UMIACS-TR-88-72 October, 1988
CS-TR-2116

Reusing Existing Software

Victor R. Basili

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

Gianluigi Caldiera
ITALSIEL}

~ ABSTRACT

The paper examines the problems related to the analysis of existing software in
order to reuse it. The source programs are analyzed in two steps: the first step is dedi-
cated to the identification of the reusable components, the second one to their comput-
er assisted classification. The paper deals in more detail with the identification phase
on the basis of the research work in progress on a system called CARE (Computer
Aided Reuse Engineering).

+ This work was supported by the ITALSIEL S.p.A. with a Grant given to the Industrial Associated Program of the Department of
Computer Science of the University of Maryland. Computer support provided in part through the facilities of the Computer Sci-
ence Center at the University of Maryland.

October 1988 Page 1

1. Introduction

To reuse something means to use the same thing more than once without any substantial
modification to its structure.

Reuse is a common practice in many software engineering projects: it is an informal or
semi-formal kind of reuse in which information, techniques and products are shared between peo-
ple working on the same, or similar, projects. '

According to an analysis performed on informal reuse in some environments /1/, there are
three kinds of reuse:

(1) Reuse of knowledge that exists in people and documents ;

(2) Reuse of plans on how to perform certain activities, very often embodied in methodologies
and standards;

(3) Reuse of tools and products.

When we speak of software reuse, therefore, we have to take into account these three types
and their mutual influence. Today software engineering is developing a great deal of research in
this field, transforming the informal reuse concepts into a formal technology of reuse, as a basis
for the future software factory.

There are two major approaches to the technology of reuse /4/: the composition technolo-
gtes that assume the components are atomic and unchanged in their reuse, and the generation
technologies in which components are just patterns, either of code, or of transformation rules,
having a meaning only in the context of a generator program. The main differences between the
two approaches are the role, and subsequently the nature, of a component: passive in the compo-
sition approach, active in the generation approach.

We will not discuss these issues here, because both approaches are based on existing com-
ponents as well as on newly designed ones. Here, we concentrate on the huge number of programs
already written and available in the computer systems of every organization. A successful intro-
duction of a reuse technology is a consequence of the benefits it brings in terms of costs and pro-
ductivity: the development of reusable components is, at first, more expensive than the develop-
ment of "traditional" ones, therefore the reuse of the existing code, hopefully, can balance the ini-
tial increase of costs.

We define a reusable software object as a piece of information that is produced in a software
project and can be reused in another project. We can identify some major classes of reusable
objects:

- Architectures : general specifications of an environment coded according to some
specification/representation technique: a functional domain model, a data schema, etc.

- Designs : structured representations of the way a system is implemented: a program logical
structure, a module interface chart, etc.

- Tools : sets of programs performing one or more specific functions: a compiler, a filter, a
text formatter, etc.

- Functional collections : a set of software pieces performing related functions: a C include
library, a subroutine library, etc.

- Program units : independent pieces of sofware that can be either compiled or interpreted
in a given environment: an Ada compilation unit, a Smalltalk class, etc.

- Program fragments : a sequence of statements written in a programming language as a
part of a larger program unit: a macro, a block, etc.

Two classes of software objects (Program units and Program fragments) are of specific
interest for programming and are called components in order to emphasize their role as building
blocks of larger systems.

October 1988 Page 2

Our problem, in this paper, is how we find the reusable components in the source code of an
existing system, and how we make them *more reusable* by a set of suitable specifications.

We will outline a very general reuse oriented software life cycle, in order to clarify the pur-
poses of our research. Then we will introduce the concepts of {reuse) re-engineering that are at
the basis of our research. The core of the paper is the description of a process to extract the reus-
able components from existing source code. An implementation of those ideas is work in progress
in a laboratory at the Computer Science Department of the University of Maryland under the

support of ITALSIEL S.p.A., Rome, Italy.

2. A Reuse Oriented Software Life Cycle

A software engineering project reusing software components is logically divided into two
major domains:

- the business domain, performing the activities that are specific to the implementation of
the system to which the project is dedicated; the resulting software is called "business
software* (the programs that are ordinarily delivered to the customers);

- the component factory performing the activities of implementation and maintenance of
the reusable components and their tailoring to the needs of the business domain; the result-
ing software is called “factory software" (reusable components).

Business software and factory software have their own life cycles interacting in the imple-
mentation phases. A system is designed and its components are identified in the business domain;
then the needed components are ordered from the factory. Here they are generated (i.e., retrieved
or developed) and returned to the project.

For the sake of semplicity we model the business software life cycle with the traditional
"waterfall" model as a sequence of steps (Fig. 1) closed by the maintenance activities. Actually
many different models can be used as well.

Business Domain Component Factory
Domain

Specs

v

Evolution

Rel¢ase Components

A

onent

Intggration
Contrd

Figure 1: Business Software Life Cycle

October 1988 Page 3

The difference between a conventional and a reuse oriented environment comes out after the
design and specification of the system. The design specs become an input to the factory that
returns the implemented components.

The traditional waterfall structure doesn’t change so much but the activities in the imple-
mentation phases are different. Instead of coding the programmer assembles reusable components,
sometimes choosing from a set of equivalent ones returned from the factory. No change is per-
formed by the programmer on the reusable component, no access is given to the programmer to
the actual implementation of the component: the choice among different components is based on
business domain criteria like performances or size.

The factory software life cycle can be modeled, for instance, on the "waterfall* scheme, but
it is substantially different. A component may be implemented to satisfy a specific need of the
business domain; but afterwards, is generalized and verified in order to be used again in a similar
problem. Therefore we have a life cycle going from a more specific implementation to a general
one, base on the concepts of transformation and generalization (Fig.2). '

We can combine the two life cycles in a single model showing the interactions we have been
describing. This "double waterfall” is the model informally already used in many organizations.in
order to reuse some software: macros, in—house developed utilities and tools, etc.

A key issue here is the way the component factory acquires and stores the components. We
will not deal here with the storing of components. We will assume the factory has a “software
component repository" supporting the management of the components and their retrieval accord-
ing to the received specification /3/. The repository contains components coming from three
sources:

- factory development : this is the life cycle we have already outlined, in which a component is
developed from scratch in order to be returned to the business domain, then, generalized
and stored in the repository;

- external source : the factory obtains the component from an external data repository or
component vendor,

Business Domain Component Factory
Domain

Specs

v

Geheralization

Components ook up Evolution

A

Generation

Figure 2: Factory Software Life Cycle

October 1988

Page 4

BUSINESS SOFTWARE

FACTORY SOFTWARE

Requirements
— Analysis
Component
Software Look-up
Specification
l specs o l
4 omponent
Design Generation
?ompongnt ——Verification
ntegration components &
Release
Quality l
Control At
Generalization
Release Quality
& Control
Acceptance

Figure 3: The two Software Life Cycles.

- re-engineering : the components are obtained from existing software, formerly developed
with or without intent of reuse.

The factory development of reusable coinponents is based on a design methodology aimed to
reusability. Without going into the details of the problem, we can say that an object—oriented
design methodology (/6/) has the needed features: rigorous information hiding, data abstraction,
and modularity. In these methodologies, the elementary functions of the system are clustered
within the objects, and the data flows are represented by messages exchanged by the objects.
Grouping together the objects sharing common properties, we obtain the reusable components,
usually called "classes®, of our system.

There are many external sources and software repositories today (/7/). The Ada Software
Repository is a collection. of source code and of documentation accessible over the ARPA net. At
the end of 1986 it contained 28 MB of source code and 11 MB of documentation.The GTE is
developing a library of reusable Ada components for the US Department of Defense. Much work
has been done at Intermetrics around the Ada Software Catalog (ASCAT) and the Reusable
Software Library (RSL). The EVB Software Engineering Inc. sells a collection of reusable Ada
components called GRACE, consisting of over 200 documented components, which deal with
data structures and are based on the Brooch taxonomy 8.

The re—engineering of a system can be one of the main sources of reusable components. The
basic idea is to reverse the implementation process identifying components within an existing sys-
tem with potential for reuse and qualifying them according to some reuse oriented specification
technique. The description of the tasks related to re-engineering and the discussion of the feasi-
bility of computer aided reuse engineering (CARE) are, from now on, the main interest of this

October 1988 Page 5

paper.

3. The Re-engineering of Existing Software

The remarks we made at the end of the previous section set the context for our discussion of
re—engineering. The term re-engineering denotes a large subdomain of software engineering deal-
ing with already implemented systems, and can be used, broadly speaking, in two categories:

- reverse re—engineering: the target is the system itself, that can be re-designed or simply re-
documented;

- reuse re—engineering: the target is another system, that is designed reusing some knowledge,
plans or products from the foregoing ones.

Our discussion fits in the second category: we have an existing system (or several), with its
source code and documentation, which we will analyze in order to extract the components that
can be reused to implement a new system. The reusable components, at the end of our analysis,
will be stored in an imaginary software repository from which they will be retrieved in order tb
be reused.

In defining a framework for software reuse, Basili and Rombach /12/ defined a characteriza-
tion scheme that captures several aspects of the reuse process, product and environment. We can
use that scheme to characterize the process which we shall outline in' this paper.

The environment dimensions include:
(1) Application stability: How similar are past, present and future project application domains?

In our case the applications are mostly in the same domain, even though some reusable
components, as system software components, can be extracted and reused in very different
application domains .

(2) Process stability: How similar are past, present and future evolution processes?

We categorize such things as design methods and languages in order to judge the potential
- of the system components for reuse in the new system.

(3) Personnel stability: How similar are past, present and future project teams?

The main step from informal to formal reuse is the capability to reuse software without the
direct involvement of the developers of the previous systems. We will introduce the concepts
of reuse oriented specification in order to achieve this goal, assuming application knowledge
on the part of the re-engineer.

With regard to the reuse process, there are also several dimensions based on the set of
activities that are performed in reusing any object: identify and understand the components,
modify and tailor them to the project needs, and integrate them into the system. The reuse pro-
¢ess dimensions include:

(1) Time of activities: When do we identify, understand, modify and tailor?

This question is partially answered by the preceeding section in which we have discussed the
software life cycles and the problem of acquiring and storing the reusable components. The
topic of this paper, however, is only the process that identifies and understands the com-
ponents.

(2) Type of modification: How much and what kind of modification needs to be made?
(3) Mechanism: How do we modify or tailor?

In the first phase of our research project, we are trying to make minimal changes to the
software; therefore this is the context of this paper. Later stages will deal with varying the two
last parameters /11/. ‘

October 1988 Page 6

We can characterize the reuse product by taking into account the properties that are
relevant for its reuse. The reuse product dimensions include, therefore:

(1) Type: What is a characterization of the object?

We focus our attention on software components, as they have been characterized in a
preceeding section.

(2) Usability: How independent and understandable is it?

(3) Quality: How good is it?
Our process is mainly dedicated to answer the last two questions through a combination of
syntax analysis, measurements and specification techniques. The properties of the software

components are taken into account separately and then related to each other according to a
so called reusability attributes model.

Existing Documentation

System

Source
Programs

Components \vd
» | COMPONENTS ———> | COMPONENTS
IDENTIFICATION QUALIFICATION
Measures
Qualified
Components
< Reusable
Components

Figure 4: The Phases of Re-engineering.

We define two phases, by distinguishing what can be fully automated (the first phase) from
what needs some interaction with an application domain expert (the second phase).

The first phase is the components identification: it analyzes the source code of the exist-
ing system, trying to acquire from it as much information as possible. It can be automated to
generate reuse candidates, because its input is written in a formally specified programming
language. It uses several measures to quantify the observable properties of a software component
that are in some way related to its reusability; and, it matches the results of the measurements
with what we think is a “reasonable" profile for a reusable component. There is a great amount
of discussion today about the characteristics that make a component reusable /2/. Prieto-Diaz

October 1988 Page 7

and Freeman in their paper /5/ support the idea that a software component is reusable if the
effort required to reuse it is remarkably smaller than the effort required to implement a com-
ponent with the same functions. This means that a reusable component has a small size and a
simple structure, is accompained by an excellent documentation, and is written in a suitable pro-
gramming language. Our measures will try to quantify these intuitive ideas. The product of the
components identification phase, as outlined in Fig. 4, is a set of components with the related
data, describing their reusability and their actual reuse in the existing system.

The second phase is the components qualification: it analyzes the reusable components
identified in the previous phase in order to understand their "meaning" and to associate them
with a reuse-oriented specification. This process of understanding the meaning combines what
can be derived from the component with the domain knowledge owned by the software engineers
and contained in the specifications of the system. Basili and Mills have demonstrated in /14/ that
it is possible to understand a program and to associate with it a formal documentation. The tech-
nique they use can be partially automated and represents the kernel of the qualification phase.
The outcome of this phase is a set of specifications that is associated to each reusable component
and, as we will see, one that allows its classification according to a general framework for the
classification of software components (tazonomy). There are several examples of taxonomy:
G.Booch /8/, for instance, classifies the components into structures, tools and subsystems, and
uses, as classification attributes, the features related to concurrency, space management, garbage
collection and instance visiting. Prieto-Diaz and Freeman /5/ represent the functionality of a
component by three attributes <function, object, medium>> and its environment by three more
attributes <system type, functional area, setting>.

After this overview of the process, let’s go into a more detailed discussion of the two phases
of reuse re—engineering. ;

4. Components Identification

According to our previous definition, a software component, both a program unit and a pro-
gram fragment, is an aggregate of data structures and algorithms. In order to be reusable, it must
be enough independent and modular to be thought as a building block of other software com-
ponents. This means we expect to have

~ . compact components defining and manipulating only one kind of object;
- tndependent components usable without requiring the presence of other ones.

For instance, a component that manipulates bounded stacks should not manipulate binary
trees; and, if this is the case, we should be able to split the component into two compact ones,
based on the two different data types they manipulate. Besides, we want to be able to manipulate
bounded stacks using only that component.

The reason to require compact components is that non-compact ones are difficult to qualify
and impractical to use. However, compactness should be achieved without loosing independence:
when we use a component we should be able to use it as a self contained object, without the need
of other components. The component itself must encapsulate all the computational and manipula-
tive features that are needed to use it. The two properties appear in contradiction with each other
but they are not: compactness requires components to have a conceptually simple specification
and independence requires a self contained implementation.

If we can analyze an existing system, we can measure the frequency of reuse of some com-
ponents: this is important information about their reusability, because a component that is often
reused 1s probably highly reusable.

The identification process therefore is made of two steps:

October 1988 Page 8

(1) The source code of the programs of the existing system is analyzed in order to extract the
subprograms and to understand their relationships; this step produces a list of candidate
components.

(2) The candidates are analyzed using a reusability attributes model, and the actual candidates
reusable components are selected; this step produces a list of reusable components that will
be submitted to the specification process.

The reusability attributes model is the formalization of the properties that are pertinent to
the reuse of a software component. It is composed by measures and by exogenous constants,
where the first ones are a quantification of the intuitive properties, and the second ones are the
ranges of values, inside which we consider a component to be reusable. Properties like compact-
ness and independence are in the domain of general software engineering; so to speak, and can be
approached using general purpose measures like cyclomatic complexity, software science measures,
data bindings, package visibility, component access, and any other measures that provide insight
into the quality of the component. Other properties, like the frequency of reuse, are more specific
of the re-engineering domain, and are focused on reusability.

The reusability attributes model, therefore, is composed by two sets of measures: measures
related to general properties of the components ll=(ll1,li2,~--,# ;) and measures related to the
reuse specific properties v=(v,v,...,v;). The model associates these two sets of measures with
two sets of exogenous constants & , and « , that represent the ranges of values for those measures.
The term “"exogenous" means that the values of the constants are set from the outside in order to
have a better fit between reusability attributes model and reality.

The presence of the exogenous constants allows our model to be tailored to every environ-
ment, and to be improved with its use. We can start to use the model with a generic setting for
the variables; then, using the model, we can modify that setting in order to reach a better fit with
the environment of our project.

Exogenous

Measures Constants Improvement

Taslor

Figure 5: The Reusability Attributes Model and its Improvement

October 1988 Page 9

We select the components according to computations based on the model, but the model
itself is tuned to the environment. Abstract prescriptions, in order to identify the components
from the subprograms in a given environment, cannot be given: the model is extendable, can be
tailored to the environment, and improved with use {Fig. 5). This approach responds to the need
of supporting the reuse analysis with the existing experience and tailoring it to the software
engineering environment /12/.

The implementation of the model we are currently building is an interactive system in
which a set of tools analyzes the source programs and computes the metrics. If the user is not
satisfied with the parameters of the model he is currently using, he can change them interactively,
regenerate the model and run it again. Browsing and navigating capability are offered to the user
for an easier operation.

4.1. Components Extraction

The first step of the component identification is based on the syntax of the programming
language used in the analyzed system. We will use C and Ada in our examples, but the discussion
i1s not restricted to those environments, as long as the programming language is structured, we
could easily use Pascal or Modula-2.

The way the components appear in a program is determined by the programming language.
If we have a C program like this:

main () {
printf (“Hello World!\n");
}

we recognize that the program is using the component "printf*, because we know that the C
language invokes the components as functions operating on arguments. The component actually
being used depends on the visibility rules of the environment: the function "printf" must be con-
tained in a library that is visible from the program which uses it (the include-library "stdio.h").

‘An analogous example can be made in Ada:

with text_io; use text_io;
procedure hello is
begin
put(*Hello World!*);
new_line;
end hello;
Here the components are grouped together into packages (“text io", in the example), and the
context is explicitly declared in the source code. '

Both C and Ada deal with components in the same way: declaring them and invoking them.
Components are identified by their name, sometimes extended by the name of the package con-
taining it. There are of course problems related with the enforcement of naming conventions in
the environment we are analyzing. If enforcement is weak we may have different groups of people
working on the same project with inconsistent nomenclatures:

- identical components having different names ;
- different components having the same name.
An analysis based on the syntax of the programming language cannot solve the intricate problems

that may rise in this context. The interaction with the user, outlined in the preceeding section, is
the key for the solution to the major problems rising in this area.

October 1988 Page 10

Abstracting from the programming language /9/, we can outline the structure of a general
program by identifying declarative sections and procedural sections. The declarative sections
define the objects that are going to be used in the procedural sections: types, variables, subpro-
grams. The last ones are programs themselves, and have the same structure. The procedural sec-
tions contain the statements that invoke the subprograms, and, in some cases, more declarative
sections.

Prog s a
| e b
I3 bl
L » b2
s C scl
3 a ‘
> a
—>
L » b

A ___eB AdefinesB
A ___3» B AinvokesB

Figure 6: The Subprograms Map Tree

For every source code file written in a given programming language, we can generate a map
of the subprograms in that file. We have therefore a Subprogram Map Tree for each program
unit: the nodes represent the subprograms and are labeled with their extended name (container
name + program name); the branches represent either the definition or the invocation of a sub-
program unit. The subprograms listed in the tree are our candidates as reusable components:
they form a broad list from which we are going to select the elements that show some reusability.

4.2, Components Selection

The Subprogram Map Tree is a structured set of candidates obtained by a syntactic
analysis of the source file we have analyzed. In order to select the reusable components from this
set of candidates, we use the reusability attributes model introduced in a previous section. The
implementation of this model is a filter applied to the Subprogram Map Tree cutting some leaves
when the measured quantities are far from the values given by the exogenous constants. The can-
didate reusable components are the result of this selection (Fig. 7).

October 1988 Page 11

Candidate Components

Candidate Reusable Components

Figure 7: The Components Selection

Let’s discuss now the measures contained in the reusability attributes model according to
the distinction between general measures p and reuse specific measures v. Both sets are an initial
collection of measures being implemented for the first prototype. It is assumed that metrics wiil
be added, deleted or modified, based upon experimentation. The reusability attributes model will
evolve and vary with the sub-application domain, language, etc., and, hopefully, will reach a
characteristic set of metrics (/22/).

The first two measures we introduce are the data types measure 4 , and the data bindings
measure 4 4,
If a subprogram defines a data type and one of its subprograms deals with it, it is necessary

to have "visibility* of that definition in order to use the subprograms as independent com-
ponents. Let’s see an Ada example:

procedure A(...) is
type T1 is new ... ;

procedure B(x: in T1; ...) is
begin
end B;

begin

October 1988 Page 12

I the number of nesting levels between the subprogram A containing the data type
definition, T1 in the example, and the subprogram B using the data type is small, we assume the
type is tailored to be used by that subprogram and group together the subprograms A and B in a
single component. The concept of *small" is a bit fuzzy and depends on the granularity of the
design: we' define therefore an exogenous variable to define its extremes.

The data types measure p 4 is applied to a data type T and a subprogram S referencing T,
and is the number of nesting leveils betwee121 subprogram P defining T and the subprogram S using
T. The exogenous constants « ,;’ and « ,° represent the extremes of p,: if #(Tp,S) is inside

1)) Lt

the range defined by « Y and « b, Ve define P as a single component including S.
t ¢

A similar analysis of the clustering of subprograms into components can be performed using
the data bindings measure /10/: let x be a variable and A and B subprograms, if A assigns x and
B references x the triple (A,x,B) is a data binding among A and B. Data bindings represent a
communication path between subprograms that can be evaluated quantitatively. The application
of data binding analysis to reuse of Ada code has been discussed in /11/, and we will not repeat
that discussion here.

We define therefore a data bindings measure p 4, and associate with it, as we did for the
data types, an exogenous constant o 4 :

The reusability attributes model contains other general measures that quantify properties of
a software component relevant to its potential reuse /5/. They are, in our model,

1) Program Size measured by the number of lines of code u;,-, and by the Halstead length
/13/ of the component 4 .

2) Program Structure measured by the number of subprograms and links and by the McCabe
cyclomatic complexity g,y of the flowgraph representing the program /13/.

A small and simple software component is easier to deal with, if we want to reuse it. As
Prieto-Diaz and Freeman /5/ observe, these factors are modified by the experience of the reuser,
who has its own criteria to decide what is small and simple. In order to take into account these
criteria, we can combine the measures L and »(G) with a subjective evaluation of the size and
complexity of the components, obtained from the staff of the project.

3) Programming Language measured by the Halstead language level indicator 4, /13/.

The p, indicator doesn’t say that a language is "better than" another one: it just measures
the readability of a component written in that language.

4) Program Documentation measured by a combination of the language level for the
specification language (if any) and by a subjective rating.

The documentation we are referring to is the one that is ordinarily associated with the
source code of a program. We will see, in next section, that there are several kinds of documenta-
tion we can attach to a component, but this one is the only one that is available at the beginning
of a re-engineering activity. If the purpose and the interface of the component are well defined,
the component is more reusable.

5) Program Reliabslity measured by a combination of the expected number of errors and by
the number of reported errors in the component, or by some more sophisticated reliability
measure /21/.

The measures we have introduced are just some relevant ones and any number of measures
can be added to the measurement vector u. The exogenous constants «, represent again the

limit values of the measured properties, in the environment where we are usmg the model. These
limits will be modified based upon experience.

Let’s now describe a set of more specific measures of the reusability. They are basically fre-
quencies normalized over the total set of reuse events we can see in a static environment. It would

October 1988 ‘ Page 13

be interesting to have data about the dynamic reuse of the components, i.e. how many times com-
ponents are actually reused by the running system. This is one of the goals of our future
research.

As we said in a foregoing section, a component that is highly reused is probably highly reus-
able: a direct consequence of this simple remark is that we have to evaluate the actual reuse of a
component in order to establish how significant the measures (#1,#2,---,# ¥ are. Besides, a high
reuse rate is itself a reusability measure, because the component i1s well known throughout the
project and the engineers know it is available and rely on it. The reuse (measurement) vector v
is therefore attached to each component like the measurement vector x.

We initially define two reuse measures for each component:

1) Reuse frequency: the ratio between the number of calls addressed to that component and
the total number of component calls in a given collection of programs:

v(Co)=n(Cy)/ E;"(C;)

where O is the component whose reuse we are measuring, and C; are the components called
in the given collection of programs. This is therefore the frequency of reuse of the com-
ponent C, calculated over the global reuse of all components {C;} in the system.

2) Reuse specific frequency: the ratio between the number of calls addressed to that component
and the number of calls addressed to a choosen component C, in the standard environment
of the program (for instance: stdio.fprintf in C, text_io.put in Ada):

v,(Co)=1n(Cy)/ "(Op)

where the choice of C, is made according to the characteristics of the collection of pro-
grams, selecting an often used component. This is the compared frequency of reuse of the
component in relationship with the reuse of a "special® component.

Both reuse metrics are calculated on a given collection of programs. There are many ways
to choose this collection: a particularly representative subset of the programs in the system, the
whole system, a random sample of the programs in the system, etc.

The exogenous constants a, are here the minimal reuse frequencies, under which a com-

ponent is not reused enough to be considered reusable by the model. The necessity of adapting
these values to the context and choosing carefully the collection of programs on which to compute
the measures, is evident.

5. Components Qualification

We will not discuss here the components qualification in the same detail as components
identification: it will be the topic of a future paper. Therefore the goal of this section is to com-
plete the picture of re-engineering, adding some hints about the second phase.

Qualifying a component means specifying it and find its place in a given component taxon-
omy. There are two kinds of relevant specifications in our context: the functional specification
saying what the component does and the interface specification saying how the component can be
connected to other ones to perform more complex functions.

From these two kinds of specifications we can derive the classification of the component
according to a given taxonomy, i.e. a short, structured summary of the meaning and of the role
of the component, mainly suitable for retrieval purposes.

October 1988 Page 14

Source .
Documentation
Component Code

Qualification

\/ Functional Interface

Specification Specification
Qualified
Component
Classifi-
cation

Figure 8: The Component Qualification

The two specifications and the classification, attached to every reusable component, are its
reuse-oriented specification (ROS) and will be stored with it in the software repository.

There are many languages that can be used to write the ROS of a component and the refer-
ences in this paper give an account of some related literature (/15,16,17,18/).

The topic we want to deal with is the classification of components. A simple and very use-
ful taxonomy is discussed by Prieto-Diaz and Freeman /5/ and produces a faceted classification:
two groups of attributes are attached to each component, and represent its functionality and
environment. The version we give here is a slightly modified one. We classify the components
according to a semantic data model representation of the application system in which they are
used.

Every data processing system can be represented by a model written according to a choosen
modeling language. A very common one, which represents the conceptual objects by entities and
relationships and their properties by attributes appended to them /19/, is called Entity-
Relationship model. There is definitely a finite number of operations that can be performed on a
conceptual object or on its attributes: therefore, when we want to classify a component assigning
to it a functionality, we just have to transform the "intended function" contained in the func-
tional specification into one of those operations. The first two attributes of the classification are:
<Object, Function>. Very often it is interesting to know the underlying structure that imple-
ments a conceptual object: an external data storage. a table, a message, a node of a distributed
system. This provides a third attribute, called <Medium>, for the functional classification of a
component. The following table contains some examples of the values for the attributes.

October 1988 Page 15

__DObject ___| Function | _Medium__
Entity 1 Add Storage
Entl.Attributel | Modify Workstation
Entl.Attribute2 | Join Sensor

Decode Stack
Entity 2 Compare | Queue
Entity 3 Append Tree

Close Mouse
Relationship 1
Relationship 2

These attributes can be partially derived from the functional specification of the component and
partially provided by a software engineer knowing the application domain. The existence of the
conceptual schema is essential for the classification of the components and is one of the goals of
the domain analysis.

The environment of a component is divided into intrinsic environment, stating the
program’s interfaces with the external world (how many and what kind of "ports"), extrinsic
environment, stating the functional area (the name of the project in the business domain), and
operating environment. The following table contains some examples of these attributes.

Port Functional Operating
| Number | __ Type __|__ Area | Environment
P1 Ascii File MS-DOS
P2 Interrupt UNIX
P3 Binary File MVS DB2

Binary Packet

The data for the environment attributes can be, once more, obtained either from the interface
specification or from the interaction with a software engineer.

The complete collection of classification attributes associated with every component is the
search key for every component search in the data repository, with a procedure similar to the one
described by Prieto-Diaz and Freeman /5/. It allows us to go back to the identification phase
when we recognize similarities among components having different names. The interaction with
an engineer is here crucial: the system will list the components having the same classification
pointing out that they might be the same thing, then it is up to the engineer to decide if they are
really the same despite the different appearance.

6. Conclusions

We have shown that the outcome of the re—engineering process, as we defined it, is a collec-
tion of reusable components ready to be stored in the software repository together with all the
information we have extracted from the system during the two phases described. The components

October 1988 Page 16

factory will access the repository to retrieve and update that information, and will mantain the
integrity of the system.

Two are the major benefits we see in using the outlined techniques: the immediate availabil-
ity of a large number of reusable components to be used in the implementation of new systems,
and a better understanding of the functions and the structure of those components. This last
point is very important because the information we obtain from the analysis of the reusable com-
ponents can be "reused" in designing new ones.

CARE

Component Component
Identifier Qualifier
—_ Structure Specifier
Analyzer
; - Classifier
Metric
Analyzer Interf Manager
Existing Programs Qualified
{Ada or C) Reusable Components

Figure 9: The CARE System

The Computer Science Department of the University of Maryland and the ITALSIEL S.p.A.
are currently working to a first prototype of the CARE system: it will be able to perform the
re-enginnering activities on both C and Ada programs (Fig. 9). The system will be able to iden-
tify and measure the reusable components in an existing application domain, and to qualify them
with the help of a domain expert. The first version of the prototype is expected by the first half of
1989 and will by tested on a case study from the MIS area. It will

- extract and select the components from a set of programs;

- measure their reusability and frequency of reuse;

- restructure the selection according to those measurements;

- analyze the statistical correlation between the 4 and v vectors.

A second prototype of the CARE System will complete the system supporting the
qualification process and: it will associate, with some human help, every component with the

October 1988 Page 17

functional and interface specifications and will label it with a set of classification attributes simi-
lar to the one we have described in the last section. The prototypes will run on a Sun Worksta-
tion under the UNIX operating system. We are eventually planning to integrate the CARE Sys-
tem and the TAME System /20/, developed at the Computer Science Department of the Univer-
sity of Maryland.

7. References

/1/ V.R.Basili, HD.Rombach, J.Bailey, B.G.Joo, "Software Reuse: A Framework", Proceedings
of the Tenth Minnowbrook Workshop on Software Reuse , July 28-31, 1987.

/2/ SPC, Proceedings of the Workshop on Software Reuse , Technical Report SPC-TR-88-008,
Software Productivity Consortium, Reston, VA, October 1987.

t

/3/ B.ABurton, R.W.Aragon, S.A Bailey, K.D.Koehler, L.A.Mayes, "The Reusable Software
Library®, IEEE Software , July 1987, pp.25-33.

/4/ T .Biggerstaff, CRichter, "Reusability Framework, Assessment, and Directions*, [EFE
Software , March 1987, pp. 41-49.

/5/ R.Prieto-Diaz, P.Freeman, "Classifying Software for Reusability®, IEEE Software , Janu-
ary 1987, pp.6-16. ‘

/6/ E.Seidewitz, M.Stark, General Object-Oriented Software Development , Software Engineer-
ing Laboratory, NASA Goddard Space Flight Center, SEL-86-002, August 1986.

/7/ W.Tracz, "Ada Reusability Efforts: A Survey of the State of the Practice®, Proceedings of
the Joint Ada Conference 1987 , March 16-19, 1987, pp 35-44.

/8/ G.Brooch, Software Components with Ada , Benjamin Cummings Publishing Company,
1987.

/9/ N.H.Madhavji,"Fragtypes:A Basis for Programming Environments*, IEEE Transactions on
Software Engineering , vol.14, no.1, January 1988, pp.85-95.

/10/ D.Hutchens,V.R.Basili, "System Structure Analysis: Clustering with Data Bindings", IEEE
Transactions on Software Engineering , vol.11, no.8, August 1985, pp.749-757.

/11/ V.R.Basili, HD.Rombach,J.Bailey, A.Delis, F.Farhat, "An Ada Reuse Metrics", Ada Reusa-
bilsty and Metrics Workshop , Atlanta, Georgia, June 15-16, 1988.

/12/ V.R.Basili, HD.Rombach,"Software Reuse: A Framework*, in preparation.

/13/ S.D.Conte, H.E.Dunsmore, V.Y.Shen, Software Engineering - Metrics and Models ,The
Benjamin/Cummings Publishing Company, 1986.

October 1988 Page 18

/14/ V.R.Basili, H.D Mills, "Understanding and Documenting Programs*, [EEE Transactions on
Software Enginecering, Vol.SE-8, No.3, May 1982.

/15/ Process Design Language/Ada, IBM Federal Systems Division, 1983.

/16/ D.C.Luckham, F.W.Von Henke: "An Overview of ANNA, A Specification Language for
Ada", IEEE Software, March 1985, pp. 9-24.

/17/ Joseph A.Goguen, "Reusing and Interconnecting Software Components", IEEE Computer,
February 1986, pp.16-28.

/18/ R.Prieto-Diaz and J.Neighbors, “Module Interconnection Languages®, Journal of Systems
and Software, 6, pp. 307-334, 1986.

/19/ ISO TC97/SC5/WG3, Concepts and Terminology for the Conceptual Schema J.J. van
Griethuysen (ed.), 1982.

/20/ V.R.Basili, HD.Rombach, *Tailoring the Software Process to Project Goals and Environ-
ment*, Proceedings of the Ninth International Conference on Software Enginnering, March
30-April 2, 1987, Monterey, CA, pp.345-357.

/21/ B.Choi, R.DeMillo, W.Du, R.Stansifer, "Observing Ada Software Components", Procced-
ings of the Sizth Symposium on Empirical Foundations of Information and Software Sci-
ences, October 19-21, 1988, Atlanta, GA.

/22/ V.R.Basili, R.W.Selby Jr., "Calculation and Use of an Environment’s Characteristic
Software Metric Set*, IEEE Proceedings of 8th International Conference on Software
Engineering, August 28-30, 1985, London, UK, pp. 386-390. ‘

