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ABSTRACT

In this paper, we view maintenance as a reuse process. In this context, we dis-
cuss a set of models that can be used to support the maintenance process. We present
a high level reuse framework that characterizes the object of reuse, the process for
adapting that object for its target application, and the reused object within its target ap-
plication. Based upon this framework, we offer a qualitative comparison of the three
maintenance process models with regard to their strengths and weaknesses and the cir-
cumstances in which they are appropriate. To provide a more systematic, quantitative
approach for evaluating the appropriateness of the particular maintenance model, we
provide a measurement scheme, based upon the reuse framework, in the form of an or-
ganized set of questions that need to be answered. To support the reuse perspective, a

set of reuse enablers are discussed.
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Abstract

In this paper, we view maintenance as a reuse process. In this context, we discuss a set of models that
can be used to support the maintenance process. We present a high level reuse framework that characterizes the
object of reuse, the process for adapting that object for its target application, and the reused object within its tar-
get application. Based upon this framework, we offer a qualitative comparison of the three maintenance process
models with regard to their strengths and weaknesses and the circumstances in which they are appropriate. To
provide a more systematic, quantitative approach for evaluating the appropriateness of the particular maintenance
model, we provide a measurement scheme, based upon the reuse framework, in the form of an organized set of
questions that need to be answered. To support the reuse perspective, a set of reuse enablers are discussed.

Introduction

If we take the view that software should be developed with the goal of maximizing the reuse of prior -
experience in the form of knowledge, processes, products and tools, then the maintenance process is logically
ideally suited to a reuse-oriented software development process. There are a variety of reuse models. The key
issue here is which process model is best suited to the particular maintenance problem at hand.

In this paper, we present a high level organizational paradigm for software development and maintenance
in which an organization can learn from prior and current development and maintenance tasks and then apply
that paradigm to several maintenance process models. The paradigm has associated with it a mechanism for set-
ting goals that can be measured so that the organization can evaluate the process and the product and leam from
its experience for future projects or enhancements of the current project.

We begin by identifying three process models that can be used for maintenance. We then present a high
level reuse framework that characterizes the object of reuse, the process for adapting that object for its target
application, and the reuse object within its target application. Based upon this framework, we offer a qualitative
comparison of the three maintenance process models with regard to their strenghts and weaknesses and the cir-
cumstances in which they are appropriate. To provide a systematic, quantitative approach for evaluating the
appropriateness of the particular maintenance model, we provide a measurement scheme, using the
Goal/Question/Metric Paradigm. Since reuse requires a ‘supportive environemnt, a set of environmental reuse
enablers are discussed.

Maintenance

The nature of software is that it can be modified without the use of physical tools such as screw drivers
and soldering irons. This has lead to the false assumption that maintenance is easy and inexpensive. Clearly
nothing could be further from the truth.

Most software systems are complex and modification requires a deep understanding of the functional and
non-functional requirements, the mapping of functions to system components, and the interaction of the



components. Without good documentation of the requirements, design and code with respect to function, tracea-
bility and structure, maintenance becomes a difficult, expensive, error-prone task. As early as 1976, Belady and
Lehman reported on the problems with the evolution of OS 360 [7]. The literature is filled with similar experi-
ences and lessons learned [10,12,16,18,20].

Maintenance consists of several different types of activities: correction of faults existing in the system,
the adaptation of the system to a changing operating environment, e.g., new terminals, operating system
modifications, etc., and changes to the original requirements. The new system is like the old system but
different in a specific set of characteristics. One can view the new version of the system as a modification of
the old system or a new system which reuses many of the components of the old system. Although these two
views have many aspects in common, they are quite different with respect to the process models used and their
effects on future environments.

In fact, we can identify at least three process models associated with maintenance depending upon the
characteristics of the modification. We will call these (1) the quick fix model, (2) the iterative enhancement
model, and (3) the full reuse model. All three models reuse the old system and so are reusc-oriented. Which
model should be chosen for any particular modification is a combination of management and technical decisions.

Quick Fix Model. The quick fix model involves taking the existing system, usually just the code, and making
the necessary changes to the source code and the accompanying documentation, e.g. requirements, design, and
recompiling the system as a new version. This may be as straightforward as a change to some internal com-
ponent, €.g. an error correction involving a single component or a structural change or even some functional
enhancement. Here reuse is implicit.

0ld System New System
Requirements Requirements <--|
Ilbesign Design <-——~————-— :
CI:ode ————————————— > Code =~w———e——- >:
’Jll'est Test <-———=———- :

Figure 1, Quick Fix Process Model

Iterative Enhancement Model. Iterative Enhancement [5] is an evolutionary model which was proposed
for software development in environments where the complete set of requirements for a system were not fully
understood or the author did not know how to build the full system. Although it was proposed as a develop-
ment model, it is well suited to maintenance. The process model involves:

1. Starting with the existing system requirements, design, code, test and analysis documents

2. Redeveloping starting with the appropriate document based upon analysis of the existing system, propagating
the changes through the full set of documents

3. At each step of the evolutionary process, continuing to redesign, based upon analysis.
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Figure 2. Iterative Enhancement Model

To view this as a maintenance model, assume the initial implementation is the system in its current state
in the evolutionary maintenance process. The process assumes that the maintenance organization has the ability
to analyze the existing product, characterize the proposed set of modifications, and redesign the current version

where necessary for the new capabilities. Again, reuse is implicit.

Full Reuse Process Model. While iterative enhancement starts with evaluating the existing system for
redesign and modification, a full reuse process model starts with the requirements analysis and design of the new
system, with the concept of reusing whatever requirements, design and code are available from the old system.

The reuse process model involves:

1. Starting the requirements for the new system, reusing as much of the old system as feasible

2. Building a new system using components from the old system or other systems available in the repository

developing new components where appropriate.
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Figure 3. Full Reuse Process Model.



The difference between the last two approaches is more one of perspective. The full reuse model! frees the
developer to design the solution relative to the available set of solutions of similar systems. The iterative
enhancement model takes the last version of the current system and enhances it. Both approaches encourage
redesign, but the full reuse model suggests a wider forum and can lead to the development of more reusable
components for future systems where the iterative enhancement model suggests the tailoring of an existing sys-
tem for the given extensions.

A Reuse Framework

The existence of several models for maintenance raises several questions. Which is the most appropriate
model for a particular environment? a particular system? a particular set of changes? the task at hand? How
do I improve each step in the process model I have chosen? How do I minimize overall cost and maximize
overall quality?

In order to answer these questions we need a model of the object of reuse, the process of adapting that
object for its target application, and the reused object within its target application. A simple model for reuse is
given in figure 4. In that model, an object is any software process or product and a transformation is the set of
activities that are performed in reusing that object. Given that the scope of the new application are understood,
the steps are:

1. identifying the candidate reusable pieces of the old object
2. understanding them

3. modifying them to our needs

4. integrating them into the process
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Figure 4. ‘A Simple Reuse Model

To flesh out the model, we need a framework for categorizing objects, transformations, and context. The
framework should cover various categories e.g. reuse object: process, product. Within each category there are
various classification schemes for product: e.g. requirements document, code module, test plan, and process: e.g.
cost estimation, risk analysis, design. '

There are a variety of approaches to reuse and schemes that classify the object of reuse
[8.9,11,13,15,17,19]. We use here a variation of a reuse framework [4] that captures several aspects of the reuse
process, product and context.

Object dimensions include:

o



(1) Reuse Object Type: What is a characterization of the candidate reuse object? Sample categories and
classifications are: process (e.g. design, test) and product (e.g. application, tool).

(2) Self-Containedness: How independent and understandable is the candidate reuse object? Sample categories
and classifications are: syntactic independence (e.g. tightly coupled), semantic independence (e.g. similar
functionality), and precision of specification (e.g. formal, informal).

(3) Reuse Object Quality: How good is the candidate reuse object? Sample categories and classifications are:
maturity (e.g. newly developed, used in one application) complexity (e.g. low cyclomatic complexity) reli-
ability (e.g. no failures during prior use).

Context dimensions include:

(1) Requirements Domain: How similar are the requirements domains of the candidate reuse objects and
current or future projects? Some example categories and classifications are: application (e.g. ground sup-
port software for satellites), distance (e.g. same application, similar algorithms/different problem focus).

(2) Solution Domain: How similar are the evoloution process which resulted in the candidate reuse objects and
the ones used in the current and future projects? Some example categories and classifications are: process
model (e.g. waterfall model) design method (e.g. function decomposition) programming language (e.g.
FORTRAN).

(3) Knowledge Transfer Mechanism: How is information about the candidate reuse objects and their context
passed to current and future projects? An example classification is: humans (e.g. subset of the develop-
ment team doing maintenance, separate team doing maintenance).

Transformation dimensions include:

(1) Type of Transoformations: How do we characterize the transformation activities to be performed? Some
sample categories and classifications are: Percent of Change (e.g. 0%, 5%), Direction (e.g. general to
domain specific, project specific to domain specific), mechanism of modification (e.g. verbatim, parameter-
ization, template-based, unconstrained) and mechanism for identifying (e.g. by name, by functional require-
ments),

(2) Activity Integration: How do we integrate the transformation activities into the new system development?
Some sample categories and classifications are: phase activity performed in the new development planning
(e.g. cost estimation, risk analysis), construction (e.g. requirements development), analysis (e.g. testing).

(3) Transformed Quality: What is the contribution of the reuse object in the context of the new system with
respect to the objectives set for it? Sample category and classifications are: reliability (e.g. no failures asso-
ciated with that component) and performance (e.g. satisfies the timing requirement).

Comparing the Models Using the Reuse Framework

When applying the reuse framework to the maintenance process, we are focusing on a set of reuse objects
that are product documents. Let us compare the various models according to the dimensions given.

Consider the reuse object dimensions:

With regard to reuse object type, the object of the quick fix and iterative enhancement models is the set
of documents representing the old system. The object of the full reuse model is the repository including the
old system.

With regard to self-containedness, all the models depend upon the unit of change. The quick fix model
depends upon how much evolution has taken place since entropy may have unstructured the system. In iterative
enhancement, the evolved system should be improving for the specific application and for the appropriate set of
changes, the unit of change should be more visible. In the full reuse model, the evolved system should be
improving with respect to reuse object independence for the general application, depending upon the quality and
maturity of the repository.

With regard to reuse object quality, the quick fix model offers little knowledge of the quality of the old

object. In iterative enhancement, the analysis phase provides a fair assessment of quality with respect to the
particular application. In full reuse, we have an assessment of quality of the reuse object across several systems.



Consider the context dimensions:

With regard to the requirements domain, the quick fix and iterative enhancement model assume the same
application, in fact the same project. The full reuse model allows for manageable variation in the application
domain, depending upon what is available in the repository.

With regard to the solution domain, the quick fix model assumes the same solution structure exists during
maintenance as during development. There is no change in the basic design or structure of the new system. In
the iterative enhancement model, because redesign is a part of the model, there is some modification to the solu-
tion structure allowed. The full reuse model allows major differences in the solution structure, i.c. a complete
redesign is possible going from functional decomposition to object oriented design.

With regard to knowledge transfer mechanism, the quick fix model and iterative enhancement work best
with the same people. The full reuse model can compensate for having a different team, assuming we have
application specialists and a well documented reuse object repository.

Consider the transformation dimensions:

With regard to type of activities, the quick fix model typically uses a source code look-up, reading for
understanding, unconstrained modification and re-compilation approach. Iterative enhancement typically begins
with a search through the highest relevant document, changing it and continuing through the subsequent docu-
ments using a variety of modification mechanisms. The full reuse is uses a library search, and a variety of
modification mechanisms depending upon the type of change. Here modification is done off-line.

With regard to activity integration, in the quick fix model, all activities are performed at same time. Itera-
tive enhancement associates the activities with all the normal development phases. In the full reuse model,
identification of the candidate reusable pieces is done during project planning and the other activities are done
during development.

With regard to transformed quality, the quick fix model usually works best on small well-contained
modifications since their affect on the system can be understood and verified in context. Iterative enhancement
is more appropriate for larger changes where the analysis phase can provide better assessment of the full effect
of changes. Full reuse is appropriate for large changes and major redesigns. Here, analysis and prior history of
the performance of the reuse objects support quality.

Given these differences, we can provide some analysis of the various maintenance process models and
recommend where they might be most applicable. But first, let’s discuss the relationship between the develop-
ment and maintenance process models. In some sense development can be considered a subset of maintenance.
Maintenance environments differ from development environments with regard to the constraints on the solution,
customer demand, timeliness of response, and organization.

Most maintenance organizations are set up for the quick fix model but not for the iterative enhancement or
reuse process models. This is because they are responding to timeliness, e.g. a system failure needs to be fixed
immediately, or a customer demand, e.g. a modification of the functionality of the system., Clearly these are
strengths for the quick fix model. But the weaknesses of the model are that the modification is usually a patch,
not well documented, the structure of the system has been partly destroyed which makes future evolution of the
system difficuit and error-ridden, and it is not compatible with development processes. This model is best used
when timeliness and customer need are dominant and there is little chance the system will be modified again.

The iterative enhancement model allows. for redesign so the structure of the system evolves and future
modification is easier. It focuses on the particular system, making it as good as possible. It is compatible with
development process models. The drawbacks are that it is a more costly and possibly less timely approach (in
the short run) than the quick fix model and it provides little support for generics or future similar systems. It is
a good approach to use when the product will have a long life and evolve over time. In this case, if timeliness
is also a constraint, the quick fix model can be used as a patch and the iterative enhancement model can be used
for the long term change, replacing the patch.

The full reuse process model provides the maintainer with a broader perspective, focuses on long range
development for a set of products and has the side effect of creating reusable components of all kinds for future
developments. It is compatible with development process models, and in fact, it is the way we would like such
models to evolve. The drawback is that it is more costly in the short run, is not appropriate for small
modifications but can be used in conjunction with other models. It is best used when we are living in multi-



product environments or generic development where the product line has a long life.

The assessment given above is informdl and inwitive. This is due to the fact that it is a qualitative
analysis. To do a quantitative analysis we need quantitative models of the reuse objects, transformations, and
context. We need a measurement framework for characterizing via categorization and classification, evaluation,
prediction, and motivation to support management and technical decisions. To do this we apply the
goal/question/metric paradigm to the models.

The Goal Question Metric Paradigm

The goal/question/metric (GQM) paradigm [1,2,6] represents a systematic approach for setting the project
goals (tailored to the specific needs of an organization), defining them in an operational, tractable way by
refining them into a set of quantifiable questions that in tumn imply a specific set of metrics and data for collec-
tion. The tractability of this software engineering process allows the analysis of the collected data and com-
puted metrics in the appropriate context of the questions and the original goal. This context supports feedback
(by integrating analytic and constructive aspects) and learning (by defining the appropriate synthesis procedure
for lower-level into higher-level pieces of experience).

The process of setting goals and refining them into quantifiable questions is complex and requires experi-
ence. In order to support this process, a set of templates for setting goals, and a set of guidelines for deriving
questions and metrics has been developed [2].

Goals are defined in terms of purpose, perspective and environment. Different sets of guidelines exist for
defining product-related and process-related questions. Product-related questions are formulated for the purpose
of defining the product (e.g., physical attributes, cost, changes and defects, context), defining the quality perspec-
tive of interest (e.g., reliability, user friendliness), and providing feedback from the particular quality perspective.
Process-related questions are formulated for the purpose of defining the process (quality of use, domain of use),
defining the quality perspective of interest (e.g., reduction of defects, cost effectiveness of use), and providing
feedback from the particular quality perspective.

Application of the Goal Question Metric Paradigm

In applying the goal/question/metric paradigm, we define the goals of the maintenance process and articu-
late the issues associated with choosing the appropriate process model, providing management with the questions
that need to be answered to make intelligent decisions, understand the trade-offs, and perform risk analysis.
There are a variety of goals we can generate. For example: to determine which process model should be chosen
for a particular product, to improve our performance or evolve a better definition of any of the models for a par-
ticular product line.

In what follows we will generate a sample goal for maintenance and provide a partial list of the questions
involved. Some of the answers will be obvious, either in the measures they require be taken or the information
required form the experts; others will not. Thus a goal for maintenance in the context of the reuse framework
might be:

Purpose:

To evaluate the new product requirements in order to reuse as much of the available products as possible.

Perspective:
Examine the cost and future evolution of the development from the point of view of the organization.

Environment:
Along with the standard environmental factors, such as resource factor, problem factors, we would like to
pay special attention to the three context dimensions of the reuse framework.

Requirements Domain:
Clearly we are using product objects from the same application domain, although we have the ability
to choose candidate components from other application domains.



Solution Domain: )
This defines the process models, methods and tools that were used in the development of the existing
product. If the same processes are to be used for the evolved project then there is not problem with
reuse. However, the reuse model allows us to change the processes (and thus possibly to the product
structure) at the cost of reusing less of the prior project. If there are to be changes then we must
evaluate the cost of modification of the process and resulting product relative to the gains for process
change.

Knowledge Transfer Mechanism:
If the maintenance group is the same as the development group then there is no transfer of knowledge
required. If they are different then there are concerns that must be evaluated with respect to applica-
tion, process and product knowledge of the maintainers and the kinds of documentation available.

Product Definition:
In considering the product, we actually have several. The new product to be built, i.e. the new version
of the system, and the old versions plus any other systems that are relevant.

Product Dimensions

New Product:
How many requirements are there in total for the new system?

Old Product:
What is the mapping of requirements to system components?
What is the measure of the complexity of the traceability?
How independent are the components to be modified?
What is the complexity of the system and the individual system components?

Repository:
What candidate components are available in the repository and what are their context, transformation and
object classifications?

Difference between new and old:
How many requirements are there that are not in the old system? (Categorize by size, new vs. modification

of old vs. deletion of old, etc.)
How many components must be changed, added, deleted" (categorized by size and type of change)

Changes/Defects

How many errors, faults, failures (categorized by class) are associated with the requirements and components
that need to be changed?
What is the profile of changes to the original system prior to this change?

Cost
What is the cost of understanding the new requirements?
What is the estimated cost of building a new system, reusing the experience and parts of the old project?

What was the cost of the old system in total?
What was the cost of each version?
What is the estimated cost of modifying the old system to meet the new requirements?

Customer Context
How will the new system be used?

What are the potential future modifications based upon our analysis of customer profiles, past modifications and
the state of technologies?



Perspective:
cost and future evolution of the development

Model of Perspective: cost of modification of the design of the system vs. the expected future modifications
Parameters:

the life time of the system

the cost of future evolution of the system

the cost of evolving the old system versus rebuilding from old parts

Feedback:
Is the model appropriate?
How can the model be improved?
How can the estimations be improved?
How can classifications be improved?
How can activities be improved?

The Goal/Question/Metric paradigm allows us to develop other goals for reuse. These can be developed
for whether the reuse object is a process or a product. Consider the following examples:

Evaluate the modification activity within the reuse process in order to improve it. Examine the cost and correct-
ness of the resulting object from the point-of view of the customer.

Predict the appropriate maintenance process model in order to perform the correct one. Examine its cost with
respect to the customer needs and the future evolutions of the system from the point of view of the corporation.

Evaluate the standard corporate design method in order to assess how it should have been tailored for the current
project. Examine its effectiveness from the point of view of the designer.

Evaluate the components of the existing product in order to determine whether to reuse them. Examine their
independence and functional appropriateness from the point of view of their use in future systems.

Predict the ability of a set of code components to be integrated into the current system from the point of view of
the developer.

Motivate the development of a reusable set of components in order to engineer them for reuse. Examine the
reward structure from the point of view of the manager and developer.

Reuse Enablers

There are a variety of support mechanisms necessary for achieving maximum reuse that have not been
sufficiently emphaisized in the literature. In this paper we have discussed several of these: a set of maintenance
models, a mechanism for choosing the appropriate such models based upon the goals and characteristics of the
problem at hand, and a measurement and evaluation mechanism. To support these activities there is a need for
an improvement paradigm that aids the organization in evaluating, learning and enhancing the software process
and product, a reuse-oriented evolution environment that motivates and supports reuse, and automated support
for that model as well as the measurement and evaluation process.

The Improvement Paradigm: The improvement paradigm [1] is a high level organizational process model in
which the organization learns how to improve their product and process. Within this model the organization
should learn how to make better decisions on which process model to use for the maintenance of their future
software products based upon learning from past performance. The paradigm is defined as follows:

1. Planning. There are three integrated activities to planning that are iteratively applied:

(a) Characterize the current project environment. It provides a quantitative analysis of the environment and
a model of the project in the context of that environment. In the context of maintenance, the charac-
terization should provide product dimension data, change and defect data, cost data and customer
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context data for earlier versions of the system to be modified, information about what classes of candi-
date components are available in the repository for the new system, and any information feedback
from prior projects about experience with the different models for the types of modifications required.

(b) Set up goals and refine them into quantifiable questions and metrics using the goal/question/metric para-
digm, for successful project performance and improvement over previous project performances. This
consists of a top-down analysis of goals that iteratively decomposes high-level goals into detailed sub-
goals. The iteration terminates when it has produced sub-goals that we can measure directly. For
maintenance this involves the development of specific G/Q/Ms as specified in the prior section.

(c) Choose and tailor the appropriate construction model for this project and the supporting methods and
tools to satisfy the project goals relative to the characterized environment. Understanding the environ-
ment quantitatively allows us to choose the appropriate process model and fine tune the methods and
tools needed to be most effective. For example, knowing the effect of prior applications of the various
maintenance models and methods in creating new projects from old systems allows us to choose and
fine tune the appropriate process model and methods that have been historically most effective in
creating new systems of the type required from older versions and component parts in the repository.

2. Analysis. Analyze the data to evaluate the current practices, determine problems, record the findings and
make recommendations for improvement. We must conduct data analysis during and after the project. The
goal/question/metric paradigm provides traceability from goals to metrics and back. This permits the meas-
urement to be interpreted in context ensuring a focused, simpler analysis. The goal-driven operational
measures provide a framework for the kind of analysis needed.

3. Leamning and Feedback. This step involves the organization and encoding of the quantitative and qualitative
experience gained from the current project into a corporate information base to help improve planning,
development, and assessment for future projects. The results of the analysis and interpretation phase can be
fed back to the organization to change the way it does business based upon explicitly determined successes
and failures. In this way, we can learn how to improve quality and productivity, and how to improve
definition and assessment of goals. We can start the next project armed with the experience gained from
this and previous projects. For example, understanding the problems associated with each new version of a
system, provides insights into the need for redesign and redevelopment.

A Reuse-Oriented Environment: Reuse can be more effectively achieved within an environment that supports
reuse [3,8,13]. Software engineering environments provide such things as a project data bases, and support
the interaction of people with methods, tools and project data. However, experience is not controlled by
the project data base or owned by the organization. Reuse only exists implicitly.

We need to be able to incorporate the reuse process model into the context of development. We need to
combine the development and maintenance models in order to maximize the context dimensions. We need to
integrate characterization, evaluation, prediction and motivation into the process. We need to support learning
and feedback to make reuse viable. We propose that the reuse model can exist within the context of the
improvement paradigm, making it possible to support all of the above requirements.

The TAME Project: The improvement paradigm and the reuse oriented process model require automated support
for the data base, encoded experience, and the repository of prior projects and reusable components [2,3,14].
We need to automate as much of the measurement process as possible, and provide a tool environment for
managers and engineers to develop project specific goals, and generate operational definitions based upon these
goals that specify the appropriate metrics needed for evaluation. The evaluation and feedback cannot be done in
real time without automated support. Automated support will help in the post mortems analysis.

The goal of the TAME system [2] is to instantiate and integrate the improvement and goal/question metric
paradigms and help in the tailoring of the software development process. But it can also support the reuse-
oriented process model. The TAME environment model contains basic mechanisms for supporting systematic
learning and reuse. To help with systematic learning it provides support for recording experience, off-line gen-
eralizing or tailoring of experience, and formalizing experience. To help with systematic reuse it supports
mechanisms for using existing experience and on-line generalizing or tailoring of candidate experience. In this
way it attempts to integrate both learning and reuse into an overall evolution model.
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The application of the TAME system concept to maintenance will provide a mechanism for choosing the
appropriate maintenance process model for a particular project and provide data to help us learn how to do a
better job of maintenance.

Summary

The approach to maintenance depends on the nature of the problem and the size and complexity of the
modification. This paper recommends that we view maintenance as a reuse process. In this way the maintainer
is provided with a reuse model and a framework for viewing maintenance that permits a measurement frame-
work to be applied. A new model of a reuse-oriented evolution process can be developed in which the existing
models can be defined. Existing models can then be analyzed within this framework, allowing an organization
to evaluate the strengths and weaknesses of the different approaches and provides feedback in refining the vari-
ous process models and creating an experience base from which to support further management and technical
decisions.

The approach provides support for defining activities, determining options, and evaluation. If the approach
is not adapted then it is difficult for an organization to know which process model to use for a particular project,
whether they are evolving the system appropriately, and whether they are maximizing quality and minimizing
cost over the life of the system.
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