SOFTWARE REUSE: A FRAMEWORK FOR RESEARCH

Victor R. Basili
John Bailey
Bok Gyu Joo

H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park, MD 20742

(301) 454 - 2002



SOFTWARE REUSE: A FRAMEWORK FOR RESEARCH

ABSTRACT

Reuse of software products, processes, and knowledge will be the key to enabling the
software development industry to achieve the dramatic improvement in productivity and quality
which is required to satisfy the anticipated demands. Although experience shows that certain
kinds of reuse can be successful, general success in this area is elusive. A reuse technology which
allows broad and extensive reuse could provide the means to achieve the desired order-of-
magnitude improvements.

This paper provides a framework for necessary research with respect to reusability. We
take a broad view of reusability in order to capture as many dimensions of the concept as possi-
ble. The framework consists of five dimensions which can be used to describe any instance of
reuse. In addition to the objects of the reuse (product, process, or knowledge), we discuss the
mechanism of, the timing of, the goal for, and the support for the reuse. Through the examina-
tion of scenarios where some success in this area has already been achieved, we develop a set of
desirable characteristics of reusable objects. We also discuss on the strategies that allow the
smooth transition toward reuse-oriented software environments. Finally, we apply a formal
method for measurement and evaluation to a topic of reuse, which yields potential areas for
further research in reuse. ‘

1. INTRODUCTION

Reuse is the key to progress in any area. If we do not reuse previously developed ideas and
products then everything must be crea.@ed from scratch and no progress can be made. In the
development of software, we routinely reuse knowledge in the form of experience, processes in the
form of methods, and products in the form of tools. Although the reuse of software components is
less commonplace, there are certain well-known situations, such as in the case of mathematical or

I/0O routines, where the development and use of reusable components has been very successful.

The research objective in this area is to discover how to achieve a systematic way of reusing
existing products, processes, and knowledge to get the maximum cost benefit. Successes in the
reuse of software are due to both the characteristics of the reused items themselves and to the

environment in which they are reused. Here are the general problems we have to deal with:

1) Creating items so they are reusable in the future (item characteristics),

This work was supported in part by the Air Force Office of Scientific Research under Contract AFOSR-F49620-85-
K-0008, by the National Aeronautics and Space Administration under Grant NSG-5123, by the VITRO , and by the Penn
Central



2) Finding appropriate reusable items (environment characteristics), and

3) Integrating them to build a new system (both item and environment. characteristics).

The rest of this paper is organized into four sections. The next section presents our frame-
work for describing software reuse and includes some brief examples. The section 3 uses that
framework to give an overview of currently successful reuse practices and shows how the frame-
work can be used to identify other, currently unpracticed, possibilities for reuse. Following that is
a section which describes how an existing research para.Adigm‘ can be applied to help identify,
study, and quantify the issues of software reuse. The last section uses this research template to
describe one of the reuse research areas currently under examination at the University of Mary-

land.

2. A REUSABILITY FRAMEWORK

In order to discuss reusability, definitions of its various dimensions and aspects are needed.
In this paper we take a broad view of the term to capture as many of the issues as possible [1] We
suggest that with respect to any instance of reuse there are two major dimensions, the object of
reuse and the manner or mechanism by which that object is reused. Figure 1 shows a diagram of
these two principal dimensions. Three other dimensions which are probably more appropriately
called as attributes since they are not necessarily orthogonal, include the timing of the reuse, the
goal for the reuse, and the support for the reuse. We believe that the same framework can also
be used to discuss the production of reusable components by characterizing any such creation

activity by how the results are expected to be reused.

Object (What do we reuse?):

We can reuse products, processes, or knowledge. Products can be anything from require-
ments documents to code, or from application libraries to tools. Processes include techniques,

methods, and heuristics. Knowledge includes engineering, management, and applications

[1] The dimensions presented here are an extension of the work of P. Freeman [7].



knowledge and experience. Note that there are overlaps among these objects, for example

management knowledge of a tracking process could be embodied in a tool.

Mechanism (How do we accomplish reuse?):

This dimension is related to how well intact an original object remains when it is reused.
At one end of the scale is verbatim reuse of an object. Next would be the use of instances of a
general object, which might be param;aterized in the case of code products (as with Ada generics),
or which might be tuned for some new usage, such as with reused knowledge or processes. Next
on the scale would come reusable templates which require fleshing out before yielding a usable
object. An example of this would be a requirements document outline (a reusable product tem-
plate) or a management framework which recommends using reviews, formal test plans, or
configuration control, for example, without specifying exactly how a project should be controlled
(a reusable process template). At the other end of the scale would be the unconstrained
modification of existing products to suit new needs. This is the most common mechanism for

reusing software products at this time.

Timing (When do we reuse something?):

This is used to define the activity or phase of the development life cycle which is gaining
productivity through reuse, e.g. planning, requirements definition, testing, documentation, etc.
Although this attribute is largely constrained by the product being reused it is included here to

help further categorize and specify any example of reuse.

Goal (What is the target for the reuse?):

Also somewhat constrained by other factors, this attribute is included to help describe the
disparity between the environment of the original object and that of the reuse of that object. For
example, the reuse of a product might be limited to one machine architecture and operating sys-
tem or it might be possible to retarget the product across many different machines or environ-
ments. Or, the design methodology (process) previously used to develop a communication system

might be used again on a distributed network problem.



Support (What assistance is there for access, modification, or porting an object?):

This attribute is needed since it can have an important affect on how a reusable object will
be created in the first place, or whether it is likely to be reused later. If there is a formal mechan-
ism for retrieval, such as through a high level application-specific language (such as with math
library routines), there is a higher chance that reuse will be achieved. Or, if a tool or method is
known to exist which can assist in the modification of an object, that object might be created ini-

tially in a way which would facilitate its modification by that tool.

Examples of Reuse
Here are the examples of reuse practices illustrating the coverage of all the dimensions:

Example 1: Program code (Object) will be reused by manually selecting and modifying functions
from previous systems (Mechanism and Support) during the design and coding phase (Tim-

ing) of software for a new satellite but operating on the same machine environment (Goal).

Example 2: Management knowledge in the form of metrics and their associated interpretations on
previous projects (Object) will be resued during the life cycle of the development process
(Timing) by comparing the current metric values against prior values (Mechanism), sup-
ported by a historical howledge base which has report generating capabilities (Support)

for projects built in the same environment (Goal). [6].

Example 3: Ada packages (Object) will be resued by parameterization and instantiation (Mechan-
ism) with the support of a library cataloging and retrieval system (Support) during the sys-

tem building phase (Timing) for a different operating system on a different machine (Goal).

3. REUSABILIY: STATUS AND APPROACHES

In this section we discuss some examples and scenarios of reuse in the context of the preced-
ing framework. The purpose is to illustrate the way in which the framework can be used to iden-
tify any reuse situation and to demonstrate how this process of using the framework can lead to

useful insights. The section is organized first by the object dimension of the framework and



secondarily by the reuse mechanism dimension. We include in this section a discussion on the
desirable characteristics of reusable objects and of the development environment in which they
are accessed and integrated. Also, we illustrate how it is possible to use the framework to con-

ceive of transition strategies which could increase our current reuse capabilities.
3.1. Reusable Products

Product Reuse Without Modification

The most familiar examples of reused products are mathematical and scientific routines.
The reuse of such products has been successful because they have been accepted as both standard
and useful by a large user community, they are specified in a language already common to that
community, and their functional behavior is well understood. Additionally, their operand types
lie in a common domain, they can be automatically accessed from a high order language, and they
are non-trivial to build from scratch. Keeping in mind these attributes which appear to be
responsible for the reusability of these products, we can look at other kinds of reuse identifiable

by the framework.

At the other end of the size spectrum for reusable products are self-contained applications
which can become parts of larger systems, such as editors, compilers, spreadsheets, databases, etc.
The standardization and acceptance of these products often follows their availability, but contri-
butes to their success just the same. Also, the command languages of the operating systems on

which these products reside can be thought of as the languages used to access them.

In the middle of the size spectrum we find less success. At this point we would expect to
find components from which self-contained applications can be constructed. Some of the factors
required for reuse success may be found here but there are evidently other factors which have
impeded progress. For example, most systems for payroll, communications, control, etc., are
developed from scratch even though there is a significant demand for them. Perhaps the fault lies
in the fact that there‘are no universal specifications for such systems. As in the previous example,

we have failed as yet to establish a universal language for most of these higher level application



areas.

If we examine products other than software end products, such as requirements, design,
documentation, etc., we find even less reuse. Again, the reason for this seems to be the lack of

wide-spread acceptance of languages in these domains.

Product Reuse Using Témplates

An example of a reusable template is a requirements format specification which must be
expanded with specifics to describe the requirements for a givén system. The standard format
contributes to fhe understandability of the requirements and helps ensure that the necessary infor-
mation is included. Templates are also found as module headers in design and code documenta-
tion. Code macros and generics also act as templates which are aﬁbomatically expanded into final
products according to the some well-specified parameterization. The insight available from this
analysis might lead us to examine the feasibility of automatic parameterization of requirements

and design documents, as well.

Product Reuse With Modification

Reusing an end product by modifying it is a common practice. In all maintenance activi-
ties, the desired system is sufficiently close to the maintained system to warrant a modification or
enhancement effort instead of a new development. This is an important example of reuse, since

the existing system becomes a (modified) component of the new system.

It is also common during the development of any software product to examine and adapt
examples of a similar, previously developed product. There is currently little or no automatic
support for these adaptations, although it is possible to conceive of tools which could assist in
such tasks. This points to the fact that, as we examine the framework in search of ways to
improve productivity through reuse, we might find alternate, equally promising, paths. In this
case, we might wonder whether the availability of tools to support adaptation would result in a
greater increase in producti'vity than would the use of methods to create reusable components

which can be composed without modification to build new systems.



3.2. Reusable Processes

Software development already relies on reusable processes, as does ahy organized discipline.
Existing methods, techniques, and heuristics all contribute to our ability to produce software at
all. Since reusable processes are already an established part of the practice, it is common to over-
look them when discussing software reuse. However, it is useful for our purposes of identifying

research issues to apply the same analysis to processes that we have applied to products.

Reusable Processes Without Modification

Currently, few software development methods or techniques are so well specified that they
can be applied in a completely ‘deterministic nianner. Any such processes are typically converted
into tools (compilers, translators, test generators, etc.) which can then be thought of as reusable
products in our framewérk. This suggests that completely specified processes are more desirable

than non-deterministic ones since they can be automated.

Reusable Processes Using Templates

The majority of defined methods and techniques would fall into this category. The user of a
generic process is given guidance but must determine the exact results at each step according to
his or her knowledge of the specific goal and application area. If one considers tool support
(another attribute in the framework) for automating this activity, which amounts to instantiating
process templates, the idea of process generators results. The resulting processes would be more

deterministic, resulting in an increase in productivity.

Reusable Processes With Modification

Although the distinction between modifiable processes and generic processes (above) is prob-
ably not a clear one, we could define this category to include immature methods or techniques
which have not yet been well defined or proven through experience. Any such process would need
to be refined and adapted through use, and only if it proved successful would it warrant a more
complete definition. Reasonable components of this category would be heuristics and rules of

thumb, and not what we typically refer to as methods.



3.3. Reusable Knowledge

It is impossible to completely dissociate knowledge from the other two objects of reuse, pro-
ducts and processes. However,‘knowledge in the form of experience can be reused without reusing
a particular process or product. For that reason, knowledge was added to the set of objects in the

framework.

Because this discussion borders on cognitive psychology, we will not attempt to expand
upon it here. However, we note that the use of the framework helps us understand that some
knowledge is in a form which allows it to be captured by a tool, knowledge base, or even a train-
ing curriculum, and thus can be made widely available. Knowledge which is not so well specified
can still be an important object of reuse. This knowledge is typically exchanged among program-

mers and reused informally.

3.4. Desirable Product Attributes

This section describe the attributes of a product which contribute to its reusability.

(A) Understandability

The products to be reused later By other people should be well documented and understand-
able. Imagine that you have to understand completely the components made by others and
modify them to make it fit into your system. Then you cannot get much gain from reusing them
may be little. The user have to spend a little effort in reading them and understanding what it is

and what it does.

(B) Formalism

To achieve higher understandability and to make sure the correctness of products they are
needed to be formally specified as possible. That formalism used in products is a sign of the
maturity of the application area. This issue becomes very important in case where the reusable

products are program modules which might be reused directly in the system to be built.



(C) Correctness

This requirement for correctness becomes more important than ever, especially when we are
reusing the progfam modules made by others. Here, correctness requirement is more important
than reliability requirement, because the latter cannot be tested appropriately for the unknown
environment. This means that the program components should be correct with respect to the
specification of the components. Also we hope that the components be reliable or functionally
correct for possible uses of them. This requirement is not expensive one considering the fact that

those correct products will be reused over and over again, not only once.

(D) High level of abstraction

In general, the higher level abstraction/ object/ function a component represents, the more
gain we can get from the reuse of it. A function is more reusable. than single program statement,
Module which implements abstract data type with its data structure and possible operations to it,
and the module which implements the concept object in object oriented programming is more use-

ful than a simple function. Also application specific systems will be the most useful.

(E) Adaptability

The components to be reused need to be adaptable. This means that they are general so
that they can be reused in as many similar systems as possible, and they require us less effort in
changing and integrating them into a new system being built. One promising technique for easy
adaptability is parameterization. This idea has been used for a long time since the concept of
subroutine is emerged in programming. The generic feature of Ada language supports much of

this technique.

3.5. Environment for Products Reuse

In the new software development environment, where reuse of products plays major role in
software development, we might have a large collection of the reusable components, the tools to
maintain this collection, and tools to support integrating those components to build a new system.

The major issues for us to achieve high degree of reuse of products are:



(a) What kind of mechanisms are necessary to easily find out the components needed ?
(b) How can we achieve efficient implementation of reuse ?

(c) What kind of supporting tools do we need?

A. Cataloging and Searching

The tasks of maintaining the large collection of components and allowing the users to easily
find out the components they need are critical to reduce the cbst of reuse. We have to have the
effective tools to support cataloging the components and searching them. To do that, we might
have to borrow the ideas and techniques from the data base management system area, artificial
intelligence (knowledge representation techniques), and system science (techniques of building sys- _

tems with components).

B. Standardization

For effective reuse environment, we need to achieve some standards on the description of
products and possibly on the structure of products. The standards are necessary for each type of
components: from a plain code module to a large module which contains the requirements
specification as well as other documents down to code, We have achieved some progress on this

standardization effort as in IEEE requirement specification standard [1] and the design standard

[2].
C. Reuse Implementation

Once we found the an objects suitable for our needs, we have to change or adapt it to fit
into new system by some way. Most primitive type of implementing reuse is hand modification.
This technique has been the most typical form of reuse of the various documents from the pro-
gram codes to the requirements specifications. Ideal cases would be direct reuse of objects
without any modification. This technique has been used on some program codes and documents.

This gives us much gain in productivity but it has been rarely successful.

Greater gain could be achieved by finding out the way of automating this implementation

tasks previously done by hand modification. One promising technique is to make the products

10



using parameterizing technique and then to make the instances of them when needed. In case of
program modules, some people have suggested such ideas [8] and the generic feature of Ada

language makes it much easier.

D. Integration Tools

Other than managing the large amount of reusable objects and making the tools to support
the implementation of reuse we need a system to help building a software by integrating the com-
ponents. Also the existing tools to support software development need to be tuned to this new

environment.

3.86. Transition Strategies

As stated earlier, the study of reusability must address both the creation of objects of reuse
and the reuse of those objects. If we concern ourselves with a study of how both these concerns
might be integrated into current software developments we can hypothesize about how improve-
ments can be made in both areas. Our study so far, which has been facilitated by the proposed
framework, has revealed some possible directions which we can take to improve our overall reuse

of products, processes, and knowledge.

It appears that we consider most Asucrcessful those examples of product reuse where no
modification is necessary. This has been demonstrated with math, statistical, I/O, and other low
level routines for which there is a well-specified language which implements an automatic retrieval
mechanism. This has also been demonstrated with complete programs which are reused in larger
problem solutions and are accessed by an operating system call in some command language. If we
attempt to extrapolate these successful positions across the other domains of reuse we can imagine

software components which are automatically accessed by a development tool and processes which

are entirely deterministic.

The Ada language includes features which support the specification of, the creation of, and
the composition of program components. If successful, these features should motivate both the

development of reusable components and high level languages and tevchnologies which can take

11



advantage of them. Ultimately, if this facility can reduce the cost of creating and reusing such
components below the current costs of recreating functionality from the lowest level primitives,

this strategy will succeed.

The development of component technology for applications development is clearly an impor-
tant topic for two major reasons. First, it may be our only hope for an order of magnitude
improvement in productivity. It is unreasonable to expect that good methods and tools alone will
account for the needed improvementl Second, it will act as an impetus for higher quality. The
cost effectiveness of applying correctness technology is easier to justify on a product that will be

used many times than it is for something that will be used only once.

In order to transition to the use of components., however, these components must be created.
It is not clear that we would be able to create these in a vacuum without examining the com-
ponents which are typically called for in existing designs. Aithough it may not be the best deci-
sion to model a reuse environment after a conventional environment, it might be the most
expedient one for the time being. One of the research topics being investigated currently at the
University of Maryland is how existing program components which are not necessarily written to
be reusable can be converted into eminently reusable ones. This is intehded to allow an original
development to proceed without the encumbrance of being concerned with developing for reuse,
and yet to still be able to ultimately reuse as much of the output as possible for future develop-
ments. This topic is further described in the last section using the research paradigm described in

the next section.

4. MEASUREMENT AND EVALUATION

The reuse framework as well as the discussion of various approaches to reusability illustrates
the wide range of possibilities that exist in employing reuse. We need to understand better the
characteristics of reusable products and the interactions among the products, methodologies, pro-
ductivity, and quality. A sound scientific approach to assuring progress in this area is to quanti-
tatively evaluate existing examples of reuse and the effects of new methods and tools for their

support of reuse, with respect to the resulting productivity and quality. This implies the use of

12



measurement and experimentation.

4.1. Research Goals
The research goals are:

(1) To develop an evaluation methodology to formulate, quantify, and achieve reuse-related

goals, based on data collected from experiments and case studies.

(2) To conduct experiments to understand the characteristics of reuse and the impact of reuse
on productivity and quality, to evaluate the benefits of methods and tools with respect to

reusability, and to feed back this new understanding into reuse research community

(3) To design and develop tools to support the evaluation activities stated, and to assist in

formulating further evaluation goals and questions.

This is not just a simple application of existing meaéurement. and evaluation technology [3].
There exist challenges from the standpoints of both reusability and measurement. The challenges
which are germane to the topic of reusability include (1) defining reuse (the previously described
framework is intended to facilitate this), (2) identifying object and environment characteristics
which support reuse, and (3) identifying the impact of reuse on productivity and quality. The
challenges which are germane to measurement include (1) defining measures of reuse (which could
vary with the style of reuse), (2) redefining measures of productivity (since conventional measures
of developed lines of code would penalize reuse), (3) redefining measures of quality (possibly shift-
ing the emphasis from simple reliability to correctness), and (4) isolating the impact of reuse on

any observed changes in productivity and quality.

4.2. Approaches

There already exist approaches to measurement and evaluation that have proved successful
in other application areas. The approach proposed in [3] is based on the goal/ question/ measure
paradigm. The proposed approach consists of an evaluation methodology, templates for formulat-

ing goals and questions, a strategy for experimentation, and a tool set providing a measurement

infra-structure.

13



Goal/Question/Measure paradigm:

The measurement and evaluation process requires a mechanism for determining what data is
to be collected, why it is to be collected, and how the collected data is to be interpreted [5]. This
mechanism asks for determining the goals of the measurement and reﬁning each goal in a trace-
able way into a set of quantitative questions that defines, in turn, a specific set of data for col-

lection.

Evaluation methodology:

The methodology consists of seven steps [3]:
- Formulating evaluation goals
- Refining goals into subgoals and questions
- Establishing appropriate measures
- Planning the analysis layout and analysis methods
- Designing and testing data collection schemes
- Performing the investigation concurrently with the data validation
- Analyzing and interpreting data in the context of the prior developed questions, subgoals, and

goals

Templates for formulating goals and questions:

The task of formulating goals and questions proved to be rather complicatgd. Based on our
experience of applying this evaluation methodology we developed‘ a framework for supporting this
task. This framework structures and guides the task of formulating goals and questions by pro-
viding templates including the important aspects to be covered. In the following this framework is
presented and annotated with a reuse example; this example covers the evaluation of our reuse

example 1 from a correctness perspective:

(A) FORMULATION OF GOALS:

PURPOSE OF STUDY: To (characterize, evaluate, predict, motivate) the (process, product,

model, metric) in order to (understand, assess, manage, engineer, learn, improve, compare)

14



it
e.g., to evaluate the reuse practice in current projects in order to understand it.

PERSPECTIVE OF STUDY: Examine the (cost, effectiveness, reliability, correctness, maintaina-
bility, etc.) from the point of view of the (developer, manager, customer, corporation, etc.)

e.g., examine the correctness of reused components from the point of view of a developer.

ENVIRONMENT OF STUDY: List the various process factors, problem factors, people factors,

etc.

(B) GENERATION OF QUESTIONS:
DEFINITION OF THE PROCESS:

QUALITY OF USE (characterize the process quantitatively and assess how well the process is
performed):

e.g., What kind of products is reused?

- DOMAIN OF USE (characterize the object of the process and evaluate the knowledge of object
and domain by the performers of the process):

KNOWLEDGE OF DOMAIN:

e.g., How many of the actually reused components were known in advance?

VOLATILITY OF DOMAIN:
e.g., How many of the reused components had to be modified?
COST OF USE (characterize the cost for performing each of the subactivities of the activity
being performed):
e.g., What effort is required to test reused components (modified/unmodified)?
EFFECTIVENESS OF USE (characterize the results of the process and evaluate the quality of
that results):

RESULTS:

e.g., How many (and what types of) errors were found in reused components as com-

pared to new-developed components?

15



QUALITY OF RESULTS:

FEEDBACK FROM USE (characterize the major problems with the application of the process so
that it can be improved):

e.g., What characteristics of components impact correctness?

A similar template could be applied for product questions. This template includes the
definition of the product and the evaluation of the product with respect to a particular quality (in

 this case it would be correctness).

Approach to experimentation:

Experiments are classified by number of projects studied and number of teams involved per

project [4] According to this classification four different types of studies exist:

a) Single project studies (one team, one project)
b) Multi-Project variation studies (one team per project, more than one project)
¢) Replicated project studies (More than one team, one project)

d) Blocked Subject-Project studies (More than one team per project, more than one project)

Evidently, studies of class a) or b) can be conducted’in real projgct environments; they can
not be controlled and, therefore, the results frequently la;ck statistical significance. Studies of clasé .
¢) and d) can hardly be conducted in real project environments because of economical constraints;
it is impossible to replicate a large development project ten times just for the purpose of statisti-
cal significance of measurement results. The latter kind of studies are usually conducted as con-
trolled experiments. Nevertheless, both types of experiments are necessary in the context of reuse
research. We need to be able to evaluate early hypotheseé concerning reuse with statistical
significance; for this purpose we conduct controlled experiments of class ¢) or d). As a second step
we want to validate whether these early results are still true in real project environment; for this

purpose we conduct case studies of class a) or b).

16



Tool set for measurement:

In order to apply any reuse measurement and evaluation technology to real projects, tool
support is required. This tool support includes a data repository for all the measures taken, tools
for measurement and evaluation, and a tool assisting in the process of formulating new measure-

ment and evaluation goals and questions.

One of the reasons that variO}ls attempts to increase productivity and quality with reuse
failed in the past, was the lack of feedback process that (1) could guide research in the right
directions and (2) could provide thé confidence in the effectiveness of the presented solutions to
have an impact on productivity and quality. One of the reasons for believing that research in the
- area of reuse might be more successful this timé is the fact that the technology for measuring and

evaluating open questions, that means providing this necessary feedback process, have matured.

6. Applying the Measurement and Evaluation Paradigm

The following are two illustrations of how the research paradigm described in the previous

section can be applied to direct research into two software reuse topics.
5.1, Code Component Transformation to Increase Reusability

Goals
Purpose of Study: To evaluate a process for transforming code to improve its reusability in order

to assess and improve it.

Perspective of Study: To evaluate the effectiveness of transforming code to make it more reusable

versus writing it initially for reuse from the point of view of the developer.

Environment of Study: The evaluation will be performed in the context of satellite ground sup-
port software, using participants who are experienced in the application domain, and per-

formed in a minimally-disruptive manner.

17



Questions

(1)

(2)
(3)
(4)
(5)
(6)
(U]

Does the transformation process take less time than the additional time it takes to develop

a component for reuse?

Is a transformed component more reusable than one which was developed for reuse?
Can the transformation px;ocess be generally learned and applied?

How many errors are introduced by the transformation process?

How many errors are introduced by attempting to develop reusable components?
Are there aspects of the transformation process that can be automated?

Can the transformation process be improved?

Metrics

Time to transform a component

Time to generate a similar reusable component

Frequency with which a reusable component is selected for reuse

Assimilation time for a transformed component

Assimilation time for a component written for reuse

Changes to a transformed component

Changes to components written for reuse

Time to learn the transformation process

Similarity of transformations performed by different participants

Experimentation

Ethnographic study will be used to obtain feedback on the learnability of the process, the

suitability of the transformations, and usability of the transformed components. Experimentation

will be used to supply the required measures. Participants will learn a transformation process and

transform components to increase their reusability. Participants will be given the description of

several components, some of which were designed for reuse and some of which were transformed

18



from other components, and be asked to submit designs for a project in the same application

domain using the described components and a minimum of new code.

8. Conclusion

In order to exploit all aspects of reuse in software development and maintenance, and
thereby increase both productivity and quality, a framework to help identify and describe
relevant research topics has been proposed. This framework is intended to help researchers under-
stand exactly what part of the problem any given study addresses and, using the suggested
research paradigm for measurement and evaluation, and to facilitate and promote communication

about reuse topics.

It is hoped that this paper will serve as a point of reference to those involved in reuse
research and that any efforts to identify the ways to improve or increase reuse, or any results
which claim success in promoting reuse, will be phrased in terms of the framework presented here,
The authors welcome comments or suggestions on these ideas, and feedback on how successfully

they can be integrated into an existing or a planned reuse research project.

References

(1) IEEE Guide to Software Requirements Spec’iﬁcations, ANSI/IEEE Std 830-1984, 1984.

(2) H. J. Barnard, R. F. Metz, and A. L. Price, "A Recommended Practice for Describing
Software Designs: IEEE Standards Project 1016, IEEE Transactions on Software

Engineering, Vol. SE-12, No. 2, February 1986, pp 258-263.

(3) V. R. Basili, "Quantitative Evaluation of Software Methodology,” Proceedings of the 1st

Pan Pacific Computer Conference, Australia, September 1985

(4) V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in Software Engineer-
ing,” IEEE Transactions on Software Engineering, Vol. SE-12, No. 7, July 1986, pp 733-

743.

19



(6)

(7)

(8)

V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering

Data,” IEEE Transactions on Software Engineering, vol. SE-10, no. 6, November 1984, pp.
728-738.

V. R. Basili and C. L. Ramsey, "ARROWSMITH-P - A Prototype Expert System for
Software Engineering Management,” IEEE Proceedings of the Expert Systems in Govern-

ment Symposium, McLean, Virginia, October 1985, pp 254 - 264.

P. Freeman, "Reusable Software Engineering: Concepts and Research Directions,”

Proceedings of the Workshop on Reusability in Programming, September 1983 pp 63 - 76

J. A. Goguen, "Parameterized Programming,” IEEE Transactions on Software Engineer-

ing, Vol. SE-10, No. 5, September 1984, pp 528 - 543.

Mechanism for
Reuse:

Verbatim
reuse

Generic para-

meterization
(points on plane identify
Template different possibilities
completion for achieving reuse)
Unconstrained
modification

‘req. spec. design code test documen-
plans tation
Products Processes Knowledge

Figure 1. Primary reuse dimensions of Object and Mechanism

20



