UMIACS-TR-90-30 February 1990
CS-TR -2419 '

Réengineering Existing Software
for Reusability*
Gianluigi Caldieral and Victor R. Basili

Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract

developed in many cases without aiming to reusability.

The paper discusses the problems related to the analysis and reengineering of existing software
in order to reuse it. A process model is presented that analyzes the existing programs in

The current research, ongoin at the Department of Computer Science of the University of
Maryland, on this process model and on the CARE (Computer Aided Reuse Engineering

“This work was supported by Italsiel S.p.A. with a Grant given to the Industrial Associated Program of the Department of
Computer Science of the University of Maryland. Computer support provided in part through the facilities of the Computer
Science Center at the University of Maryland.

*Also with Italsiel,

1. Introduction

It is commonly agreed that order of magnitude increases in productivity and
quality can be accomplished only with an effective reuse of prior experience that
exists in the form of knowledge, processes and products.

Reuse is a very common concept in everyday life: as P.Freeman remarks, reuse is
"such a common activity, in general, that most dictionaries don’t even list it
essuming that "the intelligent reader will understand that reuse means to use
something again" [FRE 86]. We can transfer the idea from this everyday life
understanding to the context of software engineering, and define reuse as the
activity of repeatedly using existing experience, after reclaiming it, with or
without modification.

In many software engineering projects reuse is as common as in everyday life: it
is an informal or semi-formal kind of reuse in which information, techniques and
products are shared among people working on the same or similar projects.
Today software engineering research is trying to transform the informal reuse
concepts into a technology of reuse, as a basis for the future software factory.
The benefits of this transformation are evident to everyone, for both quality and
productivity as well as for manageability of the whole production process.

Problems in achieving higher levels of reuse are the inability to package experi-
ence in a readily available way, to recognize which experience is appropriate for
reuse, and to integrate reuse activities into the software development process.
Reuse is assumed to take place totally within the context of the project develop-
ment. This is difficult because the project focus is the delivery of the system:
packaging of reusable experience can be, at best, a secondary focus of the project.
Besides, project personnel are not always in the best position to recognize which
pieces of experience are appropriate for other projects. Finally, existing process
models are not defined to support and to take advantage of reuse, much less to
create reusable experience. Theyv tend to be rigidly deterministic where, clearly,
multiple process models are necessary for reusing experience and creating pack-
aged experience for reuse.

To address these problems. Basili [BAS 89] has proposed an organizational frame-
work that separates the project specific activities from the reuse packaging activi-
ties, with process models for supporting each of the activities. The framework
defines two separate organizations: a project organization and an experience fac-
tory. .

The role of the project organization is to develop the product, taking advantage
of all forms of packaged experience from prior and current developments. -n
turn, the project offers up its own experiences to be packaged for other projects.

The role of the ezperience Jactory is to recognize potentially reusable experience
and package it in 2 form that makes it easy for projects to use.

One particular function of the experience factory is the development and packag-
ing of software components. This function is performed by an organization we
call the component factory, which supplies code components to projects upon
demand, and creates and maintains a repository of components for future use.
The experience manipulated by the component factory is the pyrogramming and
application experience as it is embodied in programs and their documentation.

There are several activitjes that the component factory performs, and a set of
process models associated with these activities, In the next section we will concen-
trate on the definition 2nd integration of severa] of the process models for the
project organization and the component factory with regard to the specification
and ordering of components by the project, and the response by the component
factory.

The rest of this paper concentrates on one specific activity of the component fac-
tory, the seeding of the repository with components salvaged from prior systems.
Section 3 deals with the process model for extracting, evaluating and packaging
appropriate components from existing systems. Section 4 focuses on the current
reuse mode] for extraction and preliminary evaluation. Section 5 discusses the
automation of the process model in a system called CARE (Computer Aided
Reuse Engineering), the general architecture of this system, and its current
implementation. Section 6 presents case studies that use the current instantia-
tion of the reuse model.

2. A Reuse-Oriented Process Mode]

The process models used by the project organization are very similar to the ones
used today by software engineering projects (for instance: waterfal] model, itera-
tive enhancement model, etc.): software engineers generate specifications from
requirements and design a system to satisfy those requirements. When the com-
ponents of the system are identified, usually after the so called preliminary
design. thev are requested from the component factory.

The software objects of specific interest for our discussion are;

= Program Units: independent pieces of software that can be either com-
piled or interpreted in a given language environment: an Ada compila-
tion unit, a C translation unit, a COBOL program, a Smalltalk class,
ete.

~ Program Fragments: a sequence of statements written in a programming
language as a part of ope or more larger program units: a macro, a
block, a function, etc.

The elements of these two classes are what we call software components to
emphasize their role as building blocks of larger systems. The project organiza-
tion requests them from the component factory and, once they are obtained,
integrates them into the programs and the system that have beep previously
designed.

The project organization process model, after component integration, continues
as usual with product quality control (test, reliability analysis, etc.) and release.

The process model of the component factory is twofold [BAS 88]: on one side the
factory satisfies the requests for components coming from ‘the project organjza-
tion, on the other it prepares itself for answering those requests. This mix of syn-
chronous and asynchronous activities is actually typical of the process model of
the experience factory in general, as pointed out by Basili [BAS 89]. Let us out-
line these two parts of the process model].

When the component factory receives a request from the project organization it
looks up in its catalog of components to find a software component that satisfies
that request with or without tailoring. There are two kinds of tailoring processes
that can be applied to a software component: instantiation and modification.
Instantiation has been in some way anticipated by the designer of the com-
ponent, who associated with it some parameters in order to make it suit different
contexts. A generic unit in the programming language Ada is an example of this
kind of parametric component and of the instantiation process. Modification is an
unanticipated tailoring process. in which statements are changed, added or
deleted to adapt the component to a request. If no component that satisfies the

-4 —

request can be found in the catalog of the available components or the necessary
modification is too expensive, the component factory will develop the requested
component from scratch or generate it from more elementary components. After
a verification step the component is released to the project organization that
requested it.

The capability of the component factory to efficiently answer the requests coming
from the project organization is a critical element for the successful application
of the reuse technology. Therefore the catalog of the available components must
be rich in order to reduce the chances of development from scratch, and look up
must be easy. This is why there is an asynchronous part in the process model of
the component factory.

Some software components are produced without specific requests coming from
the project organization, developing a component production plan, generalizing
components previously produced on request from the project organization, or
extracting reusable components from existing systems. An example of a com-
ponent production plan is provided by the Booch components [BOO 87]): the
most common data structures and the main operations on them are analyzed and
implemented as Ada packages. An application oriented component production
plan can be performed analyzing an application domain with the aim of identify-
ing the most common functions; then these functions can be implemented into
reusable components, to be used by the developers. Generalization, on the other
side, is the activity that transforms a pre—existing component into a new one,
either adding more function or parametrizing it. The next sections will deal in an
extensive way with extraction and reengineering of software components from
existing systems.

The generated components must be well packaged and easily retrieved. This is
the purpose of component qualification, an activity that adds to components
functional specification, test cases and a classification based on some given com-
ponent taxonomy. There are several examples of such taxonomies. G.Booch [BOO
87], for instance, classifies the components into structures, tools and subsystems.
and uses, as classification attributes, the features related to concurrency. space
management, garbage collection and instance visiting. Prieto-Diaz and Freeman
[PRI 87] suggest a classification schema that uses facets derived from an analyvsis
of the application domain. For instance, we can represent the functionality of a
component with facets such as performed function, manipulated object, etc.; and
We can represent its environment with facets such as’ system type, functional
area, etc. A set of values for these facets provides the actual characterization of
a component in this taxonomy.

Software components so produced by the component factory are stored in a repo-
sitory from which they can be found when needed. The efficient organization of
the repository and the ease of access to its contents are a key issue for the whole
model we are outlining but we will not discuss it here [JON 88].

PROJECT COMPONENT
ORGANIZATION FACTORY

/"(\
Verify

f Synck. §

Figure 1: The Reuse Oriented Process Model

The diagram contained in Fig.1 synthesizes the three parts of the model we have
described in this section.

The concepts of tailoring and generalization have been defined in the more gen-
eral context of the experience factory by Basili and Rombach [BAS 88]. As they
point out, both tailoring and generalization can be performed before knowing the
precise reuse context (off-line) or after knowing it (on-line). The right balancing
of on-line and off-line activities is very important to minimize the costs of
software development in the factory and in the process as a whole. We have
applied these concepts to the component factory using on-line component tailor-
ing and off-line component generalization.

.

3. The Reuse Reengineering of Existing Programs

The development of reusable components is, in general, more expensive than the
development of specialized code because there is a cost overhead due to the pres-
ence of the component factory. In the long term there is an economic gain from
software reuse, but in the short term the cost of setting up the reuse—oriented
environment may discourage many organizations from implementing the reuse
paradigm. As we said in the Jast section, a rich and well organized catalog of
reusable components is the key to a successful implementation of the paradigm.
But this is not the case at the beginning, unless we are able to reuse code that
was developed by the organization in the past , without having reuse in mind.

Reuse of existing code appears to be a very effective way to enrich the catalog of
reusable components with a large number of items, provided that we are able to
find enough components that perform useful functions. This should be the case in
mature application domains where most of the functions that need to be used
already exist in some form in prior systems. Those systems were designed and
implemented informally reusing code. For example, rates of reuse around 60%
have been found in business applications [LAN 84].

However existing code is usually not reusable as is: it must be modified and pack-
aged for reuse. The study of this packaging can be seen as a new, growing branch
of what is called software reengineering, that domain of software engineering that
studies the cost—effective improvement of existing systems. Two types of reen-
gineering are defined here:

- reverse engineering: the target is the system itself, that can be re-designed
or simply re-documented;

— reuse engineering: the target is another system, that is designed reusing
some knowledge, plans or products from previous ones.

Our discussion fits in the second category: we have an existing system (or
several), with its source code and documentation, which we analyze in order to
extract components that can be reused in implementing 2 new system. The reus-
able components are packaged and stored in a software repository available for
future projects.

Reuse reengineering is therefore an asynchronous activity performed by the com-
ponent factory in analyzing the existing programs. Its relevance to the activities
of the component factory is very high at the beginning, when the production of a
rich catalog of reusable components is a critical task. When the reuse process

- becomes more consolidated it becomes less relevant.

We divide reuse reengineering into two phases (Fig.2). First, we choose some can-
didates and package them for possible independent usage; then, we understand
the service they can provide and store them in the repository with all informa-
tion that has been obtained during the process. We will show that the first phase
can be fully automated. The * understanding” step, instead, has to be performed

-7 _

by an engineer with an effective knowledge of the application domain where the
component has been developed.

The necessary human intervention in the second phase is the main reason for
splitting the reuse reengineering process in two steps, when common sense would
assume searching through existing programs looking for "useful" components
first. The first phase reduces the amount of human analysis needed in the second
phase, by limiting it to those components that really look worth considering and
may be simple to understand. The second phase uses the more expensive human
resources only on this reduced amount of code.

In the 'component identification phase, program units are automatically
extracted, made independent, and measured according to observable properties
that are related to their potential for reuse. There is a great amount of discus-
sion about these properties: Prieto-Diaz and Freeman in their paper [PRI 87]
support the idea that a software component is reusable if the effort required to
reuse it is remarkably smaller than the effort required to implement a component
with the same functions. This means we need to understand in a quantitative
way the distance of the component from its potential reuse. As we will see with
more detail in the next section, we propose to perform the identification phase
using a quantitative model, made of a family of measures. We call it the reusabil-
ity atiributes model.

The identification phase consists of three steps:

1. Definition (or Refinement) of the reusability attributes model. Based upon
our current understanding of the characteristics of a potentially reusable
component in our environment, we define a set of automatable measures
that capture these characteristics and an acceptable range of values for these
metrics. The metrics and their vajue ranges will be verified against the out-
comes in the next steps, and continually modified until we evolve to a reusa-
bility attributes mode] that maximizes our chances of selecting candidate
components for reuse.

2. Eztraction of components. Modular units are extracted from existing svs-
tems and "completed" as components with all the external references
needed to reuss them in an independent way, e.g., to compile them. The
term "modular unit" is used here to mean a syntactic unit, like 2 C fune-
tion, Ada subprogram or block, FORTRAN subroutine, etc.

3. Application of the model, The extracted, completed components are meas-
- ured using the current reusability attributes model; those that pass the test,
i.e., whose measurements are within the range of acceptable values for the
model, become candidate reusable components that are analyzed by the
domain expert in the qualification phase.

During the component qualification phase, candidate reusable components
identified in the previous phase are analyzed by a domain expert. The goal is to
understand and record the "meaning” of the component while evaluating its

-8 —

i Component
ldentification

S

I

B

|

I DEFINE MODEL ‘
| S—]
_!;

1
i
]
1
i
!
EXTRACT COMPONENTS J 1
'
i
;
'
|
i
!

Existing Programs

“w

v
‘ APPLY MODEL I

Candidates Component
Qualification

SPECIFY AND TEST

J

|

| !
i 1
i i
I !
i !
i 1
| !
1 i
i , !

\ CLASSIFY | e— <
! I
! 1
i i
1 |
! '
1 !
! !
1)
1
i

[
v

PACKAGE T

Qualified
Reusable Components

.......... [Feedback

j €=y

Figure 2: The Reuse Reengineering

relevance and potential for reuse in future systems, and package the component
by associating a reuse—oriented specification with it. Basili and Mills have
demonstrated that it is possible to understand a program-and to associate with it
a2 formal specification [BAS 82]. The technique they use can be partially
automated and represents the kernel of the qualification phase. The packaging

-9 -

also consists of associating with the component a significant set of test cases, a
set of attributes based upon a reuse classification schema, and a set of procedures

Thus, the qualification phase consists of six steps:

4. Generation of the functional spectfication. The functional specification of
each candidate reusable component is extracted from its source code and
documentation by the domain expert. This step provides some insight into
the correctness of the component. During this process, components which
are not relevant, not correct, or whose functional specification is not easy to
extract are discarded. The reasons for discarding candidates and any
insights into assessing these problems ‘during the identification phase are
recorded and used to improve the reusability attributes mode].

5. Generation of the test cases. Based upon the functional specification and
other criteria for robustness and reliability, a set of test cases are generated,
executed, and associated with the component. Those components that do
not satisfv the tests appropriately are discarded. Again, in this step the rea-
sons for discarding candidates are recorded and used to improve the reusa-
bility attributes model, and possibly the process for extracting the functional
specification and correctness assessment in step 4. This is most likely the last
step in which a component will be discarded.

6. Classification of the component. Each reusable component is associated with
a -classification according to a predefined set of attributes, in order to distin-
guish it from the other components and assist in its identification and
retrieval. The problems met with the taxonomy in use are reported and will
be analyzed in step 9.

~1

Development of the reuser’s manual. Information useful to the future reuser
is written in the form of a manual that contains 2 description of the fune-
tions and interfaces of the components, directions on how to instal] and use
it, information about its procurement and support, and an appendix with

structure diagrams and information for component maintenance.

8. Store. The reusable software components are stored in the repository
together with their functional specification, test cases, classification attri-
- butes, and reuser’s manual.

9. Feedback, The reusability attributes mode] is updated based upon informa-
tion from the qualification phase, by adding more measures, modifyving and
removing those measures that did not prove effective, or altering the ranges
of acceptable values. This step requires analysis and possibly even further
experimentation. The taxonomy is updated adding new attributes or

- 10 —

modifying the existing ones according to the problems reported from step 6
of the process.

—-11 —

4. The Component Identification

A software component "is simply a container for expressing abstractions of data
structures and algorithms" (G.Booch, [BOO87]). The characteristics that make it
reusable as a building block of other, maybe radically different, systems are its
functional usefulness in the context of the application domain, its reuse costs,
and various aspects of its quality.

The reuse attribute mode] is an attempt at characterizing those attributes thag
make a component reusable, finding direct measures that evaluate that attribute,
or indirect measures that provide some indication of the existence of that atiri-
bute. These measures must be automatable and are used to predict the reusabil-
ity of components. Prediction is done by defining a set of acceptable values for
each of the metrics. These values can be either simple ranges of values (example:
Imeasure « is acceptable between @, and @,) or more sophisticated relationships
between different metrics (example: measure « is acceptable between o and Qry
provided that measure B is less than Bo). The acceptable values and their rela-

tionships can be represented using classification trees as proposed by R.Selby and
A.Porter [SEL 89). '

In the case of a component that is part of an existing program, the potential for
reusability might be based upon three primary factors: the reuse cost, the fune-
tional usefulness and the quality. We can use 2, so called, "fishbone diagram" to
represent the influence of secondary factors on the primary ones (fig.3).

In order to build the reusability attributes model, we have to associate with every
factor in the fishbone diagram of figure 3 metrics directly measuring the factor or
indirectly evaluating its influence:

1. Reuse cost is affected by the cost of extraction from the old system, packag-
ing into a reusable component, and the cost of finding, modifying and
integrating the component into the new svstem. We can either measure

such as readability, to the cost of integration, such as simplicity of the inter-
face, and to the cost of finding the component, such as simplicity of the
functional specification.

()

Functional usefulness is affected by both the commonality and the variety of
the functions performed by the component. The commonality of a com-
ponent for reuse can be divided into three parts: its commonality within a
System or a single application, its commonality across different systems in

—————— the same application domain, and its overall commonality. It is hard to

associate metrics to these factors. Experience with the application domain
might provide some subjective insights into whether or not the function is

- 12 -

USEFULNESS

Processing Control

within a Variety of
system overall fupctions
\\ Transfer
Commonality
aof funetion 1
vithi
domain’
r-—“__—‘.
REUSABILITY :
—_
Packagin
. . sing Robustaess
Identification
Correctness
Extraction Integration Testability
. Retrievnl/ Portability
valificati
Qualifieation Use in Performance

Space
Time

\A Dew systems
odification

COSsTS QUALITY

Figure 3: Factors Affecting Reusability

primitive to the domain and occurs commonly. An indirect automatable
measure of functional usefulness might be the number of times the function
is used within the system being analyzed, assuming that a component that is
often reused is probably highly reusable. The variety of functions performed
by the component is even more difficult to measure: an indirect metric can
be the complexity of the component, assuming that if a component is
developed in a non redundant way its complexity is higher if it performs
more functions.

Quality. There are a variety qualities we care about for a reusable com-
ponent. For example, correctness, readability, testability, ease of
modification, performance, ete. Most of these are impossible to measure or
predict directly. Correctness is handled during step 4 of the reengineering

- 13 —

process model and testing during step 5. For the reusability attribute mode]
we are interested in those qualities we can predict based upon automated
measures, therefore we might consider indirect metrics such as small size and
readability as predictors of correctness, and number of independent paths as
a measure of testability.

The component factory that extracts reusable components from existing pro-
grams must define its reusability attributes model for the identification phase and
improve it through feedback from the qualification phase according to the pro-
cess model] outlined in the last section. In order to do this, it needs an entryv-leve]
model.

The remaining part of this section will be dedicated to the derivation and the
description of such 2 model, called the basic reusability attributes model,

The reuse costs are divided In two groups: costs to perform the extraction process
and costs to reuse the component. In order to minimize the costs in the first
group, we need code fragments small and simple enough to make the
qualification phase easier. Measures of volume and complexity provide an evalua-
tion of this property. On the other hand, the costs to reuse the component can

The functional usefulness deriving from the commonality of the functions per-
formed by 2 component can be measured by the number of times the component
is invoked in the system compared with the number of times g component, that
is known to be useful, is invoked. Components of this last category can be usu-
ally found in the standard libraries of 2 programming environment. The basic
reusability model measures the commonality of a function by the ratio between
the number of its invocations and the invocations of standard components.

The functional usefulness deriving from the number and the variety of functions
incorporated in a component can be measured by the complexity of the com-
ponent and by the non-redundancy of its implementation. This last feature can
be translated into volume measures comparing the expected volume of the com-
ponent, computed from the number of tokens the component processes, with its
actual volume: when. these values are close we say the implementation of the
component is regular. If the regularity is high we can say that the complexity of
the component is an indicator of the "amount" of function performed by the
component.

The quality of a component can be represented by correctness, robustness and
testability. These characteristics can be measured using volume and complexity
measures, assuming that a large and complex component is more error-prone and
harder to test. The modiﬁability of the component can be modeled by its reada-
bility, going back to the remarks we have made earlier in this section.

- 14 -

Synthesizing these considerations, the basic reusability attributes model charac-
terizes the reusability of a component using four metrics (fig.4):

(a) Component Volume: The size of a component can be measured using the
Halstead Software Science Indicators [CON 86]. The measure is based on the
way a program uses the programming language. We define:

the operators, representing the active elements of the program: arivh-
metic operators, decisional operators, assignment operators, functions.
etc. There are operators provided by the programming language and
operators defined by the user according to the rules of the programming
language. The total number of these operators used in the program is
denoted by 7,, and the total count of all usage of operators is denoted

V : Volume

C : Cyclomatic complexity
USEFULNESS .
R : Regularity

RF: Reuse frequency
(o} R .
within a Variety of
system overall functions
Al
Commonality

of function e RF
domain”
REUSABILITY

Packagi
R R hekaging Robustness
Identification v . A\’
_.-/_c Correctness
Extraction lotegration Testability

v / Retrie\fﬂ/ (. Portability
Qualification /\ Useiz . Performance
PR W syst
V Dew sysiems \ Space
R/Modiﬁcation Time

QUALITY

COSTS ’

Figure 4: The Basic Reusability Model

- 15 —

by N,.

- the operands, representing the passive elements of the program: con-

stants, variables, etc. The total number of unique operands defined and
used in the program is denoted by 7o, and the total count of all usage
of operands is denoted by N,.

The Halstead Volume measure is defined by the formula
V= N1+ NoJloga(n 1+ 74).

The component volume affects both reuse cost and quality: if it is too smal]
the combined costs of extraction, retrieval and integration exceed its intrip-
sic "value", making reuse very impractical: if it is too large the component
Is more error prone and has lower quality. Therefore, we need both an upper

‘and a lower bound for this measure in the basic reusability attributes model.

Component Complezity: We can measure the complexity of the contro]
organization of a program by the McCabe measure [CON 86] defined as the
cyclomatic number of the control flow graph G of the program:

UG)=e~n+2

where ¢ is the number of edges in the graph G and n .is the number of
nodes.

The component complexity affects reuse cost and quality taking into aceount
the characteristics of the control fiow of the component: like volume, a small
complexity affects the reuse cost, and a large one affects quality in terms of
readability, testability and possibility of errors. On the other hand, high
complexity, in presence of a high regularity of implementation, is a measure
of the functional usefulness of the component. Therefore, for this measure,
we also need both an upper and a Jower bound in the basic model.

Component Regularity: We can measure the economicity of the implementa-
tion of a component, or the use of correct programming practices verifying
how well we can predict its length based on some regularity assumptions.
Using, again, the Halstead Software Science Indicators we have the actual
length of the component

]\’Y-: N] + NQ, _
and the estimated length

N=1,logyn,+1log,74

- 16 —

The correctness of the estimate represents a measure of the regularity of the
coding in the component:

r=1—(N-N)/ N=N/N.

The component regularity is used to evaluate the readability and the nop—
redundancy of the implementation of a component, therefore we select com-
ponents whose regularity is in the neighborhood of 1.

(d) Reuse spectfic frequency: Comparing the number of static calis addressed to
a component with the number of calls addressed to a class of components we
assume reusable, we can measure the frequency of reuse of a given com-
ponent. Let's suppose our system is composed of user defined components
Xy Xy and of components Sy, - - .S, defined in the standard
environment (such as printf in C or text_to.put in Ada). For a given com-
ponent X, let n(X) be the number of calls addressed to X in the system. We
associate with each user-defined component a static measure of its reyse
throughout the system: the ratio between the number of calls addressed to
the component C and the average number of calls addressed to a standard
component:

Vo(C)=n(C)/ <=5 (S,

The reuse specific frequency is an indirect measure of the functional useful-
ness of a component, if we assume that some naming convention is in use ip
the application domain, so that components with different names are not
functionally the same. Therefore we have only a lower limit for this metric
in the basic model.

In order to complete the basic model we need some criteria to select the candi-
date reusable components based on the values of the four measures we have
defined. The extremes of each measure depend on the application, the environ-
ment, the programming and design method, the programming language. and on
many other factors that cannot be easily quantified. We determine therefore the
ranges of acceptability for the measures in the basic reusability model in an
experimental way, through a series of case studies that will be described in this
paper.

In conclusion, the considerations behind the basic mode] are elementary indeed,
but the model in itself is a reasonable starting point that captures important
characteristics of the phenomenon of reusability of software components and,
probably, contains features that are common to every other model.

- 5. The CARE System

In order to support the reuse reengineering activities, a computer~based system
has been designed. It performs static and dynamic analysis on existing code and

tem is called CARE, for Computer-Aided Reuse Engineering. We describe in this
section the system and give an account of the state of its implementatjon.

Modeled to support the reengineering process, the CARE System has two parts
(Fig. 5):

1 2
COMPONENT COMPONENT
IDENTIFIER QUALIFIER
SPECIFIER
MODEL EDITOR
2.2
TESTER
1.2

COMPONENT 2.3

EXTRACTOR CLASSIFIER

ey

AN
-

[
METRICS MODELS f f COMPONENTS |

i
|
LB LB REPOSITORY

Figure 5: The Architecture of CARE

—~ 18 —

1)

[Sv]
~—

Component ldentifier

The candidates are stored in the components repository to be processed in
the next phase. The Identifier has two segments:

1.1) Model Editor: The user either defines a mode] selecting metrics from a
metrics library and assigning to each metric a range of acceptable
values, or updates 2n old model, contained in 2 models library, adding
and deleting metrics or changing the adopted ranges of values,

1.2) Component Extractor Once a reusability atiributes mode] has been
defined, the user can apply it to a family of programs to extract the
candidate reusable components. This can be done ejther interactively by

2 user or in a fully automated way, provided that it is possible to
automatically solve synonymy problems.

Component Qualifier

This part of the system supports interactive qualification of the candidate
reusable components residing in the components library according to the

to make qualification possible. It has three segments:

2.1) Specifier: It supports the construction of a formal specification to be
associated with the component through code reading and program

extracts from a component. If the specifications are generated, they are
stored in the component repository together with a measure (i.e. a sub-
jective evaluation) of the practical usefulness of the component, given
by the domain expert who is performing the qualification.

o
o
SN

Tester: 1t uses the formal specification produced by the specifier to gen-
erate a set of test cases for a component or 1o support their generation.
If. as it is likelyv to happen. the component needs a "wrapping" to be
executed, it supports the generation of this wrapping (test case genera-
tor). Then it executes the generated tests reporting about both their
outcomes and the test coverage that has been obtajned (coverage
analyzer). Test cases, wrapping and coverage data are stored in the
component repository together with a test report giving an account of
the grounds for keeping or rejecting the component.

2.3) Classifier: 1t directs the user across the taxonomy that is used in an
application domain to find an appropriate classification for the com-
ponent. Users with a special authorization can modify the taxonomy
adding or deleting facets or altering the range of values available for

- 19 —

each facet. The classifier and the taxonomy are directly related to the
query language that will be used to retrieve the components from the
repository [PRI 87).

The CARE System is under development at the Department of Computer Science
of the University of Maryland under a grant from Italsiel S.p.A., Rome, Italy.
The current version supports ANSI C and Ada languages on a Sun workstation
with UNIX and 8 MB memory. The parts of the CARE System implemented bv
the prototype are:

-~ the component extractor based on the basic reusability attributes model
(Metrics: Halstead volume, McCabe cvelomatic complexity, regularity, reuse
specific frequency) for C programs. This part of the CARE svstem has been
used for the case studies described in the next section. The basic mode] is
enriched, in the current version, with the data bindings metric [HUT 85] to
take into account, in the static analysis, the flow of information between
components of the same program. A measurement tool and a data bindings
analyzer have also been developed for Ada programs.

— the coverage analyzer for C Programs as a part of the tester in the com-
ponent qualifier. An equivalent analyzer for Ada programs is under develop-
ment.

=~ a prototype specifier has been developed to help the user build the Mills
specification for programs written in a subset of Pascal. We are currently
planning to develop a version of it to process components written in C.

Currently a prototype supporting COBOL environments is under development.
This will allow us to develop more case studies in large industrial environments.

- 20 —

6. The LASER Project

In this section we will describe the activities of the Laboratory for Application
Software Engineering Research (LASER), a research program on software reusa-
bility of the Department of Computer Science of the University of Maryland sup-
ported by Italsiel, Rome, Italy. The LASER project has developed some measure-
ment tools, incorporated into the CARE system to implement the basic reusabil-
ity attributes model and has performed many case studies analyzing existing svs-
tems to identify reusable components. The goals of the case studies have been
manifold:

— evaluate the concept behind our method to extract reusable candidates
from existing programs using 2 model based on software metrics;

= complete the basic reusability attributes model with experimentally
determined extremes for the metrics given in a previous section;

~ study the application of the basic reusability model to different environ-
ments and observe its selectjve power;

— analyze the interdependence of the metrics used in the basic model;

= identify a certain number of candidate reusable components to start
research and experimentation on the qualification phase.

The data we will discuss originated from the analysis of 9 systems for a total of
186.80 KLOC of ANSI C code. The types of systems the LASER project has
analyzed range from file management to0 communication applications, including
data processing and system software.

Because of the characteristics of the C programming language, the natural candi-
date for the role of component is the C function, but it is not self-contained: it
references variables, data types and functions that are not part of its definition.
In order to have something independent. the definition of the function had to be
completed with al] the necessary external references. Therefore, 2 component. in
the context of the case studies, is the smallest translation unit containing a fune-
tion. Each case study has been performed according to these steps: '

(1) Acquire and install the system making sure all the necessary sources are
available.

(2) Build the components from the functions adding to each function its
external references and making it independently compilable.

(3) Compute the four metrics of the basic reusability attributes mode! on
the components.

(4) Analyze the results.

~-21 —

The average values for the measures of the basic model obtajned from the case
studies are presented in Table 1.

The case studies have shown a high degree of independence between volume,
regularity and reuse specific frequency. Some correlation as been found between
volume and complexity, both related to the "size" of the component, but not
enough to consider the two measures equivalent. This means that the basic reusa-
bility model! is not redundant,

The data of the last column of Table 1 are below 0.5: therefore we can assume
that 2 component, whose specific reuse frequency is higher than 0.3, is a highly
reused one. This choice is a rather arbitrary one, but is usefu] 1o set a reference
point for the case studies. With this in mind, we can now present the measure-
ment data taken over the population of high-reuse components and compare the
outcomes. The measurement data for components whose specific reuse frequency
is more than 0.5 are contained in Table 2.

With respect to the goals of the case studies we outlined at the beginning of this
section, the results show, with a few exceptions, a very regular pattern. The
highly reused components have volume and complexity lower than the average,
about 1/4 of it. Their regularity is slightly higher than the average, generally
above 0.70. The only exception is case F, a compiler with a very peculiar design,
where the function calls are mostly addressed to high-level and complex modules.
These results confirm, in different environments, the ones obtained in the
Software Engineering Laboratory of NASA analyzing FORTRAN programs and
reported by Selby [SEL 88].

The regularity result is very important by itself: the fact that the length equation
has a better fit on the reusable components means that the size of such

Table 1
Case Application Avg Avg Avg Avg Reuse

Volume | Complezity Regularity | Specific Freo.
A Data processing 8,967 21.1 0.76 0.05
B File Management 7,856 23.6 0.74 0.08
C Communication 43,707 153.7 0.66 0.10
D Data processing 11,877 32.1 0.64 0.11
E Data processing 4,054 16.8 0.76 0.18
F . | Language processing 82,671 198.7 0.33 0.13
G File management 7,277 25.5 0.85 0.24
H Communication 12,044 40.7 0.77 0.23
1 Language processing 20,131 44.7 0.79 0.41

- 22 _

Table 2

Case Application Avg Avg Avg Reuse
Volume Complezity Reqularity Specific Freg.
A Data processing 2,249 7.0 0.89 >0.50
B File Management 2.831 4.8 0.77 >0.50
C Communication 13,476 43.8 ‘ 0.68 >0.50
D Data processing 4,444 8.5 0.80 >0.50
E Data processing 1,980 10.7 0.87 >0.50
F Language processing | 156,199 384.3 0.40 >0.50
G File management 1,804 5.4 0.70 >0.50
H Communication 8,884 31.1 0.75 >0.50
1 Language processing 6,237 9.6 0.85 >0.50

components can be better estimated. The Halstead length equation
(N=77110g2771+ Nologans;) is a function of the two indicators 7, and 7,: the first
one is more or less fixed in the programming environment, the second one, the
number of operands, corresponds to the number of data items the svstem deals
with. The value of Mo can be rather precisely estimated in the detailed design
phase of a project. The high regularity of the reusable components implies,
therefore, we can estimate the total effort for their development with an accuracy
often higher than 80%. and better than the one we get from components that are
not as reusable.

The case studies show that, in most cases, we can obtain satisfactory results
using the values of Table 3 as extremes for the ranges of acceptable values.

Using these ranges of acceptable values in the basic model, we can see how many
candidate reusable components are extracted. Table 4 compares the number of
user defined functions in each system with the number of candidate reusable
components obtained with the settings of Table 3.

Table 3

Measure Inf Sup

Volume 2,000 | 10.000
Complexity 5.00 15.00
Regularity 0.70 1.30
[Reuse freq. 0:30 | --

- 23 _

Table 4

Case Defined Extracted %
Components Candidates

A 83 41 5¢
B 349 17 5%
C 730 36 | 50
D 156 16 | 10%
E 53 4 8%
F 1,235 81 7%
G 57 10|18 %.
H 2390 24 1 109%
I 87 11 } 13%

The data show that, in general, 5-10% of the existing code is candidate reusable,
which is a good rate of reduction in terms of amount of code to be analyzed in
the qualification Phase, and is also a satisfactory figure for future reuse. How
many of those candidates wil actually be found to be reusable ip the
qualification phase is hard to say without a series of controlled experiments.
Based upon a cursory analysis, the extracted components perform usefu) func-
tions in the context of the application they come from. A real evaluation of the
model is one of the immediate goals of this project.

The case studies we have described show SOme progress in the direction we have
undertaken: reusable components have measurable properties, that can be syn-
thesized in a simple quantitative model, like the one introduced in the last sec-
tion. Now we need to bring the experimentation forward to the qualification
activities, to verify how good the basic model is in practice, and to study how
can we process the feedback from that phase to improve the reusability attri-
butes model. These further case studies are currently the focus of oy interest
within the LASER project. We also need 1o broaden the Spectrum of our analysis
taking into consideration different Programming environment to verifv ouyr
hypotheses in these contexts.

- 924 _

7. Conclusion

The case studies we -have described are just the starting point of our research on
reusability. Further work is needed to assess the process model we have outlined,
specifically the qualification phase. Future research will focus on the ‘qualification
phase and on the improvement of the reusability attributes model. The goal is to
verify the results obtained with the basic reusability attributes model, and to
improve the model taking into account these results. This means building a
mechanism for the manipulation of the reusability model, associated with the
mode] editor. '

Two major developments are foreseen for the architecture of the CARE Svstem.
The first one is the design of & prototype for the components repository, suppori-
ing component retrieval both by queries on the classification and by browsing on
the specification. The second will be an integration with the TAME System
[BAS3 88]. In the version of CARE we have outlined in this section, the metries
library is a static object, from which an user can only retrieve measures. The
TAME System allows, instead, the creation of a measurement environment
tailored on the goals of the activities and on their model. This environment will
be the basis for a more elastic interpretation of the metrics library, in which
users will be able to define their own measures for the reusability model.

The authors are aware that much work has to be done in the field of software
reusability and that this work is a smal] preliminary step. However, the approach
outlined in this paper has the advantage of being practical and easily applied to

industrial environments.

Acknowledgements

The authors are indebted with Daniele Fantasia, Bruno Macchini and Daniela
Scalabrin of the Italsiel S.p.A.. Rome, Italy, for developing the programs that
made possible the case studies, 2nd for many useful discussions.

8. References

[BAS 82] V.R.Basili, H.D.Mills, Understanding and Documenting Programs,
IEEE Transactions on Software Engineering, Vol.SE-8, No 3, May
1982 pp. 270-283.

[BAS 85] V.R.Basili, R.W.Selby Jr., Calculation and Use of an Environment'’s
Characteristic Software Metric Set, JEEE Proceedings of 8th Interna-
tronal Conference on Software Engineering, August 28-30, 1685, Lon-
don, UK, pp. 386-390.

[BAS 88] V.R.Basili, H.D.Rombach, Towards A Comprehensive Framework for
Reuse: A Reuse-Enabling Software Evolution Environment, Computer
Science Technical Report Series, University of Maryland, College
Park, MD, December 1988, CS-TR-2158 (UML&CS—TR—88—92). .

[BAS2 88] V.R.Basili, H.D.Rombach, J.Bailey, A.Delis, F.Farhat, Ada Reuse
Metries, in Proceedings of Ada Reusability and Metrics Workshop,
Atlanta, GA, June 15-16, 1988. College Park, MD, October 1988,
CS-TR-2116 (UMIACS-TR-88-72),

[BAS3 s8g] V.R.Basili, H.D.Rombach, The TAME Project: Towards
Improvement-Oriented Software Environments, JEEE Transactions
on Software Engineering, Vol. SE-14, No. 8, June 1988, pp.758-773.

[BAS 89] V.R.Basili, Software Development: A Paradigm for the Future (Key-
note Address), Proceedings COMPSAC 89, Orlando, FL, September
1989, pp.471-485.

[BOO 87] G.Booch, Sojtware Components with Ada, The Benjamin/Cummings

~ Publishing Company, 1987.

[CAL 89] G.Caldiera, Software Quality and Reusability, in Proceedings of CcQSs
‘89, October 1989, Milano, Italy.

[CON 86] S.D.Conte, H.E.Dunsmore, V.Y.Shen, Software Engineering - Meirics
and Models, The Benjamin/Cummings Publishing Company, 1988.

FRE 86] P.Freeman, A Perspective on Reusability, in Tutorial- Software Reu-

J
sability, P.Freeman (ed.), IEEE Computer Society, 1686, pp.2-8.

[GAN 86] J.D.Gannon, E.E.Katz, V.R.Ba.sili, Metrics for Ada Packages: An Ini-
tial Study, Communications of the ACM, July 1988, Vol.29, 7,
pp.616-623. .

[HUT 85) D.Hutchens, V.R.Basili, Svstem Structure Analysis: Clustering with
Data Bindings, IEEE Transactions on Software Engineering, Vo).
SE-11, No 8, Aug. 1985, pp.749-757.

[JON 88] G.Jones, R.Prieto-Diag, Building and Managing Software Libraries,
Proceedings COMPSAC 88, Chicago, IL, October 1988, IEEE Com-
puter Society, pp. 228-236.

- 26 —

[LAN 84] R.G.Lanergan, C.A.Grasso, Software Engineering with Reusable

PRI 87]

[SEL 88

SEL 8g]

Designs and Code, JEEE Transactions on Software Engineering, Vol.
SE-10, No 5, Sept.1984, pp.498-501.

R.Prieto-Diaz, P.Freeman, Classifying Software for Reusability, IEEE
Software, January 1987, pp. 6-16.

R.W.Selby, Empirically Analyzing Software Reuse ip a Production
Environment", ip Software Reuse- Emerging Technology (W.Tracz
ed.). IEEE Computer Society Press, Washington, DC, 1988, Pp.176-
189.

R.W.Selby. A.A.Porter. Software Metric Classification Trees Help
Guide the Maintenance of Large Sczle Systems, Proceedings of the
Conference on Software .Maz'ntenancc—1989, Miami, FI, October 16-19,
1989, pp.116-123.

