measures and distributions allow. As is shown in figure 3, the same questions can
be used to define different goals (e.g. Question 6) and measures and distributions
can be used to answer more than one question (e.g. m_1 and m_2). Thus ques-
tions and measures are used in several contexts.

'Given the above paradigm, the process of quantlfymg improvement goals
consists of three steps:

1. Generate a set of goals based upon the needs of the organization.
The first step of the process is to determine what it is you want to improve.
This focuses the work to be done and allows a framework for determining
whether or not you have accomplished what you set out to do. Sample goals
might consist of such issues as on how to improve the set of methods and tools
to be used in a project with respect to high quality products, customer satisfac-
‘tion, productivity, usability, or that the product contains the needed func-
tionality.

2. Derive a set of questions of interest or hypotheses which quantify
those goals.
The goals must now be formalized by making them quantifiable. This is the
most difficult step in the process because it often requires the interpretation of
fuzzy terms like quality or productivity within the context of the development
environment. These questions define the goals of step 1. The aim is to satisfy

-15-

the intuitive notion of the goal as completely and consistently as possible.

3. Develop a set of data measures and distributions which provide the
information needed to answer the guestions of interest.
In this step, the actual data needed to answer the questions are identified and
associated with each of the questions. However, the identification of the data
categories is not always so easy. Sometimes new measures or data distributions
must be defined. Other times data items can be defined to answer only part of
a question. In this case, the answer to the question must be qualified and
interpreted in the context of the missing information. As the data items are
identified, thought should be given to how valid the data item will be with
respect to accuracy and how well it captures the specific question.

In writing down goals and questions, we must begin by stating the purpose
of the improvement process. This purpose will be in the form of a set of overall
goals but they should follow a particular format. The format should cover the
purpose of the process, the perspective, and any important information about the
environment. The format (in terms of a generic template) might look like:

e Purpose of Study: -

To (chara,ct.erlze evaluate, predict, motlvate) the (process, product, model,
metric) in order to (understand, assess, manage, engineer, learn, improve) it.
E.g. To evaluate the system testing methodology in order to improve it.

e Perspective:
Examine the (cost, effectiveness, correctness, errors, changes, product metrics,
~ reliability, ete.) from the point of view of the (developer, manager, customer,
corporate perspective, etc) E.g. Examine the effectiveness from the developer’s
point of view.

¢ Environment:
The environment consists of the following: process factors, people factors, prob-
lem factors, methods, tools, constraints, etc. E.g. The product is an operating
system that must fit on a PC, ete.

¢ Process Questions:

For each process under study, there are several subgoals that need to be
addressed. These include the quality of use (characterize the process quantita-
tively and assess how well the process is performed), the domain of use (charac-
terize the object of the process and evaluate the knowledge of object by the
performers of the process), effort of use (characterize the effort to perform each
‘of the subactivities of the activity being performed), effect of use (characterize
the output of the process and the evaluate the quality of that output), and
feedback from use (characterize the major problems with the application of the
process so that it can be improved).

Other subgoals involve the interaction of this process with the other processes

- 18 -.

and the schedule {from the viewpoint of validation of the process model).

¢ Product Questions :
For each product under study there are several subgoals that need to be
- addressed. These include the definition of the product (characterize the pro-
duct quantitatively) and the evaluation of the product Wlth respect to a partlc—
ular quality (e.g. reliability, user sat1sfact10n) : :

The definition of the product consists of:

1. Physical Attributes. e.g. size (source lines, number of units, executable lines),
complexity (control and data), programming language features, time space.

2. Cost. e.g. effort (time, phase, activity, program)

3. Changes. e.g. errors, faults, failures and modifications by various classes. _

4. Context. e.g. customer community, operational profile. The improvement is
relative to a particular quality e.g. correctness. Thus the physical charac-
teristics need to be analyzed relative to these.

The improvement goals and questions in the appéndix were derived by applying
this template (as far as goals and process questions are concerned).

5.2. CHARACTERIZING THE ENVIRONMENT.

It is our goal to characterize the project environment as objectively as possible.
However, very often we have to use subjective measures, e.g., for characterizing
the degree to which particular methods were used by project personnel. The
problem with these subjective measures is that it is very hard to choose or tailor
methods and tools to such unprecise crlterla

In our area we can use error, fault, and failure profiles for characterizing the
environment in a quantitative way. We are actually measuring the impact of the
environment on the quality of the software process and its resulting produects.
This indirect characterization has the advantage of objectivity. We can either
use actually measured defect profiles or, if measurement results are not available,
hypothesized defect profiles. All changes in a project environment can expected to
be reflected in changing defect profiles. Unfamiliarity with the application domain
can be expected to result in more application errors, using a set of new concepts
for structuring software, e.g. using Ada as implementation language can be
expected to result in more problem-solution errors. :

Assuming we know the effect of certain m_ethods and tools on defect profiles, it
should be relatively easy to tailor the set of methods and tools to cope with
defect profiles of a particular environment.

=17 -

5.3. CHARACTERIZING METHODS AND TOOLS.

The effectiveness of the improvement methodology depends on the amount of
knowledge we have on the impaect of methods and tools on defect profiles. Unfor-
tunately, we do not have enough such knowledge yet. Most of the available
knowledge is extremely environment dependent.

We have to start creating environment specific knowledge concerning the effect of
methods and tools. Where not enough knowledge is available in terms of meas-
ured results, we have to add hypotheses in order to start using the proposed
methodology effectively. As we apply the improvement methodology we increase
our initial knowledge based on analysis results derived during step 4 of our
methodology (see section 2). Our goal must be the refinement of existing
knowledge and the substitution of actual analysis results for hypotheses.

Tables 1, 2, and 3 describe the impact of a small set of methods and tools on
preventing errors and detecting faults. This knowledge is mostly based on actual
measurement results as far as detection is concerned [Basili, Selby 85], and
hypotheses as far as prevention is concerned. The characterizations contained in
these tables may slightly vary depending on the specific characteristics of
methods and tools and their particular application. Nevertheless, the general pat-
tern should be preserved. :

The impact of methods and tools is determined on a subjective scale (-, -, o, +,

- ++). Characterizing the effect of a method or tool with respect to a partmular
defect class as -’ means that this method or tool is never able to detect or
prevent defects of this type, as -*, that it is unlikely that this method or tool will
detect or prevent defects of this type, as 'o’, that it is possible that this method
or tool will detect or prevent defects of this type, as '+, that it is likely that this
method or tool will detect or prevent defects of this type, and as '+’ that it is
certain that this method or tool will detect defects of this type. It is evident that
only the effect of (automated) tools can be classified as ’--’ or "++’; for all (non-
automated methods there is never a guarantee that they will never or always
detect or prevent certain types of defects due to the fact that the ability of
human beings is 2 deciding factor.

- 18 -,

Fault Clagses
METHODS + TOOLS Omission | Commission
Functional Testing + +
Structural Teaiing ' - ' o
Code Reading
(by stepwise abstraction) + +
Syntax Directed Editor - : o

Table 1: Detection of Faults classified according to Section 4.2.2.

FAULTS .
’ Data Tnterfate
METHODS + 'IDOIS Control | Comput. | Def. | Init. { Use | Global Data | Other
! ’ ‘ Functional Testing + + - + - - -
* Structural Testing o .0 - o - - -
Code Reading
{by stepwise abstraction) o + -+ - o 5
Syntax Directed Edltor - - - + o - -
“Tool for keeplng track of .
corranan data + references - — - - - + -

Table 2: Detection of Faults classified according to Section 4.2.3.

-19 -

Baror Classes

Clerleal |

METHODS + TOOLS Appl. | Prob.-Sol. Synt. ; Eav. | InfMagmt.
Traluing wrt. Application * + o o '. °
i o Lo |

Environment + ’ '4“.

dlie_f Programmer 'Deam +- | + .o o .+ : ‘+

.| Document Library - - - o + . . +
Configuration Control

[automated) - - + + +

Reuse . + + . + 9 o

PX, Design Langusge - 0 + + o

PDL Processor - + + + +

Syntax Directed Editor . - +—+ +

Data Abstractlon +] [-

Some of the results of this improvement
steps in section 2:

20 -

Table 3: Prevention of Errors classified according to Section 4.1.2.

6. APPLICATION OF THE TAILORING PROCESS.

The methodology proposed in section 2 including the approach of characterizing
goals, environment, and methods and tools by defect profiles (see section 5) was
applied to a characteristic project in the NASA/SEL environment. The project
was analyzed after completion, and based on the anal

ysis results recommenda-
tions were made for future projects of the same class. '

process are presented according to the

e Step 1: The project is characteristic for the class of ground support systems
developed at INASA. Projects of this class were built several times before;

therefore, a very high amount of code was reused from these previous projects.
The software process for this class of systems is well established; whereas the
process model' was not changed over time, the set of methods and tools was
fine-tuned to the application from time to time. The management personnel
(first line managers and above) is extremely experienced in this class of pro-
jects, whereas lower-level personnel frequently changes. Based on the con-
tinuity at the management level, managers understand the design of the sys-
tems very well. The development process is not supported by a very high
number of automated tools; this fact is currently changing in the NASA
environment. An important characteristic of this class of projects is the fact
that the managers are very familiar with the future use of their systems. As a
consequence, a testing method for system and acceptance test was established,
whose termination criterion is not decreasing mean-time-between-failures but
just the completion of the set of test cases derived from this knowledge con-
cerning future use of the system. :

ERROR CLASS PERCENTAGE
'| Application . . - 5%
Problem-Solution | 58%
Semantics R _ 8%
Syntax - 3%
Environmentr 2%
Information Management, 5%
Clerical “ 17%

Table 4: Error Profile according to Classification in Section 4.1.2.

Looking at the error profiles in table 4, we recognize a low number of applica-
tion errors, a high number of problem-solution errors, and a high number of
clerical errors. The number of application errors reflects the extreme familiarity
with the application; the number of problem-solution and clerical errors can be
explained by the relative inexperience of the the lower-level project personnel.
The high number of errors occurring during the design or coding of a single
component (see table 5) supports the hypothesis that the high number of
problem-solution errors in table 1, can, in fact, be linked to the inexperience of

-21-.

the lower-level personnel.

ERROR CLASS PERCENTAGE
Requirements 5%
Speciﬁca.tion. 3%
Dresign or Implementation

- o.f a single component 78%
- of more than one comeohen’a 1%
Use of Language 8%

[This classification scheme is slightly different from the scheme intro-
~duced in section 4.1.1. As opposed to classifying errors by the time of
) Zthelr occurrence, here they are classified by the project a,spects affected:
h requlrements specification, design or implementation, and use of lan-

o guage.]

Table 5: Error Profile according to Classification in Section 4.1.1.

|FAULT CLLASS || PERCENTAGE
Omission 22%
Commission 76%

Table 6: Fault Profile accordihg to Classification in Section 4.2.2.

The fauIt proﬁle in table 6 reveals a percentage of omission faults (22%) which
is lower than the average in this class of projects (this base line data is not
‘ 1n01uded in the tables). One explanation is the very. high percentage of reuse in

_ this project.

-22 -

FAULT CLASS || PERCENTAGE
Control - 13%
Compﬁtatiéﬁ | | 16%
Data 30%%
Interfacq

- global data 13%

- other _ 20%

Table 7: Fault Profile according to Classification in Section 4.2.3.

- The fault profile in table 7 supports findings reported in [Basili, Perricone 84],
that reuse results in a lower number of control flow faults. According to the
same study, the high percentage of data faults is due to the inappropriate
method for writing specifications; these specifications made it hard to under-
stand differences between old algorithms (from previous projects) and new algo-
rithms (required for the current project). The number of global data faults,
even in a Fortran project, seems to be unnecessarily high.

Failure profiles could not be measured for this class of projects. NASA
manages to have almost no failures during operation. This fact is due to a very
thorough testing process and the perfect knowledge concerning future use of
those systems. > '

e Step 2: The project goals for this class of systems in the NASA/SEL environ-
ment are to produce highly reliable systems and to produce them on time. The
improvement goals are to decrease error and fault classes which were identified
as overrepresented in step 1 by changing the set of methods and tools.

¢ Step 3: Recommendations for future projects based on lessons learned from the
analysis of this project are:

- Train (lower-level) personnel better with respect to algorithms and technolo-
gies to be used; use studies of solutions of this class of problem. This
approach promises to lower the number of problem-solution errors.

~ - Integrate more automated tools into the software process for preventing cleri-
cal errors; candidate tools (according to table 3) are configuration control
tools, PDL processors, and syntax-directed editors.

- Indications that reuse lowers the number of omission faults suggest to

- 23 -

encourage the implementation of reuse strategies in future projects. The
detection of omission faults is very difficult; therefore, reuse as a preventlon
method is even more important.

- Better specification methods and tools should be introduced in order to
decrease the number of data faults due to misunderstanding of the
specifications written according to the currently used method.

- The high number of global data faults is mostly due to changes in common
data structures without updating all references. It should be easy to. imple-

- ment a tool keeping track of all common data structures and related refer-
ences. In the case of changing data structures all affected references could be
updated. :

- Iterate each classification scheme by applying it to future projects.

These recommendations promise to improve the development of future systems of
the same class. This assumption has to be verified by ‘performing steps 4 and 5
of the improvement methodology in future projects.

7. TOOL SUPPORT FOR THE IMPROVEMENT METHODOLOGY.

All steps of the methodology for choosing, evaluating, and improving process
models and their support by methods and tools require automated support. In
1986 we started a project which aims at the development of a prototype environ-
ment for all kinds of quantitative evaluations.

The objective of the TAME system is to support quantitative and qualitative
evaluation of Ada projects (process and product aspects) in the framework of the
GQM paradigm. This includes (1) setting up the environment for evaluation
(deriving goals, questions, measures, establishing protection mechanisms), (2) con-
ducting the actual measurement and evaluation activities, and (3) maintaining a
historical database. In the long-run a system of this kind could become an
integral part of a comprehensive Ada Programming Support Environment

(APSE).

The requirements for the TAME system provide for many features which assist
the user in all kinds of measurement activities, including those required in the
context of this methodology. These features include:

s generating evaluation goals, questions, and measures.
Goal-oriented evaluation should be conducted in the context of the GQM para-
digm. The formulation of specific goals and corresponding questions is not an
easy task; the TAME system will give assistance in performing this task.

¢ collecting data.
The measures or distributions necessary for addressing particular evaluation
questions may originate from different sources, e.g., forms filled out by develop-
ment or maintenance personnel, source code, all kinds of documents, running
systems. The computation of the measures is performed by a set of

-24 -

measurement- tools analyzing these raw data, such as static code analyzers.
- The TAME system will support inputing and storing the raw data and com-
puting the measures required for evaluation purposes '

e validating collected data.
All collected data (especially those collected by forms) are subject to errors.
The system cannot guarantee completeness and correctness in a strict way. For
example, how should the system judge whether the reported schedule for com-
pleting some development task is correct or not? However, it can guarantee
partial completeness and consistency; e.g., it can check that the schedule for
completing all modules of a system is consistent with the schedule of the whole
system.

e storing data in a data repository.
All data have to be stored in a data repository as soon as collected. Data have
to be identifiable according to various criteria, e.g., when collected, from which
source (type of document, version, product name, ete.), time period covered. In
addition, the system has to maintain consistency of the data repository.

e retrieving information for answering particular evaluation questions.
The TAME system will provide a basis for answering the user’s evaluation
questions based on information available in the data repository.

e evaluating data. '
The TAME system will provide goal—dlrected interpretation and evaluation of
data according to an a priori established framework (see the first feature)).

e running statistical analysis.
The TAME system will provide statistical analysis packages for computing sta-
tistical significance of evaluation results.

¢ maintaining a historical knowledge base. :
The TAME system will create and maintain a historical data base over time.
‘The purpose of this data base is to allow better interpretations of analysis
results relative to historical baselines reflecting the characteristics of a particu-
lar environment. Whereas all input into the database (see the fourth feature)
is related to data regarding individual systems, maintaining a historical data-
base requires an additional dimension by creating base-lines across systems or
even environments.

A macroscopic view of the TAME architecture shows the system divided. into
four hierarchically organized layers:

- 25 ~

USER INTERFACE LEVEL

4

EVALUATION LEVEL

;

'MEASUREMENT LEVEL

| =5

DATA REPOSITORY

Figure 4: The TAME Architecture.

1 The User Interface Level implements the appropriaté means of interaction
between users and TAME. In addition, the user interface level contains a tool
for setting up the measurement and eva]uatmn environment for each individual
user (== creating or tuning an appropriate instance of the evaluation level). An
important part of this measurement and evaluation environment is the sctual
set of goals, questions, and measures. :

2. The Evaluation Level implements the appropriate environment (probably set
up by the user interface level). Such an environment is characterized by goals,
questions, measures, and interpretation procedures, as well as' a protection
profile which defines legal access paths to the measurement and data repository
level for this particular user. This level triggers the computation of the
- appropriate measures (by either activating the appropriate measurement tools

- -or by accessing the data repository level), and provides adequate interpretation.
~ A separate instance of this level might exist for each individual user.

3. The Measurement Level consists of tools for computing measures. Examples
of such tools are tools for computing data binding measures, structural cover-
age measures, or complexity measures.

4. The Data Repository Level provides the infra~structure for various types of
evaluation. This level allows storing and retrieving all kinds of software

- 26 -

related data. This level should be as independent as possible of a particular
data base management system or a concrete data base structure; the data repo-
sitory should be implemented as an abstract data type hiding all these imple-
mentation details.

Another important general requirement for this TAME data, reposﬂ:ory is to be
flexible in various ways; the data repository must allow

- changing (if possible extending) the data base structure of the repository level,
- changing the access procedures to the repository level,

without affecting existing 'user’ programs (measurement tools, evaluation pro-
grams) more than absolutely necessary. To make it clear, by flexibility of the
repository level we do not mean that the reposxtory level may not be changed in
the case of data base changes; what we mean is, that in this case ONLY the repo-
sitory level has to be changed, while retaining the 'user! programs (measurement
tools, ete.) without changes. :

This projects requires and provides opportunities for cooperation between soft-
ware engineering, data base, and artificial intelligence.

8. SUMMARY AND FUTURE RESEARCH.

Various versions of this methodology have been applied in several industrial set-
tings. The basic approach has evolved from the work performed in the
NASA./SEL environment, where the defect profiles were developed and applied to
improve the development environment. This methodology will continue to be
refined in the future based on experience from future applications. The motiva-
tion for building TAME to support Ada was that (1) NASA is considering Ada as
the language for building Space Stations, (2) there is a trust toward developing
'programmlng support environments for Ada, and (3) it is believed that more and
more environments will move from traditional languages to Ada as the implemen-
tation language. In this context the tailoring of software process models will be
very important; it can be expected that Ada environments will not only differ
from traditional environments in the sense that different methods and tools are
going to be used, they might also require completely different process models.

Future use of th1s methodology will result in accumulatmg more and more
knowledge concerning the impact of methods and tools on various defect types;
this in turn will make the tailoring methodology more effective. In addition, the
TAME prototype will be an incentive and vehlcle for applymg the methodology
invarious industrial env;ronments

- 27 -

9. ACKNOWLEDGEMENTS.

The authors would like to thank Frank McGarry of NASA/Goddard Space Flight
Center and Dr. David M. Weiss of the Office of Technology Assessment for their
helpful comments on earlier versions of this paper. '

10. REFERENCES.

[Basili, Weiss 82] B .
V. R. Basili, D. M. Weiss, "Evaluating Software Development by Analysis of ‘Changes: The
- Data from the Software Engineering Laboratory,” Technical Report TR-1236, Dept. of Com-
'puter_ Science, University of Maryland, College Park, December 1982.
[Basili, Weiss 84] : :
V. R. Basili, D. M. Weiss, ”A Methodology for Collecting Valid Software Engineering Data,”
IEEE Transactions on Software Engineering, Vol. SE-10, No.3, November 1984, pp.728-738.

[Basili, Perricone 84| :
Victor R. Basili, B. T. Perricone, "Software Errors and Complexity: An Empirical Investiga-
tion,” Communications of the ACM, Vol.27, No.1, January 1984, pp.42-52.

[Basili, Selby 84] :
Victor R. Basili, Richard W. Selby, Jr., "Data Collection and Analysis in Software Research
and Management,” Proc. of the American Statistical Association and Biometric Society
Joint Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

[Basili et al. 84] :

Victor R. Basili, Elizabeth E. Katz, Nora Monina Panlilio-Yap, Connie Loggia Ramsey, Shih

Chang, "A Quantitative Characterization and Evaluation of a Software Development in

Ada,” submitted to IEEE Computer, 1984. Also available as Technical Report TR-1403,

Dept. of Computer Science, University of Maryland, College Park, May 1983. '
[Basili 85/1] .

: V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology,” Technical
Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park, July
1985, ‘

[Basili 85/2] '

V. R. Basili, "Measuring the Software Process and Produet: Lessons Learned in the SEL.)”
Proc. of the Tenth Annual Software Engineering Workshop, NASA Goddard Space Flight
Center, Greenbelt MD 20771, December 1985.

[Basili, Selby 85] :

Victor R. Basili, Richard W. Selby, Jr., *Comparing the Effectiveness of Software Testing
Strategies,” Technical Report TR-1501, Dept. of Computer Science, University of Maryland,
College Park, May 1985,

[Basili, Turner 86] :
V. R. Basili, A. J. Turner, "Software Development Process Models,” Technical Report,
Department of Computer Science, University of Maryland, College Park, MD, forthcoming.
[IEEE 83] '
*IEEE Standard Glossary of Software Engineering Terminology,” IEEE, 342 E. 47th St.,
New York, Rep IEEE-Std-729-1983, 1983. ‘
[Tohnson et al. 82]
W. L. Johnson, St. Draper, E. Soloway, ?Classifying Bugs is a Tricky Business,” Proc. 7.
Annual Software Engineering Workshop, NASA, Goddard Space Flight Center, Greenbelt

- 28 -

MD 20771, December 1982.

[Lipow 79]

M. Lipow, "Prediction of Software Failures,” The Journal of Systems and Software, Vol.1,
No.1, 1979, pp. 71-76. . :

[Ostrand, Weyuker 82|
Thomas J. Ostrand, Elaine J. Weyuker, ”Soft.ware Error Data Collection and Categoriza-
tion,” Proc. 7th Annua.l Software Engineering Workshop, NASA, Goddard Space Flight
Center, Greenbelt MD 20771, December 1982.

[SEL-81-102] - .
"Software Engineering Laboratory (SEL): Data Base Organization and User’s Guide,”
NASA, Goddard Space Flight Oenter, Greenbeit MD 20771, SEL-81-102, July 1982,

[Thayer, Pyster 80]

Richard H. Thayer, Arthur Pyster, and ‘Roger C. Wood, "The Challenge of Software .
Engineering Project Management,” IEEE Computer Magazine, August 1980, pp 51-59,.

-29 -

APPENDIX.
GOALS:
* PURPOSE OF STUDY: Characterize and evaluate the pro_]ect methodology in order to

understand, compare, and improve it.

+ PERSPECTIVE OF STUDY: Examine defects (errors, faults and fmlures) and the
impact of (sets of) methods and tools on the detected defect patterns in terms of cost and
effectiveness of use.

e ENVIRONMENT OF STUDY List the various process factors (especmlly methods
- and tools used), problem factors, people factors, ete.

, QUESTIONS:

¢ DEFINITION OF PROCESS Charactenze t.he methodology and suba,ctwmes to be per-
formed as part of the methodology .

. QUALITY OF USE (cha.racterlze (parts of} the methodology quantlta.twely and assess
how well it is applied): .

- What process model (life cycle) is used?

- What methods and tools are used for ma,na.gement requlrements, speclﬁcauon, design,
coding, validation?

- What are the characteristics of the methods and tools used?

- How well was the methodology understood by users?

- How consistently was the methodology applied?

Ezample (in the cese of a system test methodology):

1.1 How many requirements are there?
1.2 What is the distribulion of tests over rcqmrcments9
[Ob]ectwc measure: number of tests/requirement/
1.8 What is the dmportance of testing each reqmremenW :
[Subjcctwc measure: 0-5/
1.4 What is the complezity of testing each requirement?
[Subjective measure: 0-5, objective measure: fanout to components and/or names/
1.5 Is Q1.2 consistent with Q1.3 and Q1.4 ¢

+« DOMAIN OF USE (cha,ractenze the obJects of the methodology and evaluate the
knowledge of the objects by the users of the methodology):

- What are the products avaﬂable to personnel during dlﬁ'erent process act1v1t1es (for

each method or tool used)?
- How is the knowledge of personnel with respect to the application and dxﬂ‘erent aspects

-30-

of the methodology

Ezample (system test methodology):

2.1 How precisely were the test cases known in advance?
[Subjective measure: 0-5/

2.2 How confident are you that the result is carrcct9
[Subjective measure: 0-5]

2.8 Are tests wrettsn/changsd consistent with Ql 3 and Q1.4 7

e COST OF USE (characterize the cost to perform each of the activities to-be performed
as part of the methodology): :

- What is the cost in staff hours for different activities and phases? .
- What is the cost of detecting a failure, understanding the problem, isolating all related
faults, designing the change, implementing the change, testing the change in terms of
* computer_hours, staff_hours in total or by person category and machine category?
- What is the cost of applying (a set of) methods and tools?

E:mmp!é {system test methodology):

3.1 Cost to make a test?

8.2 Cost to run a testf .

3.8 Cost to check a result?

8.4 Cost to tsolate the foult? .

8.5 Cost to design and 1mplement a ﬁz?
3.6 Cost to retest?

¢+ EFFECTIVENESS OF USE (characterize the output of applying the methodolog'y
and the quality of this output):

- Which are the documents and products produced by the methodology?

- What is the number and percent of documents and products changed during applica-
tion of the methodology?

- What is the number of defects committed or detected after apphcatlon of the metho-
dology?

- - What are the errors by type (application,-problem-solution, semantics, syntax, environ-

ment, information management, project management, clerical)?

- What are the errors by phase of entry?

- What are the faults by various types: {omission, commission), phase of discovery,
abstract fault categories, mechanisms of discovery, product level? '

- What are the failures by severity?

Exzample (system test methodology):

- 31 -

4.1 How many failures were observed?

4.2 What percent of total errors were found?

4.8 What percent of the developed code was ezercised?

4.4 What is the structural coverage of the system tests?

4.5 How many errors were discovered during each phase of the process analyzed by class
of error and in total?

4.6 What is the number of faults per line of code at the end of each phase, after one
month, six months, one year?

4.7 What s the cost to fizx an error on the average and for each class of error at each
phase?

4.8 What is the cost to isolate an error on the avcragc and far each class o_f error at cach
phase?

« FEEDBACK FROM USE: Charactenze major problem areas in terms of defect classes so
that they can be improved by methods and tools.

- ‘What are the problem areas in the process by various ca.tegones (error fault, failure types _
phases, physical product attributes)?
- What are the problem areas regarding the eﬂ'ect.weness of methods and tools?

- 32 -

