UMIACS-TR-88-8 January, 1988
CS-TR-1983
TAME-TR-2-1988

THE TAME PROJECT:
Towards Improvement-Oriented Software
Environmentst

Victor R. Basili
Department of Computer Science

H. Dieter Rombach
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Experience from a dozen years of analyzing software engineering processes and products is sum-
marized as a set of software engineering and measurement principles that argue for software engineer-
ing process models that integrate sound planning and analysis into the construction process.

In the TAME (Tailoring A Measurement Environment) project as the University of Maryland we
have developed such an improvement-oriented software engineering process model that uses the
goal/question/metric paradigm to integrate the constructive and analytic aspects of software develop-
ment. The model provides a mechanism for formalizing the characterization and planning tasks, con-
trolling and improving projects based on quantitative analysis, learning in a deeper and more systematic
way about the software process and product, and feeding the appropriate experience back into the
current and future projects.

The TAME system is an instantiation of the TAME software engineering process model as an
ISEE (Integrated Software Engineering Environment). The first in a series of TAME system prototypes
has been developed. An assessment of experience with this first limited prototype is presented includ-
ing a re-assessment of its initial architecture. The long-term goal of this building effort is a to develop
a better understanding of appropriate ISEE architectures that optimally support the
improvement-oriented TAME software engineering process model.

T A slightly shortened version of this technical report has been accepted for publication in IEEE transactions on software engineer-
ing. .

* Research for this study was supported in part by NASA grant NSG-5123, AFORS grant F49620-87-0130, and ONR grant
N00014-85-K-0633 to the University of Maryland. Computer time was provided in part through the facilities of the Computer
Science Center of the University of Maryland.

TABLE OF CONTENTS:

1 INETOAUCEION couueieereiiirieiecieittectteeseeeeeeeeseeessessesesee s es e se e

2 Software Engineering ProCessuueeeeererevesrcrrensvessesesseessossssmsnnns
2.1 Lessons Learned from Past EXPeriencec.ceveeeveeeevvsevessvsennnns
2.1.1 Software Engineering Principlescoccoeveeeveereereereveresssonses
2.1.2 Software Measurement Principles ..occoevveeveeeeeveesveeeeeeeeennns
2.1.3 IMPLCALIONS ocvveeeirereeieieeieerieeeeeerareeeesneeeesnsesesnnsesesesssenssns

2.2 A Process Model: The TAME Project eteseeeeeneerarnannnnnnens
2.2.1 Improvement Paradigmcccceevveeeeecnvervnecreeesreesrnessneenn eeeeene
2.2.2 Goal/Question/Metric Paradigmcccveeeeeeeeeerrrnerennnnnn.
2.2.3 Improvement-Oriented Process Modelccoveeevevveenvennnnenn.

3 Automated Support through ISEEs: The TAME System
3.1 REQUIreMENtS ...cecuiieceerruriiierieereeertiesseeseeeseeesneesaeessessssesnssssessnns
3.2 ATCRILECUUTE uveieriireieteeieereeieciicecereeseseeeseeesaeeesnesssessessssessens

6 ACKNOWIEAZEMENTS ...veevveeereerietrieeeeeeeeeeesreeeeeesseeeeeeee e
T REETENCES ..cuviriieiiieereerteeietiereneseieeeseesessseessesnsessessess s ess s

8 ADPPENAIX .eiivereiiirtirieriinieteeeeeeesseesessseeseneeessens eveserrretteeniserennesaranes

O ~J Ot Ot O

1. Introduction

Experience from a dozen years of analyzing software engineering processes and products is
summarized as a set of ten software engineering and fourteen measurement principles.
These principles imply the need for software engineering process models that integrate sound

planning and analysis into the construction process.

Software processes based upon such improvement-oriented software engineering process
models need to be tailorable and tractable. The tailorability of a process is the characteris-
tic that allows it to be altered or adapted to suit a set of special needs or purposes [64]. The soft-
ware engineering process requires tailorability because the overall project execution model (life
cycle model), methods and tools need to be altered or adapted for the specific project environ-
ment and the overall organization. The tractability of a process is the characteristic that
allows it to be easily planned, taught, managed, executed, or controlled. [64]. Each software
engineering process requires tractability because it needs to be planned, the various planned
activities of the process need to be communicated to the entire project personnel, and the process
needs to be managed, executed, and controlled according to these plans. Sound tailoring and
tracking require top-down measurement (measurement based upon operationally defined
goals). The goal of a software engineering environmenﬁ (SEE) should be to support such
tailorable and tractable software engineering process models by automating as much of them as

possible.

In the TAME (Tailoring A Measurement Environment) project at the University of
Maryland we have developed an improvement—oriented software engineering process
model. The TAME system is an instantiation of this TAME software engineering process

model as an ISEE (Integrated SEE).

It seems appropriate at this point to clarify some of the important terms that will be used
in this paper. The term engineering comprises both development and maintenance. A soft-
ware engineering project is embedded in some project environment (characterized by person-
nel, type of application, etc.) and within some organization (e.g., NASA, IBM). Software
engineering within such a project environment or organization is conducted according to an
overall software engineering process model (one of which will be introduced in section 2.2.3).
Each individ;lal software project in the context of such a software engineering process model is
executed according to some execution model (e.g., waterfall model [28, 58], iterative enhance-
ment model (24], spiral model [30]) supplemented by techniques (methods, tools). Each
specific instance of (a part of) an execution model together with its supplementing methods and
tools is referred to as execution process (including the construction as well as the analysis pro-
cess). In addition, the term process is frequently used as a generic term for various kinds éf
.a,ctivities. We distinguish between constructive and analytic methods and tools. Whereas
constructive methods and tools are concerned with building products, analytic methods and tools
are concerned with analyzing the constructive process and the resulting products. The body of
experience accumulated within a project environment or organization is referred to as experi-
ence base. There exist at least three levels of formalism of such experience bases: database
(data being individual products or processes), information base (information being data viewed
through some superimposed structure), and knowledge base (knowledge implying the ability to
derive new insights via deduction rules). The project personnel are categorized as either

engineers (e.g., designers, coders, testers) or managers.

This paper is structured into a presentation and discussion of the improvement-oriented
software engineering process model underlying the TAME project (section 2), its automated sup-

port by the TAME system (section 3), and the first TAME system prototype (section 4). In the

first part of this paper we list the empirically—derived lessons learned (section 2.1) in the form of
software engineering principles (section 2.1.1), measurement principles (section 2.1.2), and
motivate the TAME project by stating several implications derived from those principles (section
2.1.3). The TAME project (section 2.2) is presented in terms of the improvement paradigm (sec-
tion 2.2.1), the goal/question/metric paradigm as a mechanism for formalizing the improvement
paradigm (section 2.2.2), and the TAME project model as an instantiation of both paradigms
(section 2.2.3). In the second part of this paper we introduce the TAME system as an approach
to automatically supporting the TAME software engineering process model (section 3). The
TAME system is presented in terms of its requirements (section 3.1) and architecture (section
3.2). In the third part of this paper, we introduce the first TAME prototype (section 4) with

respect to its functionality and our first experiences with it.

2. Software Engineering Process

Our experience from measuring and evaluating software engineering processes and products
in a variety of project environments has been summarized in the form of lessons learned (section
2.1). Based upon this experience the TAME project has produced an improvement—oriented pro-

cess model (section 2.2).

2.1. Lessons Learned from Past Experience

We have formulated our experience as a set of software engineering principles (section 2.1.1)
and measurement principles (section 2.1.2). Based upon these principles a number of implications

for sound software engineering process models have been derived (section 2.1.3).

2.1.1. Software Engineering Principles

The first five software engineering principles address the need for developing quality a

priori by introducing engineering discipline into the field of software engineering:

(P1) We need to clearly distinguish between the role of constructive and analytic
activities. Only improved construction processes will result in higher quality software. Qual-
ity cannot be tested or inspected into software. Analytic processes (e.g., quality assurance)
cannot serve as a substitute for constructive processes but will provide control of the construc-

tive processes [27, 37, 61].

(P2) We need to formalize the planning of the construction process in order to develop

quality a priori [3, 16, 19, 25]. Without such plans the trial and error approach can hardly be

avoided.
(P3) We need to formalize the analysis and improvement of construction processes and

-5

products in order to guarantee an organized approach to software engineering [3, 25].

(P4) Engineering methods require analysis to determine whether they are being per-
formed appropriately, if at all. This is especially important because most of these methods

are heuristic rather than formal [42, 49, 66].

(P5) Software engineers and managers need real-time feedback in order to improve the con-
struction processes and products of the ongoing project. The organization needs post—
mortem feedback in order to improve the construction processes and products for future

projects [66].

The remaining five software engineering principles address the need for tailoring of planning
and analysis processes due to changing needs from project to project and environment to

environment:

(P6) All project environments and products are different in some way [2, 66]. These
differences must be made explicit and taken into account in the software execution processes

and in the product quality goals [3, 16, 19, 25).

(P7) There are many execution models for software engineering. Each execution model

needs to be tailored to the organization and project needs and characteristics [2, 13, 16, 66].

(P8) We need to formalize the tailoring of processes towards the quality and productivity
goals of the project and the characteristics of the project environment and the organization

[16]. It is not easy to apply abstractly defined methods to specific environments.

(P9) This need for tailoring does not mean starting from scratch each time. We need to reuse

experience, but only after tailoring it to the project (1,267, 18, 32].

(P10) Because of the constant need for tailoring, management control is crucial and must

be flexible. Management needs must be supported in this software engineering process.

A more detailed discussion of these software engineering principles is contained in [17].

2.1.2. Software Measurement Principles

The first four measurement principles address the purpose of the measurement process, i.e.

why should we measure, what should we measure, for whom should we measure:

(M1) Measurement is an ideal mechanism for characterizing, evaluating, predicting,
and providing motivation for the various aspects of software construction processes and
products [3, 4, 9, 16, 21, 25, 48, 56, 57). It is a common mechanism for relating these multiple

aspects.

(M2) Measurements must be taken on both the software processes and the various
software products [1, 5, 14, 29, 38, 40, 42, 43, 44, 47, 54, 55, 56, 65, 66]. Improving a pro-

duct requires understanding both the product and its construction processes.

(M3) There are a variety of uses for measurement. The purpose of measurement should be
clearly stated. We can use measurement to examine cost, effectiveness, reliability, correct-
ness, maintainability, efficiency, user friendliness, etc. 8, 9, 10, 13, 14, 16, 20, 23, 25, 41, 53,

57, 61).

(M4) Measurement needs to be viewed from the appro‘priate perspective. The corpora-
tion, the manager, the developer, the customer’s organization and the user each view the pro-
duct and the process from different perspectives. Thus they may want to know different things

about the project and to different levels of detail [3, 16, 19, 25, 66].

The remaining ten measurement principles address metrics and the overall measurement
process. The first two principles address characteristics of metrics (i.e., what kinds of metrics,
how many are needed), while the latter eight address characteristics of the measurement process
(i.e., what should the measurement process look like, how do we support characterization, plan-

ning, construction, and learning and feedback):

(M5) Subjective as well as objective metrics are required. Many process, product and
environment aspects can be characterized by objective metrics (e.g., product complexity,
number of defects or effort related to processes). Other aspects cannot be characterized objec-
tively yet (e.g., experience of personnel, type of application, understandability of processes and
products); but they can at least be categorized on a quantitative scale to a reasonable degree

of accuracy [4, 5, 16, 48, 56].

(M86) Most aspects of software processes and products are too complicated to be cap-
tured by a single metric. For both definition and interpretation purposes, a set of metrics

(a metric vector) that frame the purpose for measurement needs to be defined [9].

(M7) The development and maintenance environments must be prepared for meas-
urement and analysis. Planning is required and needs to be carefully integrated into the
overall software engineering process model. This planning process must take into account the

experimental design appropriate for the situation [3, 14, 19, 22, 66].

(M8) We cannot just use models and metrics from other environments as defined.
Because of the differences among execution models (principle P7), the models and metrics
must be tailored for the environment in which they will be applied and checked for validity

in that environment [2, 6, 7, 8, 12, 23, 31, 40, 47, 50, 51, 62].

(M9) The measurement process must be top—down rather than bottom-—up in order to

define a set of operational goals, specify the appropriate metrics, permit valid contextual
interpretation and analysis, and provide feedback for tailorability and tractability. [3, 16, 19,

25).

(M10) For each environment there exists a characteristic set of metrics that provides the

needed information for definition and interpretation purposes [21].

(M11) Multiple mechanisms are needed for data collection and validation. The nature
of the data to be collected (principle M5) determines the appropriate mechanisms 4, 25, 48],

e.g., manually via forms or interviews, or automatically via analyzers.

(M12) In order to evaluate and compare projects and to develop models we need a historical

experience base. This experience base should characterize the local environment [4, 13, 25,

34, 44, 48).

(M13) Metrics must be associated with interpretations, but these interpretations must be

given in context (3, 16, 19, 25, 34, 56.

(M14) The experience base should evolve from a database into a knowledge base (sup-

ported by an expert system) to formalize the reuse of experience (11, 44].

A more detailed discussion of these measurement principles is contained in [17].

2.1.3. Implications

Clearly this set of principles is not complete. However, these principles provide
empirically—derived insight into the limitations of traditional process models. We will give some
of the implications of these principles with respect to the components that need to be included in
software process models, essential characteristics of t'hese components, the interaction of these

components, and the needed automated support. Although there is a relationship between

almost all principles and the derived implications, we have referenced for each implication only

those principles that are related most directly.

Based upon our set of principles it is clear that we need to better understand the soft-
ware construction process and product (e.g., principles P1, P4, P8, M2, M5, M6, M8, M9, M10,
M12). Such an understanding will allow us to plan what we need to do and improve over our
current practices (e.g., principles P1, P2, P3, P7, P8, M3, M4, M7, M9, Mi4). To make those
plans operational, we need to specify how we are going to affect the construction processes
and their analysis (e.g., principles P1, P2, P3, P4, P7, P8, M7, M8, M9, M14). The execution
of these prescribed plans involves the construction of products and the analysis of the con-

structive processes and resulting products (e.g., principles P1, P7).

All these implications need to be integrated in such a way that they allow for sound learn-
ing and feedback so that we can improve the software execution processes and products (e.g.,
principles P1, P3, P4, P5, P9, P10, M3, M4, M9, M12, M13, M14). This interaction requires the
integration of the constructive and analytic aspects of the software engineering process model
(e.g., principles P2, M7, M9).

The components and their interactions need to be formalized so they can be supported
properly by an ISEE (e.g., principles P2, P3, P8, P9, M9). This formalization must include a
structuring of the body of experience so that characterization, planning, learning, feedback,
and improvement can take place (e.g., principles P2, P3, P8, P9, M9). An ideal mechanism for
supporting all of these components and their interactions is quantitative analysis (e.g., principles
P3, P4, M1, M2, M5, M6, M8, M9, M10, M11, M13).

Table 1 in the appendix summarizes these example relationships between

process/measurement principles and process model implications.

-10 -

2.2. A Process Model: The TAME Project

The TAME (Tailoring A Measurement Environment) project at the University of Maryland
has produced a software engineering process model (section 2.2.3) based upon our empirically-
derived lessons learned. This software engineering process model is based upon the improvement

(section 2.2.1) and goal/question/metric paradigms (section 2.2.2).

2.2.1. Improvement Paradigm

The improvement paradigm for software engineering processes reflects the implications

stated in section 2.1.3. It consists of six major steps [3]:

(I1) Characterize the current project environment.
(I2) Set up goals and refine them into quantifiable questions and metrics for successful
project performance and improvement over previous project performances.

(I3) Choose the appropriate software project execution model for this project and supporting

methods and tools.

(I4) Execute the chosen processes and construct the products, collect the prescribed data, vali-
date it, and provide feedback in real-time.

(I5) Analyze the data to evaluate the current practices, determine problems, record the findings
and make recommendations for improvement.

(I6) Proceed to step I1 to start the next project, armed with the experience gained from

this and previous projects.

This paradigm is aimed at providing a basis for corporate learning and improvement.
Improvement is only possible if we (a) understand what the current status of our environment is

(step I1), (b) state precise improvement goals for the particular project and quantify them for the

-11 -

purpose of control (step I2), (c) choose the appropriate process execution models, methods and
tools in order to achieve these improvement goals (step I3), execute and monitor the project per-
formance thoroughly (step I4) and assess it (step I5). Based upon the assessment results we can

provide feedback into the ongoing project or into the planning step of future projects (steps I5

and I6).

2.2.2. Goal/Question/Metric Paradigm

The goal/question/metric (GQM) paradigm is intended as a mechanism for formalizing
the characterization, planning, construction, analysis, learning and feedback tasks. It represents
a systematic approach for setting the project goals (tailored to tﬁe specific needs of an organiza-
tion), defining them in an operational, tractable way by refining them into a set of quantifiable
questions that in turn imply a specific set of metrics and data for collection (addresses the
aspects related to step I2 of the improvement paradigm). The tractability of this software
engineering process allows the analysis of the collected data and computed metrics in the
appropriate context of the questions and the original goal. This context supports feedback (by
integrating analytic and constructive aspects) and learning (by defining the appropriate synthesis

procedure for lower-level into higher-level pieces of experience).

The process of setting goals and refining them into quantifiable questions is complex and
requires experience. In order to support this process, a set of templates for setting goals, and a
set of guidelines for deriving questions and metrics has been developed. These templates and
guidelines reflect our experience from having applied the GQM paradigm in a variety of environ-
ments (e.g., NASA [4, 17, 48], IBM [60], AT&T, Burroughs [56], and Motorola). We received
additional feedback from Hewlett Packard where the GQM paradigm has been used without our

direct assistance [39]. It needs to be stressed that we do not claim that these templates and

-12 -

guidelines are complete; they will most likely change over time as our experience grows. Goals
are defined in terms of purpose, perspective and environment. Different sets of guidelines exist
for defining product-related and process-related questions. Product-related questions are formu-
lated for the purpose of defining the product (e.g., physical attributes, cost, changes and defects,
context), defining the quality perspective of interest (e.g., reliability, user friendliness), and pro-
viding feedback from the particular quality perspective. Process-related questions are formu-
lated for the purpose of defining the process (quality of use, domain of use), defining the quality

perspective of interest (e.g., reduction of defects, cost effectiveness of use), and providing feed-

back from the particular quality perspective.
¢ Templates/Guidelines for Goal Definition:

— Purpose:
To (characterize, evaluate, predict, motivate) the (process, product, model, metric) in order
to (understand, assess, manage, engineer, learn, improve) it.
Example: To evaluate the system testing methodology in order to improve it.
— Perspective:
Examine the (cost, effectiveness, correctness, defects, changes, product metrics, reliability,

etc.) from the point of view of the (developer, manager, customer, corporate perspective

b

etc).

Example: Examine the effectiveness from the developer’s point of view.

— Environment:

The environment consists of the following: process factors, people factors, problem factors,

methods, tools, constraints, etc.

Example: The product is an operating system that must fit on a PC, etc.

-138 —

e Guidelines for Product-Related Questions:

For each product under study there are three major subgoals that need to be addressed: (1)
definition of the product, (2) definition of the quality perspectives of interest, and (3)

feedback related to the quality perspectives of interest.

- Definition of the product includes questions related to physical attributes (a quantita-
tive characterization of the product in terms of physical attributes sucil as size, complexity,
etc.), cost (a quantitative characterization of the resources expended related to this product
in terms of effort, computer time, etc.), changes and defects (a quantitative characteriza-
tion of the errors, faults, failures, adaptations, and enhancements related to this product),
and context (a quantitative characterization of the customer community using this product

and their operational profiles).

- Quality perspectives of interest includes, for each quality perspective of interest (e-g.,
reliability, user friendliness), questions related to the major model(s) used (a quantitative
specification of the quality perspective of interest), the validity of the model for the
particular environment (an analysis of the appropriateness of the model for the particu-
lar project environment), the validity of the data collected (an analysis of the quality of
data), the model effectiveness (a quantitative characterization of the quality of the results
produced according to this model), and a substantiation of the model (a discussion of

whether the results are reasonable from various perspectives).

- Feedback includes questions related to improving the product relative to the quality per-
spective of interest (a quantitative characterization of the product quality, major problems
regarding the quality perspective of interest, and suggestions for improvement during the

ongoing project as well as during future projects).

-~ 14 —

¢ Guidelines for Process—Related Questions:

For each process under study, there are three major subgoals that need to be addressed: (1)
definition of the process, (2) definition of the quality perspectives of interest, and (3)

feedback from using this process relative to the quality perspective of interest.

— Definition of the process includes questions related to the quality of use (a quantitative
characterization of the process and an assessment of how well it is performed), and the
domain of use (a quantitative characterization of the object to which the process is applied

and an analysis of the process performer’s knowledge concerning this object).

- Quality perspectives of interest follows a pattern similar to the corresponding product-
oriented subgoal including, for each quality perspective of interest (e.g., reduction of defects,
cost effectiveness), questions related to the major model(s) used, the validity of the
model for the particular environment, the validity of the data collected, the

model effectiveness and the substantiation of the model).
— Feedback follows a pattern similar to the corresponding product-oriented subgoal.
¢ Guidelines for Metrics, Data Collection and Interpretation:

The choice of metrics is determined by the quantifiable questions. The guidelines for questions
acknowledge the need for generally more than one metric (principle MS6), for objective and sub-
jective metrics (principle M5), and for associating interpretations with metrics (principle M13).
The actual GQM models generated from these templates and guidelines will differ from project
to project and organization to organization (principle M6). This reflects their being tailored
for the different needs in different projects and organizations (principle M4). Depending on
the type of each metric, we choose the appropriate mechanisms for data collection and valida-

tion (principle M11). As goals, questions and metrics provide for tractability of the (top—

- 15 —

down) definitional quantification process, they also provide for the interpretation context
(bottom—up). This integration of definition with interpretation allows for the interpretation

process to be tailored to the specific needs of an environment (principle M8).

2.2.3. Improvement—Oriented Process Model

The TAME software engineering process model is an instantiation of the improvement
paradigm. Table 2 in the appendix contains examples of how the process model implications
stated in section 2.1.3 have inﬁuenced the TAME software engineering process model. The GQM
paradigm provides the necessary integration of the individual components of this model. The
TAME software engineering process model explicitly includes components for (C1) the character-
ization of the current status of a project environment, (C2) the planning for improvement
integrated into the execution of projects, (C3) the execution of the construction and analysis of
projects according to the project plans, and (C4) the recording of experience into an experience
base. The learning and feedback mechanism (C5) is distributed throughout the model within
and across the components as information flows from one component to another. Each of these
tasks must be dealt with from a constructive and analytic perspective. Figure 1 contains a
graphical representation of the improvement—oriented TAME process model. The relationships

(arcs) among process model components in figure 1 represent information flow.

- 18 —

C2:

asks C1: planning C3:
perspectiv characterising C2.1: what C2.2: how executing
con. C2.2.1 C3.1
plan
— —+3
struc for construct
tive characterize set (€ construction
u "
environment > goals) B plan
ana-— for analyze
r- analysis r
lytic
vt C2.2.2 Cs.2
| l I l T T l
]] LY)
“ v v iR Y v
<...|_.._v ___________ U T Y L J U, _:__4._>

C4: EXPERIENCE BASE

Figure 1: The Improvement-Oriented TAME Software Process Model

(C1) Characterization of the current environment is required to understand the various fac-

tors that influence the current project environment. This task is important in order to define a

starting point for improvement. Without knowing where we are, we will not be able to judge

whether we are improving in our present project. We distinguish between the constructive

and analytic aspects of the characterization task to emphasize that we not only state the

environmental factors but analyze them to the degree possible based upon data and other

forms of information from prior projects. This characterization task needs to be formalized.

(C2) Planning is required to understand the project goals, execution needs, and project focus

—-17 -

for learning and feedback. This task is essential for disciplined software project execution (i.e.
executing projects according to precise specifications of processes and products). It provides
the basis for improvement relative to the current status determined during characterization.
In the planning task, we distinguish between the constructive and analytic as well as the
'what’ and ’how’ aspects of planning. Based upon the GQM paradigm all these aspects are
highly inter-dependent and performeq as a single task. The development of quantitatively
analyzable goals is an iterative process. However we formulate the four planning aspects as
four separate components to emphasize the differences between creating plans for development
and making those plans analyzable, as well as between stating what it is you want to accom-

plish and stating how you plan to tailor the processes and metrics to do it.

(C2.1) "What’ Planning deals with choosing, assigning priorities and operationally defining,
to the degree possible, the project goals from the constructive and analytic perspectives.
The actual goal setting is an instantiation of the front—end of the GQM paradigm (the
templates/guidelines for goal definition). The constructive perspective addresses the
definition of project goals such as on-time delivery, the appropriate functionality to satisfy
the user, and the analysis of the execution processes we are applying. Some of these goals
might be stated as improvement goals over the current state-of-the—practice as character-
ized in component C1l. These goals should be prioritized and operationally defined to the
extent possible without having chosen the particular construction models, methods and tools
yet. The analytic perspective addresses analysis procedures for monitoring and controlling
whether the goals are met. This analytic goal perspective should prescribe the necessary
learning and feedback paths. It should be operationally defined to the extent allowed by the

degree of precision of the constructive goal perspective.

(C2.2) "How’ Planning is based upon the results from the "what’ planning (providing for the

- 18 -

purpose and perspective of a goal definition according to the GQM paradigm front—end) and
the characterization of the environment (providing for the environment part of a goal
definition according to the GQM paradigm front~end). The ’how’ planning involves the
choice of an appropriately tailored execution model, methods and tools that permit the
building of the system in such a way that we can analyze whether we are achieving our
stated goals. The particular choice of construction processes, methods and tools (component
C2.2.1) goes hand in hand with fine~tuning the analysis procedures derived during the ana-

lytic perspective of the *what’ planning (component C2.2.2).

(C2.2.1) Planning for construction includes choosing the appropriate execution model,
methods and tools to fulfill the project goals. It should be clear that effective planning for
construction depends on well-defined project goals from both the constructive and ana-
lytic perspective (component C2.1).

(C2.2.2) Planning for analysis addresses the fine-tuning of the operational definition of
the analytic goal perspective (derived as part of component C2.1) towards the specific
choices made during planning for construction (C2.2.1). The actual planning for analysis
is an instantiation of the back-end of the GQM paradigm; details need to be filled in (e.g.,

quantifiable questions, metrics) based upon the specific methods and tools chosen.

(C3) Execution must integrate the construction (component C3.1) with the analysis (com-

ponent C3.2). Analysis (including measurement) can’t be an add-on but must be part of the
execution process and drive the construction. The execution plans derived during the planning

task are supposed to provide for the required integration of construction and analysis.

(C4) The Experience Base includes the entire body of experience that is actively available to

the project. We can characterize this experience according to the following dimensions: (a) the

- 19 -

degree of precision/detail, and (b) the degree to which it is tailored to meet the specific needs
of the project (context). The precision/detail dimension involves the level of detail of the
experimental design and the level and quality of data collected. On one end of the spectrum
we have detailed objective quantitative data that allows us to build mathematically tractable
models. On the other end of the spectrum we have interviews and qualitative information
that provide guidelines and ’lessons learned documents’, and permit the better formulation of
goals and questions. The level of precision and detail affects our level of confidence in the
results of the experiment as well as the cost of the data collection process. Clearly priorities
play an important role here. The context dimension involves whether the focus is to learn
about the specific project, projects within a specific application domain or general truths about
the software process or product (requires the incorporation of formalized experience from prior
projects into the experience base). Movement across the context dimension assumes an ability
to generalize experience to a broader context than the one studied, or to tailor experience to a
specific project. The better this experience is packaged, the better our understanding of the
environment. Maintaining a body of experience acquired during a number of projects is one of

the prerequisites for learning and feedback across environments.

(C5) Learning and Feedback are integrated into the TAME process model in various ways.
They are based upon the experimental model for learning consisting of a set of steps, starting
with focused objectives, which are turned into specific hypotheses, followed by running experi-
ments to validate the hypotheses in the appropriate environment. The model is iterative; as
we learn from experimentation, we are better able to state our focused objectives and we

change and refine our hypotheses.

This model of learning is incorporated into the GQM paradigm where the focused objectives

are expressed as goals, the hypotheses are expressed as questions written to the degree of

- 20 ~

formalism required, and the experimental environment is the project, a set of projects in the

same domain, or a corporation representing a general environment. Clearly the GQM para-

digm is also iterative.

The feedback process helps generate the goals to influence one or more of the components in
the process model, e.g., the characterization of the environment, or the analysis of the con-
struction processes or products. The level of confidence we have in feeding back the experience
to a project or a corporate environment depends upon the precision/detail level of the experi-

ence base (component C4) and the generality of the experimental environment in which it was

gathered.

The learning and feedback process appears in the model as the integration of all the com-
ponents and their interactions as they are driven by the improvement and GQM paradigms.
The feedback process can be channeled to the various components of the current project and

to the corporate experience base for use in future projects.

Most traditional software engineering process models address only a subset of the individual
components of this model; in many cases they cover just the constructive aspects of characteriza-
tion (component C1), 'how’ planning (component C2.2.1), and execution (component C3.1).
More recently developed software engineering process models address the constructive aspect of
execution (component C3.1) in more sophisticated ways (e.g., new process models [24, 30, 49],
combine various process dimensions such as technical, managerial, contractual [36], or provide
more flexibility as far as the use of methods and tools is concerned, for example via the
automated generation of tools [45, 63]), or they add methods and tools for choosing the analyti-
cal processes, methods and tools (component C3.2.2) as well as actually performing analysis

(component C3.2) [52, 59]. However, all these process models have in common the lack of com-

-21 -

pletely integrating all their individual components in a systematic way that would permit sound

learning and feedback for the purpose of project control and improvement of corporate experi-

ence.

-22 -

3. Automated Support through ISEEs: The TAME System

The goal of an Integrated Software Engineering Environment (ISEE) is to effec-
tively support the improvement—oriented software engineering process model described in section
2.2.3. An ISEE must support all the model components (characterizing, planning, execution, and
the experience base), all the local interactions between model components, the integration and
formalization of the GQM paradigm, and thev necessary transitions between the context and
precision/detail dimension boundaries in the experience base. Supporting the transitions along
the experience base dimensions is needed in order to allow for sound learning and feedback as

outlined in section 2.2.3 (component C5).

The TAME system will automate as many of the components, interactions between com-
ponents and supporting mechanisms of the TAME process model as possible. The TAME system
development activities will concentrate on all but the construction c;)mponent (component C3.1)

with the eventual goal of interfacing with constructive SEEs. In this section we present the

requirements and the initial architecture for the TAME system.

3.1. Requirements

The requirements for the TAME system can be derived from section 2.2.3 in a natural way.
These requirements can be divided into external requirements (defined by and of obvious interest
to the TAME system user) and internal requirements (defined by the TAME design team and

required to support the external requirements properly).

The first five (external) requirements include support for the characterization and planning
components of the TAME model by automating an instantiation of the GQM paradigm, for the

analysis component by automating data collection, data validation and analysis, and the learning

- 23

and feedback component by automating interpretation and organizational learning. We will list
for each external TAME system requirement the TAME process model components of section
2.2.3 from which it has been derived (These relationships between TAME process model com-

ponents and TAME system requirements are summarized in table 3 of the appendix).

External TAME requirements:

(R1) A mechanism for defining the constructive and analytic aspects of project goals
in an operational and quantifiable way (derived from components C1, C2.1,

C2.2.2, C3.2)

We use the GQM paradigm and its templates for defining goals operationally and refining
them into quantifiable questions and metrics. The selection of the appropriate GQM model
and its tailoring needs to be supported. The user will either select an existing model or gen-
erate a new one. A new model can be generated from scratch or by reusing pieces of existing
models. The degree to which the selection, generation and reuse tasks can be supported
automatically depends largely on the degree to which the GQM paradigm and its templates
can be formalized. The user needs to be supported in defining his/her specific goals according
to the goal definition template. Based on each goal definition, the TAME system will search
for a model in the experience base. If no appropriate model exists, the user will be guided in
developing one. Based on the tractabili-ty of goals into subgoals and questions the TAME sys-
tem will identify reusable pieces of existing models and compose as much of an initial model as
possible. This initial model will be completed with user interaction. For example, if a user
wants to develop a model for assessing a system test method used in a particular environment,
the system might compose an initial model by reusing pieces from a model assessing a different
test method in the same environment, and from a model for assessing the same system test

method in a different environment. A complete GQM model includes rules for interpretation of

— 24 -

metrics and guidelines for collecting the prescribed data. The TAME system will automati-

cally generate as much of this information as possible.

(R2) The automatic and manual collection of data and the validation of manually

collected data (derived from component C3.2)

The collection of all product-related data (e.g., lines of code, complexity) and certain process—
related data (e.g., number of compiler runs, number of test runs) will be completely
automated. Automation requires an interface with construction—oriented SEEs. The collec-
tion of many process-related data (e.g., effort, changes) and subjective data (e.g., experience of
personnel, characteristics of methods used) cannot be automated. The schedule according to
which measurement tools are run needs to be defined as part of the planning activity. It is
possible to collect data whenever they are needed, periodically (e.g., always at a particular
time of the day), or whenever changes of products occur (e.g., whenever a new product version
is entered into the product library all the related metrics are recomputed). All manually col-
lected data need to be validated. Validating whether data are within their defined range,
whether all the prescribed data are collected, and whether certain integrity rules among data
are maintained will be automated. Some of the measurement tools will be developed as part
of the TAME system development project, others will be imported. The need for importing
measurement tools will require an effective interconnection mechanism (probably an intercon-

nection language) for integrating tools developed in different languages.

(R3) A mechanism for controlling measurement and analysis (derived from com-

ponent C3.2)

A GQM model is used to specify and control the execution of a particular analysis and feed-

back session. According to each GQM model, the TAME system must trigger the execution of

- 25 -

measurement tools for data collection, the computation of all metrics and distributions
prescribed, and the application of statistical procedures. If certain metrics or distributions

cannot be computed due to the lack of data or measurement tools, the TAME system must

inform the user.

(R4) A mechanism for interpreting analysis results in a context and providing feed-
back for the improvement of the execution model, methods and tools (derived

from components C3.2, C5)

We use a GQM model to define the rules and context for interpretation of data and for feed-
back in order to refine and improve execution models, methods and tools. The degree to which
interpretation can be supported depends on our understanding of the software process and pro-
duct, and the degree to which we express this understanding as formal rules. Today, interpre-
tation rules exist only for some of the aspects of interest and are only valid within a particular
project environment or organization. However, interpretation guided by GQM models will
enable an evolutionary learning process resulting in better rules for interpretation in the
future. The interpretation process can be much more effective provided historical experience is
available allowing for the generation of historical baselines. In this case we can at least iden-

tify whether observations made during the current project deviate from past experience or not.

(R5) A mechanism for learning in an organization (derived from components C4,

C5)

The learning process is supported by iterating the sequence of defining focused goals, refining
them into hypotheses, and running experiments. These experiments can range from com-
pletely controlled experiments to regular project executions. In each case we apply measure-

ment and analysis procedures to project classes of interest. For each of those classes, a histori-

- 26 ~

cal experience base needs to be established concerning the effectiveness of the candidate execu-
tion models, methods and tools. Feedback from ongoing projects of the same class, the
corresponding execution models, methods and tools can be refined and improved with respect

to context and precision/detail so that we increase our potential to improve future projects.

The remaining seven (internal) requirements deal with user interface management, report
generation, experience base, security and access control, configuration management control, con-
struction interface and distribution issues. All these issues are important in order to support

planning, construction, learning and feedback effectively.
Internal TAME requirements:

(R8) A homogeneous user interface

We distinguish between the physical and logical user interface. The physical user interface
provides a menu or command driven interface between the user and the TAME system.
Graphics and window mechanisms will be incorporated whenever useful and possible. The log-
ical user interface is the user’s view of measurement and analysis. Users will not be allowed to
directly access data or run measurement tools. The only way of working with the TAME sys-
tem is via a GQM model. TAME will enforce this top-down approach to measurement via its
logical user interface. The acceptance of this kind of user interface will depend on the effec-
tiveness and ease with which this logical user interface can be used. Homogeneity is important

for both the physical and logical user interface.
(R7) An effective mechanism for presenting data, information, and knowledge

The presentation of analysis (measurement and interpretation) results via terminal or
printer/plotter needs to be supported. Reports need to be generated for different purposes.

Project managers will be interested in periodical reports reflecting the current status of their

-927 —

project. High level managers will be interested in reports indicating quality and productivity
trends of the organization. The specific interest of each person needs to be defined by one or
more GQM models upon which automatic report generation can be based. A laser printer and
multi-color plotter would allow the appropriate documentation of tables, histograms and other

kinds of textual and graphical representations.

(R8) The effective storage and retrieval of all relevant data, information and

knowledge in an experience base

All data, information and knowledge required to support tailorability and tractability need to
be stored in an experience base. Such an experience base needs to be able to store GOM
models, engineering products and measurement data. It needs to store data derived from the
current project as well as historical data from prior projects. The effectiveness of such an
experience base will be improved for the purpose of learning and feedback if, in addition to
measurement data, interpretations from various analysis sessions are stored. In the future, the
interpretation rules themselves will become integral part of such an experience base. The
experience base should be implemented as an abstract data type, accessible through a set of
functions and hiding the actual implementation. This latter requirement is especially impor-
tant due to the fact that current database technology is not suited to properly support soft-
ware engineering concepts [26]. The implementation of the experience base as an abstract data
type allows us to use currently available database technology and substitute more appropriate
technology later as it becomes available. The ideal database would be self-adapting to the
changing needs of a project environment or an organization. This would require a specification

language for software processes and products, and the ability to generate database schemata

from specifications written in such a language [46].

(R9) Mechanisms allowing for the implementation of a variety of access control and

— 28 —

security strategies

TAME must control the access of users to the TAME system itself, to various system func-
tions and to the experience base. These are typical functions of a security system. The
enforced security strategies depend on the project organization. It is part of planning a pro-
ject to decide who needs to have access to what functions and pieces of data, information and
knowledge. In addition to these security functions, more sophisticated data access control
functions need to be performed. The data access system is expected to "recommend" to a user
who is developing a GQM model the kinds of data that might be helpful in answering a partic-
ular question and support the process of choosing among similar data based on availability or

other criteria.

(R10) Mechanisms allowing for the implementation of a variety of configuration

management and control strategies

In the context of the TAME system we need to manage and control three~dimensional
configurations. There is first the traditional product dimension making sure that the various
product and document versions are consistent. In addition, each product version needs to be
consistent with the related measurement data and the GQM model that guided those measure-
ments. TAME must ensure that a user always knows whether data in the experience base is
consistent with the current product version and was collected and interpretated according to a
particular model. The actual configuration management and control strategies will result from

the project planning activity.
(R11) An interface to an SEE supporting the construction process

An interface between the TAME system (which automates all process model components

except for the construction component C3.1 of the TAME process model) and some external

- 29 —

SEE (which automates the construction component) is necessary for three reasons: (a) to
enable the TAME system to collect data (e.g., the number of activations of a compiler, the
number of test runs) directly from the actual construction process, (b) to enable the TAME
system to feed analysis results back into the ongoing construction process, and (¢) to enable
the construction-oriented SEE to store/retrieve products into/from the experience base of the
TAME system. Models for appropriate interaction between constructive and analytic
processes need to be specified. Interfacing with construction-oriented SEEs poses the problem
of efficiently interconnecting systems implemented in different languages and running on dif-

ferent machines (probably with different operating systems).
(R12) A structure suitable for distribution

TAME will ultimately run on a distributed system consisting of at least one main—frame com-
puter and a number of workstations. The main-frames are required to host the data reposi-

tories which can be assumed to be very large. The rest of TAME might be replicated on a

number of workstations.

3.2. Architecture

Figure 2 describes our current view of the TAME architecture in terms of individual archi-
tectural components-and their control flow interrelationships. Table 4 in the appendix describes
the relationships between TAME system requirements and the architectural TAME system com-

ponents. The first prototype described in section 4 concentrates on the shaded components of

figure 2.

-30 -

Al: User Interface Management

Figure 2: Architectural Design of the TAME System

PHYSICAL
USER
INTERFACE

LOGICAL
(GQM-ORIENTE!

USER
INTERFACE

LEVEL

ANALYSIS

& FEEDBACK
LEVEL

MEASUREMENT

LEVEL

SUPPORT

LEVEL

rue | 0| LEEEEEESRRERSShG RTINS
piruc R R T R |
ton” g """ ?Z’ B e e Dt
Inter— A6: Measurement :
face € Scheduling
A 4
A4.2: .
{ !
AS8: Report A9: Data
Generation Entry & Val
< Y l

We group the TAME components into five logical levels, the physical user interface, logical

user interface, analysis and feedback, and measurement and support level. Each of these five lev-

els consists of one or more architectural components:

- 81—

¢ The Physical User Interface Level consists of one component:

(A1) The User Interface Management component implements the physical user interface
requirement R6. It provides a choice of menu or command driven access and supports a

window-oriented screen layout.
¢ The Logical (GQM-Oriented) User Interface Level consists of two components:

(A2) The GQM Model Selection component implements the homogeneity requirement of
the logical user interface (R6). It guarantees that no access to the analysis and feedback,

measurement, or support level is possible without stating the purpose for access in terms of

a specific GQM model.
(A3) The GQM Model Generation component implements requirement R1 regarding the

operational and quantifiable definition of GQM models either from scratch or by modifying

existing models.
e The Analysis and Feedback Level consists of two components:

(A4.1) This first portion of the Construction Interface component implements the feedback
interface between the TAME system and construction-oriented SEEs (part (b) of require-
ment R11).

(A5) The GQM Analysis and Feedback component implements requirement R3 regarding
execution and control of an analysis and feedback session, interpretation of the analysis
results, and proper feedback. All these activities are done in the context of a GQM model
created by A3. The GQM Analysis and Feedback component needs to have access to the
specific authorizations of the user in order to know which analysis functions this user can
perform. The GQM Analysis and Feedback component also provides analysis functions, for

example, telling the user whether certain metrics can be ~computed based upon the data

- 32 -

currently available in the experience base. This analysis feature of the subsystem is used for
setting and operationally defining goals, questions, and metrics, as well as actually perform-

ing analysis according to those previously established goals, questions, and metrics.
e The Measurement Level consists of three components:

(A4.2) This second portion of the Construction Interface component implements the meas-
urement interface between the TAME system and SEEs (part (a) of requirement R11) and
the SEE’s access to the experience base of the TAME system (part (c) of requirement R11).

(A6) The Measurement Scheduling component implements requirement R2 regarding the
definition (and execution) of automated data collection strategies. Such strategies for when
to collect data via the measurement tools may range from collecting data whenever they are
needed for an analysis and feedback session (on-line) to collecting them periodically during
low-load times and storing them in the experience base (off-line).

(A7) The Measurement Tools component implements requirement R2 regarding automated
data collection. This component needs to be open—ended in order to allow the inclusion of

new and different measurement tools as needed.
¢ The Support Level consists of three components:

(A8) The Report Generation component implements requirement R7 regarding the produc-
tion of all kinds of reports.

(A9) The Data Entry and Validation component implements requirement R2 regarding the
entering of manually collected data and their validation. Validated data are stored in the
experience base component.

(A10) The Experience Base component implements requirement R8 regarding effective

storage and retrieval of all relevant data, information and knowledge. This includes all kinds

- 33 -

of products, analytical data (e.g., measurement data, interpretations), and analysis plans
(GQM models). This component provides the infrastructure for the operation of all other
components of the TAME process model and the necessary interactions among them. The
experience base will also provide mechanisms supporting the learning and feedback model.
These mechanisms include the proper packaging of experience along the context and

precision/detail dimensions.

In addition, there exist two orthogonal components which for simplicity reasons are not

reflected in figure 2:

(A11) The Data Access Control and Security component(s) implement requirement R9. It
may consist of a number of subcomponents distributed across the logical architectural levels.
It will validate user access to the TAME system itself and to various functions at the user
interface level. It will also control access to the project experience through both the measure-
ment tools and the experience base.

(A12) The Configuration Management and Control component implements requirement
R10. This component can be viewed as part of the interface to the experience base level. Data
can only be entered into or retrieved from the experience base under configuration manage-

ment control.

—-34 —

4. First TAME Prototype

The first in a series of prototypes is currently being developed for supporting measurement
in Ada projects [15]. This first prototype will implement only a subset of the requirements
stated in section 3.1 because of (a) yet unsolved problems that require research, (b) solutions that
require more formalization, and (c) problems with integrating the individual architectural com-
ponents into a consistent whole. Examples of unsolved problems requiring further research are
the appropriate packaging of the experience along the context and precision/detail dimension
and expert system support for interpretation purposes. Examples of solutions requiring more for-
malization are the GQM templates and the structuring of a software engineering database.
Examples of integration problems are the embedding of feedback loops into the construction pro-
cess, and the appropriate utilization of data access control and configuration management con-
trol. At this time, the prototype exists in pieces that have not been fully integrated together as

well as partially implemented pieces.

In this section, we discuss for each of the architectural components of this TAME prototype
as many of the following issues as are applicable: (a) the particular conceptual solutions of the
TAME project, (b) experience with these conceptual solutions, (c) the current and planned status
of implementation (automation) of these conceptual solutions in the first TAME system proto-

type, and (d) experiences with using the component (what we have implemented at present and

where we plan to go in the future):

(A1) The User Interface Management component is supposed to provide the physical user
interface for accessing all TAME system functions, with the flexibility of choosing between
menu and command driven modes and different window layouts. These issues are reasonably

well understood by the SEE community. The first TAME prototype implementation will be

- 35 —

menu-oriented and based upon the X windowing mechanism. A primitive version is currently
running. This component is currently not very high on our priority list. We expect to import
a more sophisticated user interface management component at some later time or leave it com-

pletely to parties interested in productizing our prototype system.

(A2) The GQM Model Selection component is supposed to force the TAME user to
parameterize each TAME session by first stating the objective of the session in the form of an
already existing GQM model or requesting the creation of a new GQM model. The need for
this restriction has been derived from the experience that data is frequently misused if it is
accessible without a clear goal. The first prototype implementation does not enforce this
requirement strictly. The current character of the first prototype as a research vehicle demands
more flexibility. There is no question that this component needs to be implemented before the

prototype leaves the research environment.

(A3) The GQM Model Generation component is supposed to allow the creation of specific
GQM models either from scratch or by modifying existing ones. We have provided a set of
templates and guidelines (section 2.2.2). We have been quite successful in the use of the tem-
plates and guidelines for defining goals, questions and metrics. There are a large number of
organizations and environments in which the model has been applied to specify what data
must be collected to evaluate various aspects of the process and product, e.g., NASA/GSFC,
Burroughs, AT&T, IBM, Motorola. The application of the GQM paradigm at Hewlett
Packard has shown that the templates can be used successfully without our guidance. Several
of these experiences have been written up in the literature [4, 16, 17, 39, 48, 56, 60, 61). We
have been less successful in automating the process so that it ties into the experience base. As
long as we know the goals and questions a priori, the appropriate data can be isolated and

collected based upon the GQM paradigm. The first TAME prototype implementation is

- 36 —

limited to support the generation of new models and the modification of existing models using
an editor enforcing the templates and guidelines. We need to further formalize the templates
and provide traceability between goal and question templates. Formalization of the templates
and providing traceability is our most important research issue. In the long-run we might con-

sider using artificial intelligence planning techniques.

(A4.1 and A4.2)) The Construction Interface component is supposed to support all interac-
tions between the SEE (which supports the construction component of the TAME process
model) and the TAME system. The model in figure 1 implies that interactions in both direc-
tions are required. We have gained experience in manually measuring the construction process
by monitoring the execution of a variety of techniques (e.g., code reading [57], testing [20], and
CLEANROOM development [61]) in various environments including the SEL [4,48]. We have
also learned how analysis results can be fed back into the ongoing construction process as well
as into corporate experience [4, 48]. Architectural component A4.1 is not part of this first
TAME prototype. The first prototype implementation of A4.2 is limited to allowing for the
integration of (or access to) external product libraries. This minimal interface is needed to
have access to the objects for measurement. No interface for the on-line measurement of

ongoing construction processes is provided yet.

(A5) The GQM Analysis and Feedback component is supposed to perform analysis accordiné
to a GQM model. We have gained a lot of experience in evaluating various kinds of experi-
ments and case studies. We have been successful in collecting the appropriate data by tracing
GQM models top-down. We have been less sﬁccessful in providing formal interpretation rules
allowing for the bottom-up interpretation of the collected data. One automated approach to
providing interpretation and feedback is through expert systems. ARROWSMITH-P provides

interpretations of software project data to managers [44]; it has been tested in the SEL/NASA

- 37 -

environment. The first prototype TAME implementation triggers the collection of prescribed
data (top-down) and presents it to the user for interpretation. The user~provided interpreta-
tions will be stored in order to accumulate the necessary knowledge that might lead us to iden-

tifying interpretation rules in the future.

(A6) The Measurement Scheduling component is supposed to allow the TAME user to define
a strategy for actually collecting data by running the measurement tools. Choosing the most
appropriate of many possible strategies (requirements section 3.1) might depend on the
response times expected from the TAME system or the storage capacity of the experience base.
Our experience with this issue is limited because most of our analyses were human scheduled
as needed for some particular analyses [4, 48]. This component will not be implemented as
part of the first prototype. In this prototype, the TAME user will trigger the execution of
measurement activities explicitly (which can, of course, be viewed as a minimal implementa-

tion supporting a human scheduling strategy).

(A7) The Measurement Tools component is supposed to allow the collection of all kinds of
relevant process and product data. We have been successful in generating tools to gather data
automatically and have learned from the application of these tools in different environments.
Within NASA, for example, we have used a coverage tool to analyze the impact of test plans
on the consistency of acceptance test coverage with operational use coverage [5'3]. We have
used a data bindings tool to analyze the structural consistency of implemented systems to
their design [41], and studied the relationship between faults and hierarchical structure as
measured by the data bindings tool [60]. We have been able to characterize classes of pro-
ducts based upon their syntactic structure [35]. We have not, however, had much experience
in automatically collecting process data. The first prototype TAME implementation consists

of measurement tools based on the above three. The first tool captures all kinds of basic Ada

- 38 —

source code information such as lines of code and structural complexity metrics [35], the
second tool computes Ada data binding metrics, and the third tools captures dynamic informa-
tion such as test coverage metrics [65]. One lesson learned has been that the development of
measurement tools for Ada is very often much more than just a re-implementation of similar
tools for other languages due to very different Ada language concepts. Furthermore, we have
recognized the importance of having an intermediate representation level allowing for a lan-
guage independent representation of software product and process aspects. The advantage of
such an approach will be that this intermediate representation needs to be generated only 0;108
-per product or process. All the measurement tools can run on this intermediate representation.
This will not only make the actual measurement process less time—consuming but provide a
basis for reusing the actual measurement tools to some extent across different language
environments. Only the tool generating the intermediate representation needs to be re—built

for each new implementation language or TAME host environment.

(A8) Thé Report Generator component is supposed to allow the TAME user to produce a
variety of reports. The statistics and business communities have commonly accepted
approaches for presenting data and interpretations effectively (e.g., histograms). The first
TAME prototype implementation does not provide a separate experience base reporting facil-
ity. Responsibility for reporting is attached to each individual prototype component; e.g., the
GQM Model Generation component provides reports regarding the models, each measurement

tool reports on its own measurement data.

(A9) The Data Entry and Validation component is supposed to allow the TAME user to
enter all kinds of manually collected data and validate them. Because of the changing needs
for measurement, this component must allow for the definition of new (or modification of

existing) data collection forms as well as related validation (integrity) rules. If possible, the

-39 -

experience base should be capable of adapting to new needs based upon new form definitions.
We have had lots of experience in designing forms and validations rules, using them, and
learning about the complicated issues of deriving validation rules [4, 48]. The first prototype
implementation will allow the TAME user to input off-line collected measurement data and
validate them based upon a fixed and predefined set of data collection forms (currently in use
in NASA’s Software Engineering Laboratory (SEL)). This component is designed but not yet
completely implemented. The practical use of the TAME prototype requires that this com-
ponent provide the flexibility for defining and accepting new form layouts. One research issue
is identifying the easiest way to define data collection forms in terms of a grammar that could

be used to generate the corresponding screen layout and experience base structure.

(A10) The Experience Base component allows for effective storage and retrieval of all relevant
experience ranging from products and process plans (e-.g., analysis plans in the form of GQM
models) to measurement data and intefpretations. Tﬁe experience base needs to mirror the
project environment. Here we are relying on the experience of several faculty members of the
database group at the University of Maryland. It has been recognized that current database
technology is not sufficient, for several reasons, to truly mirror the needs of software engineer-
ing projects [26]. The first prototype TAME implementation is built on top of a relational
database mﬁnagement system. A first database schema [46] modeling products as well as meas-
urement data has been implemented. We are currently adding GQM models to the schema.
The experiences with this first prototype show that the amount of experience stored and its
degree of formalism (mostly data) is not yet sufficient. We need to better package that data in
order to create pieces of information or knowledge. The GQM paradigm provides a
specification of what data needs to be packaged. However, without more formal interpretation

rules, the details of packaging cannot be formalized. In the long-run, we might include expert

— 40 -

system technology. We have also recognized the need for a number of built-in GQOM models
that can either be reused without modification or guide the TAME user during the process of

creating new GQM models.

(A11) The Data Access Control and Security component is supposed to guarantee that only
authorized users can access the TAME system and that each user can only access a predefined
window of the experience base. The first prototype implements this component only as far as

user access to the entire system is concerned.

(A12) The Configuration Management and Control component is supposed to guarantee
consistency between the objects of measurement (products and processes), the plans for meas-
urement (GQM models), the data collected from the objects according to these plans, and the

attached interpretations. This component will not be implemented in the first prototype.

The integration of all these architectural components is incomplete. At this point in time
we have integrated the first versions of the experience base, three measurement tools, a limited
version of the GQM analysis and feedback component, the GQM generation component, and the
user interface management component. Many of the UNIX tools (e.g., editors, print facilities)
have been integraied into the first prototype TAME system to compensate for the missing com-
ponents. This subset of the first prototype is running on a network of SUN-3’s under UNIX. It

is implemented in Ada and C.

This first prototype enables the user to generate GQM models using a structured editor.
Existing models can be selected by using a unique model name. Support for selecting models
based on goal definitions or for reusing existing models for the purpose of generating new models
is offered, but the refinement of goals into questions and metrics relies on human intervention.

Analysis and feedback sessions can be run according to existing GQM models. Only minimal sup-

- 41 -

port for interpretation is provided (e.g., histograms of data). Measurement data are presented to
the user according to the underlying model for his/her interpretation. Results can be documented
on a line printer. The initial set of measurement tools allows only the computation of a limited
number of Ada—source-code~oriented static and dynamic metrics. Similar tools might be used in

the case of Fortran source code [33].

- 42 -

5. Summary and Conclusions

We have presented a set of software engineering and measurement principles which we have
learned during a dozen years of analyzing software engineering processes and products. These
principles have led us to recognize the need for software engineering process models that

integrate sound planning and analysis into the construction process.

In order to achieve this integration the software engineering process needs to be tailorable
and tractable. We need the ability to tailor the execution process, methods and toolé to specific
project needs in a way that permits maximum reuse of prior experience. We need to control the
process and product because of the flexibility required in performing such a focused development.
We also need as much automated support as possible. Thus an Integrated Software Engineering

Environment needs to support all of these issues.

_ In the TAME project we have developed an improvement—oriepted (integrated) process
model. It stresses (a) the characterization of the current status of a project environment, (b) the
planning for improvement integrated into software projects, and (c) the execution of the project
according to the prescribed project plans. Each of these tasks must be dealt with from a con-

structive and analytic perspective.

To integrate the constructive and analytic aspects of software development, we have used
the GQM paradigm. It provides a mechanism for formalizing the characterization and planning
tasks, controlling and improving projects based on quantitative ana.lysis,l learning in a deeper
and more systematic way about the software process and product, and feeding back the

appropriate experience to current and future projects.

The effectiveness of the TAME process model depends heavily on appropriate automated
support by an ISEE. The TAME system is an instantiation of the TAME process model into an

ISEE; it is aimed at supporting all aspects of characterization, planning, analysis, learning and

— 43 —

feedback according to the TAME process model. In addition, it formalizes the feedback and
learning mechanisms by supporting the synthesis of project experience, the formalization of its
representation, and its tailoring towards specific project needs. It does this by supporting goal
development into measurement via templates and guidelines, providing analysis of the develop-
ment and maintenance processes, and creating and using experience bases (ranging from data-

bases of historical data to knowledge bases that incorporate experience from prior projects).

We discussed a limited prototype of the TAME system, which has been developed as the
first of a series of prototypes that will be built using an iterative enhancement model. The limi-
tations of this prototype fall into two categories, limitations of the technology and the need to

better formalize the model so that it can be automated.

The short range (1-3 years) goal for the TAME system is to build the analysis environ-
ment. The mid-range goal (3-5 years) is to integrate the system into one or more existing or
future development or maintenance environments. The long range goal (5-8 years) is to tailor
those environments for specific organizations and projects.

The TAME project is ambitious. It is assumed it will evolve over time and that we will
learn a great deal from formalizing the various aspects of the TAME project as well as integrat-
ing the various paradigms. Research is needed in many areas before the idealized TAME system
can be built. Major areas of study include, measurement, data bases, artificial intelligence, and
systems. Specific activities needed to support TAME include: more formalization of the GQM
paradigm, the definition of better models for various quality and productivity aspects, mechan-
isms for better formalizing the reuse and tailoring of project experience, the interpretation of
metrics with respect to goals, interconnection languages, language independent representation of
software, access control in general and security in particular, software engineering database

definition, configuration management and control, and distributed system architecture. We are

- 44 —

interested in the role of further researching the ideas and principles of the TAME project. We

will build a series of evolving prototypes of the system in order to learn and test out ideas.

6. Acknowledgements

The authors like to thank all their colleguas, visitors, and students who have contributed to
the TAME project and, thereby indirectly to this report: John Bailey, Carolyn Brophy, Michael
Daskalantonakis, Alexis Delis, Dennis Doubleday, F. Youwakim Farhat, Ross Jeffery, Elizabeth
E. Katz, Ara Kouchaksjian, Leo Mark, Karl Reed, Yi Rong, Toshihiko Sunazuka, P. Dave

Stotts, Barbara Swain, A. Joe Turner, Brad Ulery, Shouli Wang, and Linda Wu.

— 45 —

[1]

[2]

8]

(4]

[5]

17

8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

References

W. Agresti, "SEL Ada Experiment: Status and Design Experience," in Proc. Eleventh
Annual Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt,
MD, December 1986.

J. Bailey, V. R. Basili, *A Meta—-Model for Software Development Resource Expenditures,”

in Proc. Fifth International Conference on Software Engineering, San Diego, USA, March
1981, pp. 107-116.

V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology,” in Proc.
First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also avail-
able as Technical Report, TR-1519, Dept. of Computer Science, University of Maryland,
College Park, July 1985).

V. R. Basili, "Can We Measure Software Technology: Lessons Learned from 8 Years of
Trying," in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, December 1985. ‘

V. R. Basili, “Evaluating Software Characteristics: Assessment of Software Measures in the

Software Engineering Laboratory,” in Proc. Sixth Annual Software Engineering Workshop,
NASA Goddard Space Flight Center, Greenbelt, MD, 1981.

V. R. Basili, J. Beane, "Can the Parr Curve help with the Manpower Distribution and

Resource Estimation Problems," Journal of Systems and Software, vol. 2, no. 1, pp. 59-69,
1981.

V. R. Basili, K. Freburger, "Programming Measurement and Estimation in the Software
Engineering Laboratory,” Journal of Systems and Software, vol. 2, no. 1, pp. 47-57, 1981.

V. R. Basili, D. H. Hutchens, "An Empirical Study of a Syntactic Measure Family," IEEE
Transactions on Software Engineering, vol. SE-9, no. 11, pp. 664-672, November 1983.

V. R. Basili, E. E. Katz, "Measures of Interest in an Ada Development," in Proc. IEEE
Computer Society Workshop on Software Engineering Technology Transfer, Miami, April
1983, pp. 22-29.

V. R. Basili, E. E. Katz, N. M. Panlilio-Yap, C. Loggia Ramsey, S. Chang, "Characteriza-

tion of an Ada Software Development," IEEE Computer Magazine, pp. 53-65, September
1985.

V. R. Basili, C. Loggia-Ramsey, "ARROWSMITH-P: A Prototype Expert System for Soft-
ware Engineering Management," in Proc. IEEE Symposium on Expert Systems in Govern-
ment, October 23-25, 1985, pp. 252-264.

V. R. Basili, N. M. Panlilio-Yap, “Finding Relationships Between Effort and Other Vari-
ables in the SEL," in Proc. IEEE COMPSAC, October 1985.

V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical Investigation,*
ACM Communications, vol. 27, no. 1, pp. 45-52, January 1984.

V. R. Basili, R. Reiter, Jr., *A Controlled Experiment Quantitatively Comparing Software
Development Approaches," IEEE Transactions on Software Engineering, vol. SE-7, no. 5,
pp. 299-320, May 1981.

V. R. Basili, H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment," in
Proc. Joint Ada Conference, Arlington, VA, March 16-19, 1987, pp. 318-325.

— 46 —

[16]

[17]

18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]
[29]
[30]

[31]

V. R. Basili, H. D. Rombach, "Tailoring the Software to Project Goals and Environments, "

in Proc. Ninth International Conference on Software Engineering, Monterey, California,
March 30 — April 2, 1987, pp. 345 - 357.

V. R. Basili, H. D. Rombach, *TAME: Integrating Measurement into Software Environ-
ments,* Technical Report TR-1764 (TAME-TR-1-1987), Dept. of Computer Science,
University of Maryland, College Park, MD, June 1987.

V. R. Basili, H. D. Rombach, “Software Reuse: A Framework," in Proc. Tenth Min-
nowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, August 1987.

V. R. Basili, R. W. Selby, Jr., "Data Collection and Analysis in Software Research and
Management," in Proc. American Statistical Association and Biomeasure Society Joint Sta-
tistical Meetings, Philadelphia, PA, August 13-16, 1984.

V. R. Basili, R. W. Selby, Jr., *Comparing the Effectiveness of Software Testing Stra-
tegies," IEEE Transactions on Software Engineering, vol. SE-13, no. 12, pp. 1278-1296,
December 1987 [also available as: Technical Report TR-1501, Dept. of Computer Science,
University of Maryland, College Park, May 1985].

V. R. Basili, R. W. Selby, Jr., *Calculation and Use of an Environment’s Characteristic
Software Metric Set," in Proc. Eighth International Conference on Software Engineering,
London, UK, August 1985.

V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in Software Engineer-

ing," IEEE Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July
1986.

V. R. Basili, R. W. Selby, and T.-Y. Phillips, "Metric Analysis and Data Validation Across
Fortran Projects," IEEE Transactions on Software Engineering, vol. SE-9, no. 6, pp. 652
663, November 1983.

V. R. Basili, A. J. Turner, "Iterative Enhancement: A Practical Technique for Software
Development,* IEEE Transactions on Software Engineering, vol. SE-1, no. 4, pp. 390-396,
December 1975.

V. R. Basili, D. M. Weiss, A Methodology for Collecting Valid Software Engineering
Data,* IEEE Transactions on Software Engineering, vol. SE-10, no.3, pp. 728-738,
November 1984,

P. A. Bernstein, "Database System Support for Software Engineering," in Proc. Ninth
International Conference on Software Engineering, Monterey, CA, March 30 - April 2,
1987, pp. 166-178.

D. Bjorner, *On the Use of Formal methods in Software Development,” in Proc. Ninth
International Conference on Software Engineering, Monterey, California, March 30 — April
2, 1987, pp. 17-29.

B. W. Boehm, "Software Engineering," IEEE Transactions on Computers, vol. C-25, no.
12, pp. 1226-1241, December 1976.

B. W. Boehm, "Software Engineering Economics," Prentice-Hall, Englewood Cliffs, NJ,
1981.

B. W. Boehm, "A Spiral Model of Software Development and Enhancement,” ACM Soft-
ware Engineering Notes, vol. 11, no. 4, pp. 22-42, August 1986.

B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative Evaluation of Software Quality, "
in Proc. Second International Conference on Software Engineering, 1976, pp. 592-605.

— 47 ~

- [32]

[33]

[34]

[35]

(36]

[37]
[38]
[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

C. Brophy, W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada Oriented Design
Methods," in Proc. Joint Ada Conference, Arlington, Virginia, March 16-19, 1987, pp.
231-236.

W. J. Decker, W. A. Taylor, "Fortran Static Source Code Analyzer Program (SAP),"
Technical Report SEL-82-002, NASA Goddard Space Flight Center, Greenbelt, MD,
August 1982.

C. W. Doerflinger, V. R. Basili, “Monitoring Software Development Through Dynamic
Variables," IEEE Transactions on Software Engineering, vol. SE-11, no. 9, pp. 978-985,
September 1985.

D. L. Doubleday, "ASAP: An Ada Static Source Code Analyzer Program,® Technical
Report TR~1895, Dept. of Computer Science, University of Maryland, College Park, August
1987. ~

M. Dowson, "ISTAR - An Integrated Project Support Environment," in Proc. Second
ACM Software Engineering Symposium on Practical Development Support Environments,
ACM Sigplan Notices, vol. 2, no. 1, January 1987.

M. Dyer, *Cleanroom Software Development Method," IBM Federal Systems Division,
Bethesda, Maryland, October 14, 1982.

J. Gannon, E. E. Katz, and V. R. Basili, *"Measures for Ada Packages: An Initial Study,®
Communications of the ACM, vol. 29, no. 7, pp. 616-623, July 1986.

R. B. Grady, Measuring and Managing Software Maintenance,* IEEE Software, vol. 4, no.
5, pp. 35-45, September 1987.

M. H. Halstead, "Elements of Software Science," Elsevier North-Holland, New York, 1977.

D. H. Hutchens, V. R. Basili, "System Structure Analysis: Clustering with Data Bindings,"
IEEE Transactions on Software Engineering, pp. 749-757, August 1985.

E. E. Katz, V. R. Basili, "Examining the Modularity of Ada Programs,* in Proc. Joint Ada
Conference, Arlington, Virginia, March 16-19, 1987, pp. 390-396.

E. E. Katz, H. D. Rombach, and V. R. Basili, "Structure and Maintai'nability of Ada Pro-
grams: Can We Measure the Differences?," in Proc. Ninth Minnowbrook Workshop on Soft-
ware Performance Evaluation, Blue Mountain Lake, New York, August 5-8, 1986.

C. Loggia-Ramsey, V. R. Basili, *An Evaluation of Expert Systems for Software Engineer-
ing Management," Technical Report TR-1708, Dept. of Computer Science, University of
Maryland, College Park, MD, September 1986.

M. Marcus, K. Sattley, S. C. Schaffner, and E. Albert, "DAPSE: A Distributed Ada Pro-
gramming Support Environment,* in Proc. IEEE Second International Conference on Ada
Applications and Environments, 1986, pp. 115-125.

L. Mark, H. D. Rombach, *A Meta Information Base for Software Engineering," Technical

Report TR-1765, Dept. of Computer Science, University of Maryland, College Park, MD,
July 1987.

T. J. McCabe, "A Complexity Measure,* IEEE Transactions on Software Engineering, vol.
SE-2, no. 4, pp. 308-320, December 1976.

F. E. McGarry, "Recent SEL Studies," in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, December 1985.

— 48 —

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]
[64]
[65]

L. Osterweil, "Software Processes are Software Too," in Proc. Ninth International Confer-
ence on Software Engineering, Monterey, CA, March 30 — April 2, 1987, pp. 2-13.

F. N. Parr, *An Alternative to the Rayleigh Curve Model for Software Development
Effort," IEEE Transactions on Software Engineering, vol. SE-6, no. 5, pp. 291-296, May
1980.

L. Putnam, "A General Empirical Solution to the Macro Software Sizing and Estimating
Problem," IEEE Transactions on Software Engineering, vol. SE-4, no. 4, pp. 345-361,
April 1978.

C. V. Ramamoorthy, Y. Usuda, W.-T. Tsai, and A. Prakash, "GENESIS: An Integrated
Environment for Supporting development and Evolution of Software," in Proc. COMPSAC,
1985.

J. Ramsey, V. R. Basili, "Analyzing the Test Process Using Structural Coverage," in Proc.
Eighth International Conference on Software Engineering, London, UK, August 1985, pp.
306-311.

H. D. Rombach, "Software Design Metrics for Maintenance," in Proc. Ninth Annual Soft-
ware Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt, MD,
November 1984.

H. D. Rombach, *A Controlled Experiment on the Impact of Software Structure on Main-
tainability," IEEE Transactions on Software Engineering, vol. SE-13, no. 3, pp. 344-354,
March 1987.

H. D. Rombach, V. R. Basili, "A Quantitative Assessment of Software Maintenance: An
Industrial Case Study," in Proc. Conference on Software Maintenance, Austin, Texas, Sep-
tember 1987, pp. 134-144.

H. D. Rombach, V. R. Basili, and R. W. Selby, Jr., “The Role of Code Reading in the Soft-
ware Life Cpycle," in Proc. Ninth Minnowbrook Workshop on Software Performance
Evaluation, Blue Mountain Lake, New York, August 5-8, 1986.

W. W. Royce, "Managing the Development of Large Software Systems: Concepts and Tech-
niques,* in Proc. WESCON, August 1970.

R. W. Selby, Jr., "Incorporating Metrics into a Software Environment," in Proc. Joint Ada
Conference, Arlington, VA, March 16-19, 1987, pp. 326-333.

R. W. Selby, V. R. Basili, "Analyzing Error-Prone System Coupling and Cohesion," '

Technical Report, Dept. of Computer Science, University of Maryland, College Park, in
preparation.

R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation," IEEE Transactions on Software Engineering, vol. SE-13, no. 9, pp.
1027-1037, September 1987.

C. E. Walston, C. P. Felix, A Method of Programming Measurement and Estimation, "
IBM Systems Journal, vol. 16, no. 1, pp. 54-73, 1977.

A. I. Wasserman, P. A. Pircher, "Visible Connections,"* UNIX Review, October 1986.
Webster’s New Collegiate Dictionary, G + C Merriam Company, 1981.

L. Wu, V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,"
in Proc. Joint Ada Conference, Arlington, Virginia, March 16-19, 1987, pp. 294-303.

— 49 -

[66] M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. R. Basili, "Software Engineering
Practices in the U.S. and Japan," IEEE Computer Magazine, pp. 57-66, June 1984.

- B0 -

8. Appendix

learn

btruc-—

quan—
plan + ture tify
under— opera— |exe— | feed |inte— for— |expe-— anal-
stand plan | tionally | cute back |grate |malize |rience | ysis

P1 X x | X X X

P2 x | X X | x X

P3 x | X X X X X
P4 X X X X
P5 X

Ps X

P7 x | X X

P8 X X X X

P9 X X X

P10 X

M1 X
M2 X X
M3 S x

M4 X X

Ms X | X
Ms X X
M7 X | X X

M8 | X X X
MOl x x| X X | x X X X
M| x X
Mi11 X
Mi2 X X
Mi13 X X
Mi14 . X X x

Table 1: Fxample Relationships_hetween
Principles (Ri/Mi) and Pracess Implications

- 51—

C1 Cz2.1 C2.2 C3 C4 Cs
understand X
plan X X
plan
operational X X
execute X
learn and X
feed back
integrate X X X X X X
formalige X X X X X X
structure
experience X
quantify
analysis x x x x x X

Table 2;: Exawple Relationships_hetween

Process Implications and Process Madel Components (Ci)

- 52 —

R1 | R2| R3 R4 |R5| R6 | R7 |R8 |R9 |[R10 |R11 | R12

ci| x
cza1| x
C2.2.1 X
c2 2<
C2.2.2 X
3.1
osZ ©
N oeosz2| x |x Ix | x
C4 X

Table 3: Fxample Relationships_hetween
Pracess Model Components (Ci) and TAME System Requirements (Ri)

- 53 —

Al | A2 |A3 | A4 | A5 |AB | A7 | A8 | A9 |A10| A11 | A12

R2 X | X X

R3 X
R4

RS

R8s | X X

R7 X
RS X

RS X

R10 X

R11 X

R12

Table 4: Fxample Relationships_hetween
TAME System Requirements (Ri) and_Acrchitectural TAME. System Components LA}

~ 54 —

