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Abstract

Reuse reengineering, as defined by Basili and Caldiera, is concerned with
the identification and extraction of reusable portions of existing code, and
the qualification of the extracted portions. The qualification process is con-
cerned with the analysis, tailoring, and packaging of extracted components
which are then used to seed a reusable software component repository. In
this paper we focus on the analysis activity of qualification and describe
an analysis method that utilizes expert programming and domain knowl-
edge and formal techniques to generate formal, and intuitive specifications
of functionality from software components. In a reuse environment, such
specifications can be used to gain an understanding of a component’s func-
tionality, identify and adapt components, and serve to establish a high degree
of confidence in the functionality of a component.
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e establishing confidence in the functionalities of components.

. An analysis is said to be successful if it results in an understanding of the s-unit’s func-
tionality and a specification that reflects the understanding in an intuitive manner. An-
analysis is said to be unsuccessful if it does not result in an understanding of the s-unit’s
functionality. If an s-unit’s functionality is not understood by a component user then its use
in a reuse environment may create more problems than solve any. There is a good chance
that the results of an unsuccessful s-unit analysis will not be understood by potential users,
thus, an s-unit that has been unsuccessfully analyzed is rejected as being suitable for reuse.

The eztended s-unit resulting from a successful analysis consists of a code or implementation
part and a specification part. The extended s-unit is passed to the packaging activity which
is concerned with the organization of information relevant to the reuse of the component in
future development projects. Packaging may also involve generalizing the s-unit to make it
applicable to a broader class of future application development efforts {5]. The packaging
activity is also concerned with the generation of information pertaining to the certification
of software components, for example, test cases, and to the classification of the component
in the component repository. The classifications are made according to a predefined set
of attributes and are used to aid the retrieval of the component in the repository and to
distinguish it from other components. Problems encountered in classifying a component are
used to modify the current set of predefined attributes as modeled by the feedback from
the qualification phase to the taxonomy model. '

This paper focuses on the analysis activity of the qualification phase. Results from empirical
research on how programmers understand code indicate that programmers utilize expert
programming and problem-domain knowledge in order to create and establish function
hypotheses [8, 13]. We use the term exzpert analysis to refer to the use of expert programming
and domain knowledge in analysis. There is evidence that some of the knowledge required
to carry out an expert analysis can be captured and represented, facilitating their reuse
[14, 18, 21]. Existing inverse engineering systems utilize such knowledge expressed, for
example, as plans [18], cliches [21], or transformation rules [20], to produce a specification
~ from code. For example, schema based systems (e.g. plans, cliches) relate patterns of code
representations to abstract concepts. In this paper we show that similar expert analyses
can be applied to formal specifications to gain intuitive insights into the functionalities they
specify.

The use of formal specifications to express component functionality enhances the role of
specifications in a reuse environment as follows:

e The unambiguous nature of formal specifications facilitates their use in identifying
and ensuring the correct use of components.

o A formal specification can serve as the basis for a rigorous demonstration of consis-
tency, which in turn serves to establish a high degree of confidence in the functionality
of the s-unit it specifies [22]. '

¢ Adapting software components to a particular usage may also reap benefits from the
use of formal specifications.” Adaptation can be carried out at both the implementation
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1 Introduction

The need to reduce the cost of developing software and to increase its reliability and quality
has given rise to a software reuse technology. Reuse technology is mainly concerned with
explicitly capturing software development experience in a form that is potentially (re)usable
in future development efforts.

The ability to capture and package experience effectively is dependent on the availability of
explicit expressions of experience. Program code, for example, provides explicit expressions
of implementation experience that, when identified and packaged appropriately, can be
reused in development efforts. '

The setting up of a repository of reusable software components is, in general, an expensive
activity. To alleviate such costs Caldiera and Basili [9] propose that existing software be
analyzed to determine their suitability for reuse and then used to seed the repository. A
model of their process for extracting reusable software components from existing software,
called reuse reengineering, is shown in Figure 1 [9]. Reuse reengineering activities are
divided into two phases: an identification, and a qualification phase.

In the identification phase a reusability measurement model is developed and used to iden-
tify and evaluate extracted portions of code. The definition activity models the current
understanding of what constitutes a reusable component in terms of automatable measures
of the characteristics identified. The extraction activity removes modular code units from
existing code, completes them by including external references, and converts them to s-units
(for software units), which are programming-language independent representations of the
completed code. S-units are then evaluated against the reusability model to determine their
suitability for reuse. ‘

S-units deemed potentially suitable for reuse in the identification phase, then go through
the qualification phase in which they are analyzed, packaged and stored in a component
repository for reuse. Experience gained in the qualification phase can change our knowledge
of what constitutes a reusable component, thus feedback from the qualification phase is used
to change the reusability model.

Specifications can play a significant role in reducing the effort needed by potential compo-
nent users to understand component functionalities, by providing the users with effective
code abstractions. In the absence of such specifications the users must resort to code read-
ing in order to gain an understanding of component functionality. For large and/or complex
components this may be very time consuming, and difficult, thus reducing the chances that
the component will actually be reused. The analysis activity in the qualification phase is
concerned with gaining an understanding of an s-unit’s functionality through the creation
of a functional specification. The functional specifications derived from analysis are used
as the basis for:

¢ understanding component functionality,
o identifying and ensuring the correct use of software components,

¢ adapting components for a particular usage, and



and specification level, using rigorous techniques to ensure consistency between the
transformed implementation and specification. This approach is further enhanced if
the formal specification is machine-processable, since this would allow some automated
consistency checks to be made.

Within the context of reuse reengineering, it is important that the specifications derived
from analysis be understandable, in the sense that they provide intuitive insight into the
specified functionality of the implementation. In this respect formal specifications are no-
toriously inadequate. To enhance the understandability of formal specifications we propose
that they be abstracted to a level understandable by an ‘average’ component user. An
abstraction may take the form of another formal statement formulated in terms of more
abstract concepts and notation taken from a widely known and understood mathemati-
cal model, or a natural language description of the functionality captured by the formal
specification. :

Based on these observations we have developed a method that integrates a formal analysis
technique with an expert analysis of formal specifications to produce understandable formal
specifications, in the form of detailed formal specifications and their abstractions, from an
s-unit. The formal analysis technique is used to mechanically translate s-unit statements
to predicative specifications. Given the mechanical nature of the formal analysis technique,
the predicative specifications generated may not always be intuitive. In such cases, expert
analysis of the specification is required. In our method, human expert analysis is supported
by a knowledge base that relates specification patterns to descriptive narratives. The de-
scriptive narratives provide clues to the functionality captured by the specification and are
intended to aid a component specifier in comprehending an s-unit’s functionality.

Section 2 gives an overview of our analysis method and the motivating concerns behind
it. Section 3 describes the formal analysis technique of our analysis method, and section 4
describes the form of the knowledge representations supporting expert analysis and provides
a demonstration of how the method is applied. Section 5 gives our conclusions and outlines
related areas requiring further research.

2 Extracting formal specifications from code

The denotational semantics of programs provides rules for translating code structures to
functions [19] and it has been shown how such rules can be used to derive a functional
abstraction of a program (Sec. 5.1.1 Programs Are Functionsin [3]). A practical formulation
of denotational semantics developed by Mills [15, 4] can be used for the same purpose. In
theory, the extraction of functional abstractions from code associated with a denotational-
type semantics is entirely mechanizable. In practice, the resulting specifications are not
always intuitive and in some cases, especially those involving recursive code structures
such as loops, may be as complex as the code, if not more. Similar problems have have
been observed in specification extraction methods based on other formal program semantic
models (e.g. see [7, 20}).

The means to address this problem range from simply renaming syntactic elements of spec-



ifications (e.g. replacing a function symbol f by sum to reflect that the function carries out
a sum) to reformulating specification elements in terms of more intuitive structures (e.g.
replacing recursive function definitions by simple iterative definitions). Generally, one has
to resort to expert programming and domain knowledge in order to make the specifications
more intuitive.

Based on the above observation we have developed the simple conceptual model of analysis
shown in Figure 2. Two types of analyses are identified in our conceptual model: exzpert and
mechanical analyses. The Mechanical Analyzer utilizes knowledge that can be mechanically
extracted from code to produce formal specifications. The Ezpert Analyzer utilizes domain
and programming knowledge to obtain intuitive insights into the functionality of the code
being analyzed. Such insights can be used to restate the formal specifications in a more
intuitive manner, or can be formulated separately (e.g. in natural language) and appended
to the formal specification. The Component Specifier interacts with the Mechanical and
Expert Analyzers to produce understandable formal specifications from code. Activities of
the Mechanical Analyzer are automatable, while those of the Expert Analyzer are not easily
automated.

Our analysis method, depicted in Figure 3, is a.particular organization of mechanical and
expert analysis activities. The analysis activity takes an s-unit as input and analyzes it
in a sequential manner, using both a formal analysis technique that mechanically trans-
lates s-unit statements to formal specifications, and human expert analysis, supported by a
knowledge base called the Functional Abstraction Schema Base (FASB), to provide intuitive
insights into the functionality captured by the formal specifications. A successful analysis
results in an s-unit extended with a specification part that provides both a detailed, formal
specification and an abstract, intuitive specification of functionality.

The following sub-sections give an overview of s-units and the manner in which they are
analyzed in our method.

2.1 A programming language independent representation of code

An algorithm may be expressed in a variety of ways in a single programming language, for
example, an algorithm that adds two numbers may be expressed in an imperative program-
ming language as a function, a procedure, or as part of a larger piece of code. From an
analysis perspective, there is a need to abstract over such notational variances to get at the
functionally essential parts of the code. From a component reuse perspective, storing code
representations that abstract over notational variances can bring about savings in repos-
itory space [12]. The most common solution to syntactic abstraction of code is to use a
code representation that utilizes programming language independent constructs, together
with mechanisms for translating between code structures and their representations. The
representations used in our method, s-units, are variations of Joo’s elementary processes
[12]. S-units are generated in the identification phase of the reuse reengineering model.

An s-unit generated in the identification phase is an entity consisting of a set of input and
output ports, a variable declaration part, and a statement. The statement part of an s-
unit is a composition of basic statements, where a basic statement is either an assignment,



if-then-else, non-deterministic choice, while-do, or an input/output statement.

An s-unit representation of an algorithm that sums a stream of integers and returns the
result as output is given below:

S-unit ADDSTREAM(z : in stream(integer); z : out integer)
var u, v : integer
begin
u = 0;
while ~ iseos(z) do
Receive(v, z);
u=u-+v
od;
z = g
Send(z)
end

The variable z is an input integer stream port and 2 is an output integer atomic port.
Atomic ports are bound to single instances of their data type while stream ports are bound
to streams of instances of their data type [12]. An s-unit associated with stream ports may
carry out a series of communications via the stream ports in a single execution, as in the
while loop of ADDSTREAM. In ADDSTREAM the input Receive statement assigns the
head of a stream, z to the variable v, and the output Send statement makes the value of z
available for communication. The predicate iseos tests whether the end of stream symbol
has been encountered.

The result of an s-unit analysis is an eztended s-unit, which is an s-unit extended with a
Specification Part. A Specification Part consists of two parts: an abstract definition, and a
detailed definition. The abstract definition part provides an intuitively appealing description
of the functionality of an s-unit in terms of the relationship between its input port values
and its output port values. The relationship may be expressed in natural-language and/or
in terms of concepts and notation from a simple, well-understood mathematical model.

The detailed definition part provides a formal specification of an s-unit’s functionality in
terms of the relationship between the initial and final values of the s-unit’s variables. The
formal nature of the detailed definition makes it amenable to the type of rigorous analysis
required to establish that a component possesses certain properties, or to determine the
effect a change in the component’s code may have on its functionality. The formal specifi-
cation in the detailed definition may also be supplemented by natural-language descriptions
which provide intuitive insights into the detailed functionality of the s-unit. Such intuitive
insight is important to a human reader of the component who is interested in a detailed
description of the input/ output effect of s-unit variables for reasons related to adaptation
and component use.

An extension of the s-unit ADDSTREAM is given in Figure 4. The following stream
functions are used in its Specification Part:

nilstream : The empty stream.



S-component ADDSTREAM(z : in stream(integer); z : out integer)
var u,? : integer
Specification Part
abstract definition
z = SUM(z) where
for all h : integer; t : stream(integer)
1. SUM(h|t) = h+ SUM(t)
2. SUM (nilstream) = 0
detailed definition
[< Touty Uouts Vouts Zout >=< SUM(Tin, 0, 'Uz'n), Uout >] where
1. iseos(z) = sum(z,u,v) =< z,u,v >
2. ~ iseos(z) = sum(z,u,v) = sum(tail(z), u + next(z), next(z))
description of sum
The function sum sums the integers in the stream
Zin and returns the result in Uyy.
Implementation Part
begin
u = 0;
while ~ iseos(z) do
Receive(v, z);

U=UuU+v

od;

Z = U

Send(z)
end

Figure 4: The extended s-unit ADDSTREAM

| : Stream concatenation, for example, hl|t is a stream with a head ~ and a tail ¢.
tail : The function tail returns the tail of a stream.

nezt : The function nezt returns the head of a stream.

The abstract definition is formally expressed in terms of a sum on streams of integers. It is
not always possible to find such simple formal expressions of the input/output relationship of
an s-unit. In cases where a simple formal definition is not available the abstract definition
consists of natural-language text describing the relationship as it is understood by the
component specifier. The detailed specification relates the initial values of s-unit variables,
denoted var;,, with the final values of s-unit variables, denoted var,y;.

In our analysis method the abstract definition is obtained as an abstraction of the detailed
definition. In the following sub-section we give an overview of how the Specification Part
of an extended s-unit is created.
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2.2 Generating understandable formal speciﬁcationé

At the abstract definition level an s-unit is a relation between its input and output port
values. At the detailed level an s-unit is a relation between the initial and final values of its
variables. When the s-unit is deterministic the semantic model at both levels is equivalent
to Mills’ functional abstraction model [4]. In fact, the semantic model we use can be viewed
as an extension of Mills’ functional semantics that caters to the specification of general

relations.

In our analysis method, applications of expert and mechanical analysis techniques are in-
terspersed to produce a meaningful detailed definition of an s-unit. The detailed definition
is then abstracted to obtain the abstract definition. Figure 5 gives a more detailed view of
the analysis method.

In deriving the detailed definition, mechanical analysis utilizes formal rules to translate
s-unit statements to formal specifications, while human expert analysis, supported by the
Functional Abstraction Schema Base (FASB), is used to to obtain intuitive insights into
the functionality captured by the formal specifications. The FASB contains objects relating
specification patterns to intuitive descriptions of their functionality,

Specifically, the following steps are taken in the sequential analysis:

¢ A functional abstraction of the current s-unit statement being analyzed is obtained
mechanically.

e The resulting specification is then composed with the specification developed thus far.

o The specification formed by the composition is simplified by optimizing specification
terms.

o If the simplified specification still contains elements that are complex (e.g. recursive
function definitions) then the specification undergoes an expert analysis which takes
advantage of previously recorded experience, in the form of FASB specification pat-
terns, to aid the derivation of an intuitive description of the functionality defined by
the specification.

Figure 5 depicts the above analysis as a module called Generate Detailed Specification. The
asterisk in the module indicates that the activities represented in the modules below it are
iterated in a left-to-right sequence. The current specification depicted in Figure 5 becomes
the detailed specification if there are no more s-unit statements to translate.

As an example of how the above activities are related consider an analysis of the loop in
the s-unit ADDSTREAM. A formal analysis is first carried out on the loop, starting with
the statements in the body and then the loop structure. The mechanics of this analysis will
be detailed later in this paper. Below, we give only the result of the formal analysis:

[< Zouty Uouts Vout > = F(mina Uin, vin)]

where

1. iseos(z) = F(z,u,v) =< z,u,v >

2. ~ iseos(z) = F(z,u,v) = F(tail(z), u + next(z), next(z))



The above is not intuitive, mainly because of the recursive nature of the definition. Sub-
sequent human expert analysis, supported by the FASB, would reveal that the variable u
accumulates a sum, which could result in a simple change of the function symbol F to say
sum, and the addition of a natural language description of the function to the specification,
resulting in the following, more descriptive formal specification:

[< Zouts Youty Vout >= $U7n($ina Uin, Vin )]

where

1. iseos(z) = sum(z,u,v) =< z,u,v >

2. ~ iseos(z) = sum(z,u,v) = F(tail(z), u + next(z), next(z))
description of sum

The function sum sums the integers in the stream

Zin and adds the total to the value of u;, to give Ugy;s.

Loops (or any recursive code structures) present understandability related problems to the
formal analysis process. As pointed out by Waters [21], to gain an understanding of a
loop in a structured manner, the body is first analyzed and its meaning bootstrapped to a
meaning for the loop, a process that can not be mechanized in general. The solutions to this
problem in existing specification generation systems range from using human-supplied loop
function hypotheses {2, 1, 17], to using transformation rules and/or heuristics to produce
and simplify loop invariants {7, 20]. While it may seem easier to supply a loop hypotheses
to the analysis process, our experiences indicate that it is difficult, in general, to guess a
loop’s functionality without resorting to expert programming and domain knowledge. On
the other hand, the use of transformation rules to produce and simplify loop specifications
is attractive, given the potential for automation, but we have observed that the resulting
specifications are not always easy to comprehend.

In our method translation rules are used to transform loops to formal specifications which are
then subjected to human expert analysis supported by the Functional Abstraction Schema
Base (FASB). Patterns in the FASB may provide clues to the specification’s functionality
which a human can use in coming to an understanding of the specification’s intent. Once
an understanding is arrived at the human then attempts to test his/her understanding
either by formally restating the specification in a more convenient manner and showing
that it is correct with respect to the s-unit, or by checking that the formal specification
satisfies properties that characterize the understanding. In the former approach one can
use Mills’ functional correctness technique [4] and its extensions [6, 16] provided the loops
satisfy certain conditions. Such conditions apply to a large class of loops in practice. The
latter approach can benefit from the use of an automated theorem prover. At this time our
method does not stipulate a particular technique for checking an understanding, the onus
is on the specifier to establish that the understanding is real and not apparent.

Once a specifier is convinced that an understanding has been arrived at, one or a combina-,
tion of the following actions may be taken:

¢ Rename functions to reflect their intent.
¢ Append natural language descriptions of functionality to the specification.

¢ Reformulate the specification in terms of more intuitive structures.

8



The result should be a specification reflecting the specifier’s understanding of the loop’s
functionality.

If expert analyses fails to come up with a meaningful specification the s-unit is no longer
considered useful for reuse. The rationale behind the rejection can be stated as follows: if a
specifier cannot come to an understanding of the s-unit via the method, then it is unlikely
that a software user will be able to fully comprehend the functionality of the software
component, in which case, the software component is less likely to (re)used.

After the documented detailed specification is produced as above, the component specifier
attempts to use the insights gained and documented during its creation to produce an
abstract specification of the s-unit (see Figure 5). Currently, this is a purely human activity,
but it may be possible to provide automated expert support, in the form of a knowledge
base, for translating some aspects of detailed specifications to related abstract concepts, for
example, translating an array data structure to a more abstract linear data structure.

The remainder of this paper details our analysis method. The form of the objects in the
Functional Abstraction Schema Base (FASB) and examples of their use in analysis are also
provided. In this paper we are not concerned with how the FASB is created and maintained,
the implicit assumption being that the method is embedded in an organization that provides
such facilities. For this reason we do not detail the retrieval mechanisms associated with
the FASB, but do describe the search processes involved.

3 Mechanical analysis: Transforming s-unit statements to
formal specifications :

In this section we describe the formal analysis technique which takes s-unit statements and
mechanically transforms them to formal specifications.

The forms of s-unit statements are given below. In what follows z is a variable declared in
an s-unit, e is an expression, S, S1 and $2 are statements and B is a boolean expression.

Null statement NULL

Assignment z := e (e is assumed to be of the same type as z).
Composition 51;52. .

Non-deterministic choice 51V52.

Deterministic Choice if B then S1else 52 fi

Loop whz'lé Bdo S od

Input/output Receive(z, streamport), Receive(atomicport),
Send(e, streamport), Send(atomicport)

An s-unit that contains no non-deterministic choice statements is said to be deterministic.
The examples given in this paper pertain to deterministic s-units.



3.1 Relational specifications

Port names and variables declared in an s-unit are referred to as s-unit variables. A data
state of an s-unit is a tuple of values, where each value is associated with an unique s-unit
variable. A relational specification is an assertion about the initial and final data state of
an s-unit execution and is of the form:

[P(vin, vout)]

where P(Vin,vout) is a predicative expression characterizing the relationship between the
initial data state, v;, and the final data state, v,y:. The semantic model of a relational
specification is a relation, R, determined as follows: :

Vin, Vout P(vina vout) = R(vin, 'Uout)-

If [P(vin,Vout)] is a relational specification characterizing a relation R, R is said to be
deterministic if

V”inalvout P(vinv vout)
that is, for each input state, v;,, there is exactly one output state, v,y:, that satisfies

P(vin, Vour). The mechanical transformation of deterministic s-units results in deterministic
specifications in our method.

Relational specifications generated from deterministic s-units are given as a set of universally
quantified equations of the form:

[Cl(vin) = Vout = fl('l’in)7

C2(vin) = Uyt = fz(vin), sy

Cn(vin) = Uyt = fn(vzn)]

The predicative expression Cp(vin)!, p = 1...n, is called the premise or condition part,
while the expression veyt = fp(vin), where fp is a function symbol, is called the conclusion
of the equation.

3.2 The translation rules

The rules presented here for translating s-unit statements to relational specifications are
based on the predicative semantics for programs developed by Hehner [11]. The notation
used in the rules is described in the Appendix.

The predicate Def; on variables in a data state s will be used in the rules and is true if and
only if the variable is defined in s, that is, it is not assigned the value L in s (see Appendix
A). The s subscript is dropped when the state can be implied from the context in which the -
predicate appears. When the predicate Def; is given an expression as an argument then it
is true if and only if all the variables in the expression have been assigned values, and the
assigned values are in the domain of the expression. For example,

Def(z/y) = Def(z) A Def(y) Ay # 0.

}the form of the expression states that v;, is free in the expression
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Null rule

NULL w [true]

Assignment rule

¢ = e — [Def(e[v « vin]) = vour = Vin[z — eval(e,vin)]]

For example,

Tz = x/y = [Def(xm) A Def(yin) A Yin # 0=>< ZTouts Yout > =< xin/yina Yin >]
In the above predicate expression the input state is

Vin =< Tin, Yin >

and the output state is

Vout =< xin/yin’ Yin >

Composition rule

If S1+— [P1], and S2 — [P2] then
51; 82— [3v : Pl{vgut — v] A P2[vis < v]].

For example,

For S1 = z := z/y, where

Pl= Def(xm) A Def(yzn) A Yin ?é 0=< Touty Yout >=< xm/yma 27m >

and 52 = y := ¢ * y, where

P2 = Def(xzn)ADef(yzn) = Yout = zin*yiﬁ

51; 82+ [3z,y: (Def(zin) A Def(yin) A Yin # 0) 2< 2,y >=< Zin/Yin, Yin > A
(Def(z) A Def(y)) =< Touts Yout >=< 2,2 %y >]

which simplifies to

[Def(zin) A Def(yin) A Yin # 0 =< Zout, Yout >=< Tin/Yins (Tin/Yin) * Yin >}

Deterministic choice rule
If §1~ [P1] and 52 — [P2] then
if Bthen Slelse S2 — [Def(B[v — vin]) = (Blv « vm] A P1)V (~ Blv < viy] A P2)]

For example,

ify>0thenz :=z/yelsey:=y*z fi

[Def(yin) A Def(mm) A Yin # OA yin > 0 =< Zout, Yout >=< xin/yin, Yin >,
Def(yiﬁ) A Def(xm) A Yin 7< 0=< Zouty Yout > =< Tin,s Yin * Tin >]

Non-deterministic choice rule

If S1~ [P1]} and §2 — [P2] then
S1V§2— P1V P2.
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Input/output statements

Stream ports are associated with the following operations:

nilstream : The function (constant) nilstream :— stream creates the empty stream.

next : The function nezt : stream — data returns the head of a stream.

put

: The function put : data stream — stream puts an element onto the end of a stream.

iseos : The boolean function iseos : stream — boolean returns true if and only if the end

of a stream has been encountered.

tail : The function tail : stream — stream returns the tail of a stream.

S-unit input/output statements are interpreted as follows:

Open(portid, file) : If portid is a stream port, this statement assigns a stream, file
to the port. If the port is atomic then file is a data instance of the port type which
is assigned to the port.

Receive(z) : For atomic ports only - this statement makes the value on port = available
to the s-unit.

Receive(z, portid) : For stream ports only - this statement assigns the next element
on the stream associated with the port portid to the s-unit variable z.

Send(e,portid) : For stream ports only - this statement puts the evaluated value of
the expression e onto the stream associated with the port portid.

Send(z) : For atomic ports only - this statement makes the data assigned to port =
available for communication.

- Close(portid) : This statement unbinds the current data stream, for stream ports, or

the current data instance, for atomic ports, from the port, portid.

The translation rules for input/output statements are:

Stream Ports
Open(portid, file) — [portidyy: = file]

Close(portid) — [portid,,; =1]

Receive(z, portid) —
[~ (iseos(portidin)) =< Toyt, portidey; >=< next(portidy,), tail(portid;,) >]

Send(e, portid) — [portide,: = put(eval(e, viy), portidis)] 2

Atomic Ports
Open(portid, file) — [portidy,, = file]

2

vin is the data state just before execution of this statement
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Close(portid) — [portidey: =1]

Receive(z) > [Zout = Tin] that is, this statement has no effect on the data state (z must
be a port name).

Send(z) = [zout = Tin] that is, this statement has no effect on the data state (z must be a
port name).

Loop statements
A loop:

while B do
X = f(X')
od

where X is the data state just after a loop iteration and X’ is the data state just before a
loop iteration, is translated to the specification:

[Xowt = F(Xin)) where

~ B = F(X)=X,

B = F(X) = F(f(X))

The first equation defining F is called the base part, while the second equation is called the
recursive part of the definition of F.

Generally, loop specifications produced in this manner are difficult to understand. Expert
analysis is usually needed to gain intuitive insight into the functionality being specified.
Once an understanding of the loop function is arrived at the specifier may choose either
to rename the function so that it reflects its meaning, and append a natural language
description of the functionality, or reformulate the function definition in terms of more
intuitive concepts and notation.

As stated earlier, Mills’ functional correctness technique.[4] and its extensions [6, 16] can
be used in most practical cases to verify that a reformulated loop specification is correct
with respect to the loop code. The condition under which such techniques can be applied
is refered to as closure which, in general, implies that the intermediate values generated
during a loop execution bear a constant relationship with the value when the loop exe-
cution terminates. It has been observed that a large class of non-closed loops created by
programmers have other properties that allow them to be verified by the above techniques.
Such properties have been characterized by Misra [16].

4 Expert analysis: Representing expert knowledge as pat-
terns
In this section we describe the type of pattern schemas used to support expert analysis

in our method, and demonstrate how they are used in an expert analysis of a relational
specification.
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A pattern is defined as an occurrence of a particular syntactic structure in a specification.
The objects in the Functional Abstraction Schema Base (FASB) relate specification patterns
to intuitive descriptions of their functionalities. The descriptions are not necessarily precise,
for example, they may not describe the effect on variables in detail, but they provide the
specifier with clues to the specified functionality. The developer can use the clues to gain
a more precise understanding of the specification, using his/her own expert programming
and/or domain knowledge. The FASB thus complements the human expert analysis required
to obtain an understanding of a specification.

4.1 Defining specification patterns

In order to define specification patterns we need to associate types with syntactic structures
of specifications. The formal specifications generated from s-units using the formal rules
given in the previous chapter consist of two parts: a relational specification part (the pred-
icative expression enclosed in [,]) and a definition part. The specification part expresses
the relationship between the initial and final data states of an s-unit statement execution
in terms of functions defined in the definition part. For example, the specification part of
the while loop specification given in section 2 is:

[< ZTout Youty Vout >= F(IEin, Uin, 'vin)]

while its definition part is:

1. iseos(z) = F(z,u,v) =< z,u,v >

2. ~1seos(z) = F(z,u,v) = F(tail(z),u+ next(z), next(z))

For deterministic s-units, the specification and definition parts consist of sets of conditional
equations. In our patterns, conditional equations are elements of type CondEqn, that is,
an element of CondEqn is of the form C = T, where C is a predicative expression and T’
is an equation, that is, an expression of the form f = t, where f and t are terms 3. The

specification and definition parts of a specification generated from a deterministic s-unit are
elements of type Set(CondEqgn), where Set is a pre-defined parameterized set type.

The terms of a specification (including variables), for example, u + nezt(z), are elements
of type Term. The type of a term is obtained by applying the function type to the term.
Operators and data type names are elements of type Op and Type, respectively.

Specification patterns are defined in terms of functions applied to elements from the above
syntactic types. The following syntax checking functions will be used in the pattern we
define in this paper: '

base - Takes a set of conditional equations and returns the set of base (non-recursive)
equations in the set.

rec - Takes a set of conditional equations and returns the set of recursive equations in the
set.

10)=g()

-— _: Term CondEqn Term — Boolean - The term z p, where z, and p are

3For u_nconditional equations, that is equations with C = true, C is omitted
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specification terms, f and g are function symbols, and v and ¢’ are tuples of terms
(function arguments), evaluates to true if and only if « is a term in the tuple v, and p

is a term in the tuple v’ with the same absolute tuple position as z in v. For example,

,0)=g(b+a,0 .
a f(ab)=g(b+e.0) b + a evaluates to true since a and b + a have the same absolute tuple

positions

An object in the FASB is called a Functional Abstraction Schema (FAS). A FAS consists of
five parts: a Specification pattern variable, a Other pattern variables, a Pattern definition
a Descriptive narrative, and a Related schemas part. The Specification pattern variable
declares the pattern variable that represents the specification to which the pattern is to
be applied. The Other pattern variables declares the other pattern variables, representing
specification syntactic elements, that will be used to define the specification pattern in the
Pattern definition part. All pattern variables are preceded by the symbol @ indicating
that the variable is to be unified with a syntactic element of a specification. The Pattern
definition part consists of a formula characterizing the pattern to which the narrative in the
Descriptive narrative part applies. The Related schemas part names other FASs related to
the pattern defined in the FAS.

An example of a FAS defining a specification pattern in which values are accumulated into
a variable from a stream via a single operator is given below. The loop specification for
ADDSTREAM has the pattern defined in this FAS.

Accumulator Pattern Definition
Specification pattern variable
@Eqgns : Set(CondEgn) such that
if (C = F1(v) = F2(v')) € Egns then (F1 = F2 = @G)
Other pattern variables '
@t : Type
Qu', @z’ : Term such that type(u') = t; type(z’) = stream(t)
@op : Op such that op is binary; prefix, postfix, or mixfix
Pattern definition
1. For all (C = F) € rec(Eqns): 2’ £, tail(z’) A v £, op(v', nezt(z"))
2. Forall e = (C = E) € base(Eqns) : v’ Eow '
Descriptive narrative
The variable @u' accumulates values in the stream Qz’
via the operator @op.
Related Schemas
Summation

In the Specification pattern variable part the pattern variable Egns is declared as an element
in Set(CondEgn), that is, Fqns must be instantiated with a set of conditional equations.
The restriction, introduced by the statement ‘such that’, states that the function symbols
of the right and left hand sides of the conclusions of every equation in Eg¢ns must be the
same as the pattern variable G, that is, the equations define a single function *.

41t is assumed that once the function symbols are the same then both the left and right hand sides have
the same number of arguments.
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In Other pattern variables two term variables, a type and an operator pattern variable are
declared. The term pattern variable u’ is restricted to be of type t (also a pattern variable,
that is, it has to be unified with a specification syntactic element, in this case a data
type name), and 2’ is restricted to be a stream of elements of type . The operator pattern
variable is restricted to binary operators, which can occur in postfix, prefix, or mixfix forms.

The definition in the Pattern definition part determines how the accumulator specification
pattern is identified. Formula 1 states that for all recursive equations in Eqns the term z’
in the left hand side of the conclusion is changed to the term tazl(z’) in the right hand side,
and v is changed to op(vw,nezt(z’)’. Formula 2 states that the term u’ in the left hand
sides of all base equations in Egns is unchanged in the right hand sides.

Checking for the occurrence of a particular pattern in a specification involves:

o unifying specification syntactic forms with pattern variables and

o applying pattern definitions to the specification to determine whether, under the par-
ticular unification, the specification contains the defined pattern.

As an example of how specifications are checked for patterns, consider the definition part
of the while loop specification given earlier:

1. iseos(z) = F(z,u,v) =< z,%,v >

2. ~ iseos(z) = F(z,u,v) = F(tail(z),u + next(z), next(x))

To check whether the specification has the pattern defined by the Accumulator FAS we try
to unify the pattern variables with specification structures that satisfy the formulas in the
Pattern definition of the FAS. The following is the required match between the specification
and pattern variables:

Eqns — {iseos(z) = F(z,u,v) =< z,u,v >,

~ iseos(z) = F(z,u,v) = F(tail(z),u + nezxt(z), next(z))}

G~ F :

t — integer

u—u

2~z

op — +

The loop function can thus be characterized as an accumulator.

The Descriptive narrative is a natural language description of the functionality associated
with the pattern. The description for the above FAS is not very precise. Another pat-
tern that replaces the op variable by a particular operator, for example, +, can provide a
more precise definition for a specification. This suggests that FASs can be organized as a
hierarchy. The Related Schemas part of an FAS allows us to do this.

The entry in the Related Schemas part of the FAS is the name of an FAS defining a pattern
in which elements are summed into a variable. The Summation FAS is similar to the
Accumulator FAS and differs only in that the operator pattern variable is fixed to a +

SDespite the prefix notation used here the definition also applies to post and mixfix equivalents of the
expression since the operator pattern variable declaration placed no restriction on where the operator is to
be placed
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symbol, that is, it is no longer a pattern variable. The narrative description associated with
the Summation FAS is more precise than that of the Accumulator FAS as a result of fixing
the operator.

A FAS hierarchy consists of FASs related via the Related Schemas part of FASs. As one
goes down a hierarchy, the descriptions become more precise since more specific features of
specification patterns are identified and related to functionality.

Given a specification, a search of the FASB starts at the top level of a FAS hierarchy and
proceeds as far down as possible. A search only proceeds to a related schema if and only if
the specification contains the pattern identified in the current schema. If the specification
does not contain the pattern then the search proceeds from the last schema encountered
. whose pattern occurs in the specification. If the search reaches a point in the hierarchy
where it cannot proceed downwards any further, then the information contained in the
Descriptive narrative of the FAS at that point is passed to the specifier. The specifier can
then request that the search continue for other patterns, in which case the search proceeds
from the next upper level schema which is satisfied by the specification (if any), treating
the results of any previous searches as unsuccessful to prevent revisiting schemas.

The results of searches on the FASB provides specifiers with clues to the functionality being
defined by the specification. As described above, descriptions become more precise as one
goes down a FASB hierarchy, thus a search which yields FASs deep in a hierarchy will be
much more useful than one which yields no FASs or high-level FASs. In such situations the
specifier has to do more work in interpreting the specifications.

A prototype of the above search mechanism has been built in Prolog. The prototype FASs
are defined by Prolog predicates, and s-units are represented by a set of relations.

4.2 An example analysis

Here we detail the application of our method to the ADDSTREAM s-unit:
Process ADDSTREAM(z : in stream(integer); z : out integer)
var u, v : tnteger
begin
u = 0;
while ~ iseos(z) do
Receive(v, z);

ui=u+"v
od;
Zi=u
Send(z)
end

In the first step of our sequential analysis of ADDSTREAM the statement u := 0 is me-
chanically translated to the specification uy,: = 0. No expert analysis is required for the
specification developed thus far, thus we proceed to the while statement, which we analyze
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by first translating its body and then applying the while translation rule to obtain a set of
recursive equations.

Mechanical analysis of the loop’s body results in the following specification:

[< Zouts Vout >=< tail(Tin), n€Tt(Tin) >; Uout = Uin + Vin)
which translates to
[< Zouts Uout, Vour >=< tail(Zin), tin + next(zin), next(zin) >)

Using the loop translation rule, the following specification is obtained for the loop structure:

[< ZTouts Youts Vout >= F(fma Usn, vin)]

where

1. iseos(z) = F(z,u,v) =< z,u,v >

2. ~ iseos(z) = F(z,u,v) = F(tail(z),u + nezxt(z), next(z))

The specification at this stage is:

[uaut = 0; < Zout, Youts Vout >= F(xina Uin,y 'Uin)]

where

1. iseos(z) = F(z,u,v) =< z,u,v >

2. ~ iseos(z) = F(z,u,v) = F(tail(z), u + next(z), next(z))

which reduces to the following specification by the composition translation rule:

[< Touts Youts Vout >= F(Zin, 0, 'Uin)]

where

1. iseos(z) = F(z,u,v) =< z,u,v >

2. ~ iseos(z) = F(z,u,v) = F(tail(z),u+ next(z), next(z))

Expert analysis of the equations defining F utilizes the Summation FAS to obtain a de-
scription of the function as a summation into the variable u. The developer can use that
information and the fact that u is initially 0 to determine that the function sums the inte-
gers in the input stream z;,. To reflect the understanding arrived at the developer can then
choose to rename F to sum and append a natural language description to the specification
resulting in the following specification:

[< Touts Youts Vout >~ sum(:cin, 0, vin)]

where

1. iseos(z) = sum(z,u,v) =< z,u,v >

2. ~ iseos(z) = sum(z,u,v) = sum(tail(z), v + next(z), next(z))
description of sum

The function sum sums the integers in the stream

z;n, and returns the result in woy;.

Since the final value of the variable v is not relevant to the s-unit there is no statement on
this aspect of the specification’s functionality.

In the last step the statement z := u is translated to [2ou¢ = uin), Which is composed with
the specification obtained above to yield the final specification:
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[< Touts outs Vouts Zout >=< Sum(xin, 07 vin), Uout >]

where

1. iseos(z) = sum(z,u,v) =< z,u,v >

2. ~ iseos(z) = sum(x,u,v) = sum(tail(z), u + next(z), next(z))
description of sum

The function sum sums the integers in the stream
Z;n and returns the result in Uqy;.

The above specification is a documented formal specification which is made into the detailed
definition of the extended s-unit ADDSTREAM.

The component specifier armed with the intuitive insight obtained as a result of developing
the detailed specification, can reformulate the specification abstractly as follows:

z=SUM(z)

where for all h : integer; 1 : integer stream

1. SUM(nilstream) =0

2. SUM(h|t)=h + SUM(t)

This specification becomes the abstract definition part of the extended s-unit ADDSTREAM.
One can easily demonstrate that the abstract specification is consistent with the detailed
specification in this case. In general, the relationship may not be as obvious and may require
the use of suitable formal verification techniques. :

The above combination of natural language descriptions and formal detailed and abstract
specifications should provide a potential component user with the means to comprehend an
s-unit and to rigorously investigate its functional properties.

5 Conclusion and further work

The generation of understandable specifications from code is difficult to automate mainly
because code does not directly reflect the abstractions used in their development. From
our observations, the generation of understandable specifications from code requires the use
of a significant amount of expert knowledge. Strictly formal analysis techniques are not
always adequate, since they often do not allow for the development of intuitive expressions
of functionality. This has led us to consider a pattern-driven approach to code analysis.
The analysis method we propose in this paper supplements a formal analysis technique with
facilities to assist in the creation of more intuitive descriptions of functionality.

The successful development of a system based on our model depends to a large extent on the
ability to recognize, and represent expert knowledge required to extract abstract specifica-
tions from code and/or specifications. We have indicated in this paper how such knowledge
can be represented and used. We are currently developing suitable knowledge representa-
tions and organizational structures for a knowledge-based system for code analysis. Such a
system will provide organizations for identifying analysis related knowledge, and creating
representations of such knowledge, as well as organizations for retrieving the representations
when required. Expressing patterns will require some training in the formalism, but the use
of syntax checking functions that relate directly to specification syntactic concepts should
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make learning easier with experience.

As a component developer gains experience in creating reusable components from code
structures, a number of additional pattern/description relationships may become apparent.
Also, more precise descriptions of existing FASB patterns may evolve from a developer’s
experience. Mechanisms are needed for incorporating the results of such experience in the

FASB.

We are also investigating the possibility of automated expert support for the abstraction
phase of our specification method, and the availability of suitable automated verification
techniques to support consistency checks between abstract and detailed specifications.
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Appendix: Relational semantics concepts and notation

In what follows z,z1,22,..., are s-unit veriables, v is a data state, v;, is an input data
state, voys is an output data state, and e,ey,es,..., are function terms. A function term
is an expression built using only function and variable symbols, for example, (z + y)/z is
a function term built from the function symbols + and /, and the variables z,y,z. Note
that a value is also a function term since it can be represented by the term that reflects
its generation. For example, the integer value 2 is represented by the term succ(succ(0))
where suce is the successor function, and 0 is the zero constant (a function with an empty
domain) as defined in a specification characterizing integers.

A data state is a variable indexed vector written as follows:

KT ¢ €lyeeeyly — € > ;

where z; is the variable index (an s-unit variable) and e; is the term currently held by the
variable. The value L will be used to indicate that a variable has not been assigned a
defined value. A variable is said to be defined in a state if it is assigned a defined value,
that is, if it is not assigned the value L. A state in which all variables are not defined is
said to be undefined, and is itself denoted by L. States of an s-unit P are characterized by
an algebraic specification denoted STAT Ep. The elements of type state provided by the
semantic model of STATEp are data states of the form given above. Function terms are
elements of type fterm in ST AT Ep, s-unit variables are elements of type variable, and the
union of the data domains making up the state is denoted by the type data. The following
functions on states are defined in STAT Ep:

Data state access : The expression v[z] is the value of the variable z in data state v. For
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convenience we denote the value of a variable, z, in the state v by z,. In particular,
the value of the variable z in the input (output) state v;, (voy:) is simply denoted by

Tin (xou.t)-

Term evaluation : eval : fterm state — data
The expression eval(e, s) is the result of evaluating the function term e in the data
state s. Evaluation of a function term in a state s involves substituting for the variables
in the function term their assigned values in the data state.

State assignment : _[_ « _] : state variable fterm — state
The expression s[z «— e] represents the state resulting from assigning the value e to
the variable z in state s. If there is no such variable in s then s is left unchanged. In
what follows we use a more convenient form of state assignment, which allows us to
state changes on more than one variable in an input or output state. For example a
group of state assignments
Vout = (v[zl «~ el],...,v[zn « en])
(where each z1,...,zn is unique) is conveniently expressed as:
< Zlouty ey TNoyut >=< €l,...,en >
where it is understood that all variables not mentioned are unchanged.
Similar substitution operations are defined for function and boolean expression:
E[z « Y], where E and Y are expressions, denotes the expression formed by sub-
stituting ¥ for all (free) occurrences of the variable z in E. The following syntactic
substitutions will be used:

e[v « v;,]: subscript all the variables, v, in e, with 4n. A similar definition applies
when v,y is substituted for v;y,.

e[vin «— v]: remove the subscripts of the variables of the form, v;y, in e. A similar
definition applies when v,,; is substituted for v;y,.

Data types are specified algebraically. In our method, we express data type specifications in
the executable language OBJ3 [10], thus allowing us to carry out some mechanical reductions
on data type representations. An example of such a specification is given below.

ObJ ARRAY[INDEX VALUE] is sort Array .

*** Constructors

opnilar : — > Array .

op put : Array Indez Value — > Array .

*** Auxiliary functions

op [-] : Array Index — > Value..

*** Error function

opundef : Index — > Value .

*** Axioms

var A : Array . var E : Value . var [ I' : Index .
eqput(A,I, E)I'l = if I == I' then E else A[l'|fi.
eq nilar[I] = undef(I) .

The specifications INDEX and VALUE in the above array specification characterize the
index and value parameters of an array, respectively, for arrays. For example, ARRAY[NAT
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INT] is a specification of integer arrays indexed by natural numbers. The constructors nilar
and put create arrays, for example, put(nilar, I, E) creates an array by assigning the value
E to the location I of the uninitialized array nilar. The auxiliary function _[_] returns the
value stored in the given location, for example, A[I] returns the value stored in location I
of the array A. The error function, undef, returns a value which indicates that the array
location has not been assigned a value.
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