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Abstract — Packaging software components, before storing them in a reuse repository, is
an important activity which could significantly enhance their reuse potential. The pack-
aging of code components can be achieved by annotating them with their abstract formal
specifications. Such specifications can facilitate their identification, understanding, and
modification during the actual reuse process. This paper presents a knowledge-based ap-
proach that helps in annotating computer programs by finding the abstract specifications
of their loops. In this approach, loops are first decomposed into their component parts.
The specifications of the resulting loop fragments are obtained by utilizing a knowledge-
base. This knowledge-base is built, in 2 specific domain, by designing plans that allow us
to recognize stereotypical code patterns and to associate them with their specifications. A
consistent and accurate specification of the whole loop construct is then synthesized from
“the understanding of its fragments. An example is provided to illustrate this technique for
a program with a simple loop structure.

*Research for this study was supported in partv by the ONR grant 'NO0014-90-J-4091 to the University
of Maryland. :
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1 Introduction

The reuse of all forms of proven experience can improve software quality and produc-
tivity considerably[5]. With respect to product reuse, properly packaging software prod-
ucts in a reuse repository can enhance their reusability. The objective of finding suitable
computer-based techniques to package reuse candidates is to increase their reuse potential
by facilitating their identification, understanding, and modification during the actual reuse
process. The different packing activities which can be performed on a component can range
from generalizing the component’s interface by eliminating its dependency on other software
to representing it in a different and more abstract form. In any case, the augmentation of
the component’s interface with the specifications necessary for its correct understanding is
crucial for reuse. This is because the reuser must be aware of what the component does
and how to utilize it. These specifications can also assist in identification and modification.

In this paper, we discuss the different packaging activities performed on candidate
reusable components and perform a comparison of some of the possible formal and informal
languages available for specifying them. We argue that it is possible to produce readable ab-
" stract specifications which have an underlying sound mathematical foundation and present
a knowledge-based approach for producing such specifications. In this approach, loops are
classified according to their complexity levels. Based on this taxonomy, we design the anal-
ysis techniques that best fit each of these classes. Loops are analyzed by decomposing them
into their component parts. This decomposition is based on the structural dependencies
among the different loop fragments. To deduce the abstractions of these loop fragments, a
knowledge-base of plans is utilized. After deducing the abstractions of the loop fragments,
a consistent and accurate abstraction of the whole loop construct is synthesized from the
understanding of its constituents.

2 The Reuse Framework

Reuse is motivated by the desire to improve quality and productivity. Improving quality
can be achieved by reusing all forms of proven experience related to software development
including products, processes, and other knowledge. Improving productivity can be achieved
by using all forms of existing experience rather than creating everything from scratch[6)].

Here, the term ‘product’ refers to a concrete documentation or artifact created during
a software project and the term ‘process’ refers to a concrete activity or action performed
by a human being or 2 machine during the software development. The reuse of products
includes such activities as reusing code components, requirements, and design templates
developed for some application domain. The reuse of software processes include such ac-
tivities as adapting a development method and reusing an inspection method created for
similar prior projects. The reuse of other knowledge refers to utilizing anything useful for
software development including models, data, and learned lessons. It includes such activi-
ties as developing a risk management plan based upon lessons learned from applying a new
technology and estimating the cost of a project based on data collected from past projects.

With respect to product reuse, the reuse of early life cycle products such as specifi-



cations and requirements might provide the largest payoff since errors in the early stages
of development are more costly than other kinds of errors. To avoid such errors, the Re-
quirements Apprentice (RA) system[33] assists a requirements analyst in the creation and
modification of software requirements by utilizing a reuse library of requirements clichés.
When creating a requirement’s document, the information unique to the particular problem
comes from the analyst while the bulk of general information about the domain comes from
the cliché library. Another form of product reuse is the reuse of software designs. In the
Intelligent Design Aid (IDeA) system[26], software design components are abstracted into
the form of design schemas to enhance their reusability. IDeA provides an environment
in which the user can concentrate on supplying the requirements and specifications of the
desired software product and is assisted in the location and incorporation of the reusable
components to construct the required software design. At the lowest level, highly controlled
source code repositories can provide quick gain. The code components designed by Booch[9]
are an example of what could be stored in a general purpose repository. They include im-
plementations of abstract data types as well as numerous algorithms for sorting, searching,
and pattern matching which can appear in a vast spectrum of applications.

Whether the components in the repository are created from scratch or extracted and
adapted from existing programs and systems, three main activities need to be performed to
reuse them. These activities are the identification of the reuse candidates from the reposi-
tory, the understanding and selection of the best suited candidate, and the modification of
the selected candidate into the required one.

To identify reuse candidates, several approaches have been proposed. The faceted clas-
sification scheme[30] describes, and selects, software components by their functionality,
internal environment (where the program is executed), and external environment (where
the program is applied). Other approaches, as in the Paris system[22], adopt logic-based
identification of components. In this system, the identification utilizes preconditions and
postconditions plus assertions about component properties to form ‘clauses to be proved
with the Boyer-Moore theorem prover. The result of this formal process gives a list of
candidate components.

The understanding of a component is required whether or not it is to be modified because
the users need a mental model of the component’s computation to use it properly[8]. The
annotation of components with their specifications can help the users in forming this mental
model, thus selecting the components best suited for their needs[1, 2, 13].

To allow for significant reuse, the modification of selected components prior to their
inclusion in a new system must be anticipated. This modification can take place as part
of the actual reuse process or as part of the packaging activity of the components before
storing them in the repository[6].

To enhance the reusability of candidate reusable components, they must be packaged
in a form which facilitates the performance of the aforementioned three activities. That is
why packaging of candidate reusable components is one of the important issues that needs
to be addressed in software reuse. Finding suitable computer-based techniques to package
reuse candidates can facilitate their understanding and selection. It can assist in their
modification during the actual reuse process and can help in the identification of candidate



reusable components from a repository.

3 The Different Packaging Activities

A rich and well-organized catalog of high-quality reusable components is the key to a
successful component repository and a long term economic gain. But developing reusable
~ components is generally more expensive than developing specialized code because of the
. overhead of designing for reusability and maintaining the component repository. However,
such a catalog can be available to an organization if it can reuse the same code it developed
in the past. Mature application domains, where most of the functions that need to be used
already exist in some form in earlier systems, should provide enough components for code
reuse. For example, Lanergan and Grasso found rates of reuse of about 60% in business
applications[24].

After extracting a component from an existing system, it needs to be properly packaged
before adding it to the repository. The packaging of candidate reusable objects can enhance
their reusability. This is because it can facilitate their identification, their understanding,
and their modification during the actual reuse process.

Interface generalization is necessary for producing independent cbjects. This general-
ization can be performed by completing an object so that it has all the external references
needed to reuse it independently[10]. The use of the the generic feature of Ada is an-
other common technique for producing more independent and, presumably, more reusable
components[3]. However, The reusability of an object can be further enhanced by per-
mitting the interface to include more than purely syntactic information. The interface of
reusable objects can include information which is needed for their correct understanding.
It can be designed to facilitate their modification, composition and integration into new
systems[14].

The CARE system(Computer Aided Reuse Engineering)[10] has been designed to sup-
port a process model for extracting resuable software components from existing systems
and then adapting them. It populates the reuse library using software metrics to produce a
first assessment of independence, quality, and reuse potential to generate a set of candidate
components. Then, a2 human expert processes the candidates and packages a subset based
on their functionality and quality. To start this second phase, a precise description of what
the component does is generated. While doing this, the correctness of the implementation is
also verified. Test cases are then generated, executed, and associated with the component.
The formal specification previously produced can help in this activity. Finally, the extracted
candidates are stored in the component repository along with their functional specification
and test cases and manuals are provided for them.

Choosing an appropriate formalism for representing software components is another fac-
tor that can improve reusability. An effective representation of software components can
offer several advantages. It can enhance the modifiability of components by introducing
convenient instantiation and combination operations[20]. It can enhance program reliabil-
ity by defining a set of constraints with each component that can be used in maintaining
its internal consistency. Furthermore, an abstract formalism makes it possible to repre-
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sent éomponents in such a way that they can be easily reused in many different language
environments.

One formalism for representing code components is the Plan Calculus[{34]. The Plan
Calculus is essentially a combination of hierarchical data flow schemas, logical formalisms,
and transformations. Some of the useful properties of such a formalism are: program-
ming language independence, semantic soundness, and convenient combinability. KBEmacs
(Knowledge-Based Editor in Emacs)[34] is a program editor that makes it possible to con-
struct programs rapidly and reliably by combining algorithmic components called clichés.
It is based on a simple, early plan representation that corresponds to a part of the Plan
Calculus. KBEmacs supports several commands for instantiating and combining compo-
nents from the component library. The components themselves are stored in the library as
plans. New components can be defined by the user by using a programming language-like
representation.

While the approach of representing candidate reusable objects in an abstract form|34]
offers some advantages over other techniques, which only generalize the candidate reuse ob-
jects by eliminating their dependency on other software[3], they are much more expensive.
The two approaches need to be evaluated in the environment in which they are going to
be used in order to determine which one best fits the needs of the organization. However,
in both cases, the anugmentation of the object’s interface with the necessary specifications
needed for its sound and correct understanding[1, 2, 13] is crucial for reuse. This is because
the reuser must be aware of what the component does and how to utilize and modify it.
Furthermore, the specification of a candidate reusable component can help in its identifica-
tion as demonstrated by the Paris system[22]. To choose the appropriate language that can
be used in specifying reusable components, we need to perform a comparison of the vari-
ous choices of specification languages. The next section discusses the various specification
mechanisms and compares the possible choices for a specification language.

4 The Specification of Programs

Due to the importance of the activity of program comprehension, substantial interest
is directed towards the analysis and specification of computer programs. The algorithmic
approaches usually annotate programs according to the formal semantic of a specific model
of correctness[l, 23]. A common characteristic of the systems that implement these ap-
proaches, up to date, is that they rely on the user in the task of annotating the loops. They
offer assistance only in proving the correctness of these annotations.

The knowledge-based approaches modularize experts’ knowledge in the form of plans
that can be accessed mechanically. In these approaches, the generation of the specification
of a component usually involves two main tasks; the recognition of stereotypical parts
in the program and deriving their annotations using the plans stored in the knowledge-
base. In the graph parsing-approach, a program is translated into a graph. Then it is
parsed using a library of plans in the form of graphical grammer rules[35]. The heuristic-
based concept-recognition approach provides common-sense explanations of the program
that trades accuracy for simplicity[17]. The transformational approach of program analysis



is similar to the transformational paradigm of automatic program synthesis but with the
application direction of the transformation rules reversed[25].

Given the wide range of specification languages available, the choice of a language which
is suitable for specifying candidate reusable components is crucial. Specification languages
can range from free-form natural languages to abstract formal specifications. To improve
the reusability of a candidate component, the specification language should have many
characteristics. Readability, expressiveness, semantic soundness, convenient derivability,
" and automatability are of particular importance.

¢ Readability is the convenience and ease with which a reuser can read the specifications
and then form a sound understanding of the components functionality.

o Ezpressiveness is the ability of assisting the understanding process of as many different
components as possible.

o Semantic soundness means that the specification language must be based on a math-
ematical foundation which allows correctness conditions to be stated and verified if
desired. : '

¢ Convenient derivability is the ability to derive the specifications of various components
using easy and well defined methods.

o Automatability is the ability to automatically generate and manipulate the specifica-
tions of various components.

A small, but representative, subset of the various specification languages that can aug-
ment a reusable component are discussed in this section. The relative strengths and weak-
nesses of the different possible choices are evaluated in light of the aforementioned charac-
teristics. We demonstrate and and compare these different choices using the bubble sorting
example shown in Fig. 1. :

1 k, 7, n, s: integer;

2 A: array{l..Max] of integer;
11 k:=n - 1

12 whilek >= 1do

13 =1

14 while ; <= k do

15 if A[j] > A[j +1] then
16 s = Al +1);

17 Alj+1] = ALY
18 Af] = s;

19 fi

20 J=3 F L

21 od :

22 k =k - 1;

23 od

Fig. 1. A bubble sorting algorithm.



This is a bubble sorting algorithm that repeatedly scans adjacent pairs
of items in an array segment from one location (front} to another (end).
It interchanges those items that are found to be out of order. The array
A[1 : n] is sorted in ascending order by repeatedly placing the maximum
towards the end of the scanned segment.

Fig. 2. Free-form English specification of the bubble sorting algorithm.

Specifying programs using free-form English text is an informal technique that gives an
intuitive description of the code. In most cases, the specifications are easy to read and the
knowledge needed to produce and understand them is gained from programming courses and
practical experience. The greatest strength of free-form English text is its expressiveness|34]
since it is capable of specifying any kind of component. However, there is no semantic basis
that makes it possible to determine whether or not the specifications have the desired
meaning. This lack of a firm semantic basis makes informal natural language specifications
inherently ambiguous. With respect to derivability, free-form English text might appear
to be very easy to derive by just giving intuitive descriptions of the component under
consideration. But since there is no well defined method for writing such specifications,
the specifier must be very careful not to write an ambiguous statements that can lead to
a misunderstanding. Due to their informal nature, judging the conciseness and clarity of
natural language specifications is a difficult task that is dependent on the experience and
talent of both the specifier and reuser. For instance, Fig. 2 shows a possible free-form
English specification of the bubble sorting algorithm of Fig. 1. It gives a description
of what is performed by the algorithm in addition to the undesired information on how
it is performed. The parts of the array A that are ordered first and the bounds of the
variables j and k are not accurately stated which might lead to misinterpretations. With
respect to automatability, free-form English text is not amenable to automatic manipulation
in any significant way[34]. In order to automatically generate informal specifications of
programs, several knowledge-based approaches such as the graph parsing approach[35] and
the heuristic-based concept-recognition approach{17] have been developed.

Other specification techniques produce natural language specifications that are more
structured than the free-form ones[17]. These specifications give detailed descriptions of the
purpose of each variable and statement in the program as outlined in Fig. 3. This form of
informal specifications is similar to free-form English with respect to the five characteristics
under consideration but they are more structured and detailed. They include unnecessary
descriptions of how the sorting is performed. For example, the details of the swapping
process, in item 2.2, are not needed for the sound and correct understanding of the loop.
It seems that such detailed descriptions can encourage the reader to skip some parts of the
specifications and consequently miss some important details.

The specifications shown in Fig. 4. are written in a formal notation that uses predicate
calculus to produce Hoare-style annotations[18]. An advantage of formal specifications is
that they accurately state what is performed by a program segment without having to give
unnecessary details of how it is performed. Semantic soundness and expressiveness are key



The segment at lines 11-23 sorts an array A using a bubble sort algorithm.
The sorting is performed as follows:
1. The effect of lines 11, 12, 22, and 23 is to decrementally change the
value of k from n —1 to 1.
2. The effect of lines 13-21 is to sequentially switch the adjacent elements
in the array A if A[y] > A[j + 1], indexed by j from 1 to .
This is performed as follows:
2.1 The effect of lines 13, 14, 20, and 21 is to incrementally enumerate
the elements in the array A indexed by j from 1tok.
It consists of: :
2.1.1 .-
2.1.2 --- .
2.2 The lines 15-19 switch the values in A[j] and A[7 + 1]if A[j] >
Al + 1]. They consist of:
2.2.1 An IF construct at lines 15 and 19.
2.2.2 A swap construct at lines 16-18. It performs the following:
2.2.2.1 An assignment construct at line 16.
2.2.2.2 An assignment construct at line 17.
2.2.2.3 An assignment construct at line 18.

Fig. 3. Structured English specification of the bubble sorting algorithm.

Outer loop invariant:
n—-12k>0 A perm(A,Ao) A
Y k+2<ind < n: Alind] = mazimum{A[l : ind ~ 1]}

Inner loop invariant:

1<;<ktl Al<k<n—1A

Alj] = mazimum{A{l: j — 1}} A perm(4,Ao) A
Vi+2<ind <n: Alind] = mazimum{array[l : ind — 1]}

where,
vare denotes the initial value of a variable ver. -
perm(Al, A2) asserts that Al is a permutation of A2.

Fig. 4. Hoare-style specification of the bubble sorting algorithm.

advantages of the predicate calculus annotations. They have no trouble in representing
diffuse program components and allow correctness conditions to be stated and proven if
desired. Using such a mathematically sound formalism makes it possible to be certain of
the functionality of a given component. '

However, when annotating complicated and large components, formal specifications be-
“come hard to read and understand. The readability of such formal specifications can be
enbanced if they are further abstracted. This abstraction can be performed by replacing a
formal statement with another one that is formulated in terms of a more widely known and
understood concept[13]. An example of these abstractions is shown in Fig. 5 which abstracts



Outer loop invariant:
n=12k20 A perm(A4,Ad) A
upsorted(A[l : n], k + 2)

Inner loop invariant:

1<j<k+1 A1Zk<n—1A

Alf] = mezimum{A[l: 5 — 1}} A perm(A4, 4o) A
upsorted(Afl : n], k +2)

Fig. 5. Abstract specification of the bubble sorting algorithm.

the annotations in Fig. 4 by introducing the predicate upsorted(A[l : n), k + 2) to replace:
Vk+2<ind < n: Alind] = mazimum{A[l : ind — 1]}. Domain abstractions can fur-
ther abstract the formal annotations with concepts specific to the application domain. The
annotation of programs with their assertions using predicate calculus, algebraic specifica-
tions, and A-abstractions are examples of formal specifications. When these specifications
use notations that are dependent on the application domain e.g., referring to the average
as the GPA in the domain of student grading systems, they become more readable and
understandable.

With respect to derivability, writing formal specifications, in general, is not an easy task.
It is not as intuitive as in the case of writing natural language specifications. Much more
ingenuity and experience are required in order to precisely describe what the component does
with a well defined formal notation. The automatic generation of specifications similar to
those in Figs. 4 and 5 is a well known problem for the current specifiers and provers|1, 23, 15].
These systems require the user to provide the loop annotations which is an ingenuous
task that needs experts’ knowledge. The automatic manipulation of formal specifications,
however, is better than in the case of informal ones because of their well defined syntax
and semantics. In the remainder of this paper, we briefly describe a prototype specifier,
CARE-FSQq, and explain how to enhance it by presenting a knowledge-based approach for
generating formal loop specifications.

5 A Component Specification Tool

A prototype specifier has been designed at the University of Maryland as part of the
packaging activities performed in the CARE system. It is the second in a series of prototype
tools developed under the general name FSQ, for Functional Specification Qualifier[1, 2, 31].
This prototype supports the derivation of programs’ specifications and the verification of
whether or not the programs meet those specifications. It does not only help to specify and
check the partial correctness of finished programs, but it also works on unfinished programs
and program fragments. It is a program understanding tool that is based on a formal
specification technique.

In a typical session, the user derives the specifications of the program using step-wise
abstractions. The user starts by trying to find the correct specification of every program
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segment loop in the program as a’separate entity. After succeeding in this, the correct
specification of the whole program can be found. This methodology of step-wise abstraction
enables the software engineer to concentrate on small pieces of code, one at a time, and to
mitigate in this way the difficulty of specifying the whole program. Currently, CARE-FSQ,
supports a subset of Ada with modifications on the input/output mechanism.

The CARE-FSQ prototype helps in checking syntax, static semantics, and generating
specifications at the same time. It also provides the capability of carrying out some algebraic
simplifications and enables the user to make use of some well defined mathematical functions
in the specification of the loop function. However, this prototype does not provide any
assistance in a major and difficult task which is annotating the loops with their functions
or invariants. To intelligently assist the understanding computer programs, we present
a technique that can enhance a specification tool, such as CARE-FSQ2, by mechanically
annotating loops.

6 The Analysis of loops

Considerable research has been performed on ways to automatically develop loop invari-
ants (functions). Some of this work centers around heuristic methods which can be used to
guide a search for an invariant. The research performed by Dunlop and Basili[12], Katz and
Manna[21], Remmers[32], and Wegbreit[37] is representative of these heuristic approaches.
Although these heuristic approaches can be helpful in some cases, they offer no guarantees
concerning their success. After applying them for a considerable amount of time, you may
or may not succeed in finding a correct invariant. Other work focuses on developing algo-
rithmic approaches for finding the invariants (functions) of simple loops. Examples of the
later approach can be found in the work of Basu and Misra{7], Dunlop and Basili[11], Katz
and Manna[21], Mills[27], Misra[28], and Morris and Wegbreit{29)].

A more practical approach which analyzes loops by decomposing them into fragments,
was proposed by Waters[36]. The key feature of this analysis method is that it breaks the
loop apart in a mechanical way. This decomposition can facilitate both the understanding
and the correctness analysis process. Even though Waters’ approach does not address
the issue of how to use this decomposition to mechanically annotate loops, it is especially.
interesting because of its practicality. The idea of analysis by decomposition has also been
adopted by Basili and Mills in a different context[4]. They performed an experiment in
trving to understand an unfamiliar program of some complexity. Their process consists of
reducing the program to be understood to smaller parts and then creating in a step-by-step
process the functions produced by those parts, combining them at higher and higher levels
until a full specification is achieved.

In the following section, we introduce a technique that annotates loops with their func-
tional abstractions in a step by step process as depicted in Fig. 6. The analysis of a loop
starts by decomposing it into fragments. This decomposition is based on the structural de-
pendencies among the different loop segments. The resulting fragments are analyzed using
objects, called plans, stored in a knowledge-base to deduce their functional abstractions.
The functional abstraction of the whole loop is then synthesized from the functional ab-
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Fig. 6. Overview of the analysis strategy.

stractions of its fragments. Expert knowledge and inference procedures are thus utilized to
solve a problem which is regarded formidable to algorithmic approaches.

This approach creates an intelligent assistance to software engineers by adding knowl-
edge to the tool in the form of plans stored in a knowledge-base. It can produce partial
documentations if the available knowledge is insufficient for finding complete documenta-
tions. This characteristic makes it more flexible and user friendly. Specifically, this approach
facilitates the process of deriving loop invariants by mechanically identifying and deriving
as many parts of the invariant as possible. The parts of the invariant that cannot be
identified, due to an insufficiency of library plans, are linked to the corresponding parts
of the loop to serve as a guide for designing future plans suitable for the domain under
consideration. Using a logical formalism such as the predicate calculus provides us with the
required semantic soundness and expressive power. This is because it is based on a sound
mathematical basis[18] and can abstract a wide variety of problems. Furthermore, the for-
malisms we introduce for knowledge representation are flexible and can be tailored to the
needs of different domains. They encapsulate knowledge in a form that can be accessed and
reused mechanically. By increasing the number of plans in a system, it can be incrementally
developed and enhanced.

The approach we present provides support for maintenance. reuse, and many program
development activities such as code reviews, debugging, and some testing approaches. It
helps in documenting programs and can be used, along with a theorem prover. in verifying
their correctness. It assists the software engineer in rigorously understanding the progran
under consideration which is especially useful for the various maintenance and reuse activ-
ities. By having software components that are very well understood and that are formally
specified, we can populate a software repository with well packaged components.
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7 A Knowledge-Based Approach for Analyzing loops

~ We start by introducing the notation we use for loops. Let the representation of the
while loop be while B do S where the condition B has no side effects and S may be any
_one-in one-out flow chart. A control variable of the while loop is a variable that exists in
the condition B and gets modified in the body S.

7.1 Classification of Loops

To design the analysis techniques that best fit different levels of program complexity,
we classify the while loops along three dimensions. The first dimension focuses on the
" number of control variables of the loop. The other two dimensions focus on the complexity
of the loop condition and body. Along each dimension, a loop must belong to one of two
complementary cases as shown in Fig. 7.

Along the first dimension, we differentiate between simple and general loops. We get a
simple loop by imposing the two restrictions: the loop has a unique control variable, and
the modification of the control variable does not depend on the values of other variables
modified within the loop body.

The constraints imposed on the condition of a simple while loop are designed such that
it is possible to write, in a nonrecursive closed form, the set of values scanned by the control
variable. This is because the control variable is modified with fixed values and the values it
can scan are bounded by its initial value and the loop condition. This results in a definite
behavior that is similar to the behavior of for loops. Consequently, we can represent their
analysis knowledge with compatible definiteness and specificity.

However, this is not the case in general loops. In many cases it might not be possible to
obtain such a specific knowledge because the control variables are not modified with fixed
values. Rather, the modifications of the control variables in one iteration are dependent
‘on the behavior of the loop in the previous iterations. Thus, the set of values scanned by
the control variables cannot be written in a nonrecursive closed form. For example, while
performing a binary search on a sorted array, the modifications of the control variables in
one loop iteration are dependent on the array segment currently under consideration which
can only be determined based upon the loop behavior in the preceding iterations.

It should be mentioned here that the constraints imposed on the condition of simple
while loops restrict them to a class of loops that is a superset of the Pascal for loops. The
conditions imposed on the set of Pascal forloops, F, are stronger since they put a restriction

1. Number of Simple loop General loop
control variables )
Complexity of | Noncomposite condition | Composite condition
loop condition
3. Complexity of Flat loop Nested loop
loop body

)

Fig. 7. The three dimensions used for classifying loops.
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on the type of the control variable and the control variable is only altered by unit step[19].
That is why the set of simple while loops, W}, is a proper superset of F, i.e. F C W;.

On the other hand, if W denotes the set of Pascal while loops, then the set W is a
proper subset of W by definition. That is, W; C W. This is because the simple while loops
are defined by imposing some restrictions on the general while loops.

Along the second dimension, the complexity of the loop condition can vary between two
cases. In the noncomposiie case, B is a logical expression that does not contain any logical
operators. In the composite case, logical operators exist and can connect the operands in a
complicated and non-standard form. Along the third dimension, the complexity of the loop
body varies between flat and nested loop structures. In flat loop structures, the loop body
can not contain any other loop inside it which is not the case in nested structures.

To analyze these loop classes, we have designed formalisms for representing the knowl-
edge obtained from the program text as well as the understanding knowledge. We have
also designed analysis techniques that can be applied to these different loop classes in many
domains.

7.2 Representation of Program Knowledge

Loops are decomposed into smaller meaningful parts that represent the knowledge ob-
tained from the program text. These parts are divided into two categories, namely, basic
events and augmentation events. While basic events are the parts that constitute the con-
trol computation of the loop, augmentation events are the remaining building blocks of the
loop body.

More formally, a Basic Event (BE) consists of three part‘s: the condition, the enumera-
tion, and the initialization.

o The condition is a logical expression that does not contain the logical operator A and
is a part of the loop condition.

o The enumeration is a segment that assigns to one or more of the control variables
used in the condition the net modification done to them in one loop cycle, if any.

e The initialization is a segment that assigns to the control variables modified in the
enumeration part their initial values.

An Augmentaiion Event (AE) consists of two parts: the body and the initialization.

¢ The bodyis a segment that assigns the per-cycle modification, taking place in the loop
body, to some variables other than the control variable.

o The initialization is a segment that assigns to the same variables modified in the body
their initial values.
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7.3 Representation of Understanding Knowledge

The information stored in the plan library is divided into two main categories: Basic
Plans (BP’s) and Augmentation Plans (AP’s). The basic plans are used to analyze the
parts of the loop that control its execution, i.e. BE’s. The augmentation plans are used to
analyze the other parts in the loop body, i.e. AE’s.

The plans correspond to the usual rules utilized in a rule-based system[16]. They are
declarative representations in which knowledge is specified, but the use to which that knowl-
edge is to be put is not given. To use them they are augmented with techniques that specify
what is to be done to the knowledge and how.The plans can be considered as inference rules.
When a loop segment matches its antecedent, the rule is fired. The instantiation of the in-
formation in the consequent represents the contribution of this plan to the loop assertions.

The structure of the plans is divided into two parts; the antecedent and the consequent.
The two plans shown in Figs. 8 and 9 demonstrate the standard structure of the library
plans. This structure is suitable for representing the analysis knowledge of different loop
classes. This is to avoid having to store duplicate versions of the plans that are used in
analyzing different classes. For example, some BP’s are used in analyzing BE’s of general
and simple loops in both inner and outer loop constructs. Some AP’s are also used for
analyzing both inner and outer loop constructs.

The antecedent of a library plan represents three kinds of knowledge:

¢ Knowledge about the control variables which is required for the design of the plans’
consequents. Even though the control variables can be identified from the enumer-
ation of BP’s, they cannot be identified from the body of AP’s. That is why they
should be explicitly given in the antecedent of AP’s. However, since the individual
listing of the control variables can serve to underscore their importance and to fa-
cilitate the readability and the comprehension of the plans, they are given in the
control-variables part of the antecedents of all library plans.

¢ Knowledge which is necessary for the recognition of stereotypical loop events. The
BP’s have the condition, enumeration, and initialization parts which represent
abstractions of the corresponding three parts of stereotypical BE's. »Similarly, the
AP’s have the parts body and initialization which represent abstractions of the
corresponding two parts of stereotypical AE’s.

¢ Knowledge needed for the correct identification of the plans such as data types’ in-
formation, whether a variable has been modified by a previous event or not, or the
previous analysis knowledge of a variable. This knowledge is given in the firing-
condition

The consequent of a library plan represents the following knowled'ge:
o Knowledge necessary for the annotation of loops with their Hoare-style[18] specifica-

tions. That is why they have the precondition, invariant and function parts where
precondition and invariant have the usual meaning{18]. The function part gives
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plan-name
antecedent
control-variables
initialization
condition
enumeration
firing-condition

consequent
precondition
invariant
function

set

final-set
inner-addition

DBP; (upward-enumeration)

var#

varo#

var# R# ezp#

var# := SUCC(var#)

R# is relational operator that equals < or < A
var# and ezp# are of a discrete ordinal type.

varo# R# exp# .

varo# < var# R# SUCC(ezp#)

ver# = SUCC(mazimum(final-set))

{ind | ind € T# A varo# < ind < PRED(var#))
{ind | ind € T# A varo# < ind R# ezp#)
varo# < var# R# ezp#

where,
svcc The unary operator that gives the successor of its argument.
PRED The unary operator that gives the predecessor of its argument.
Fig. 8. Example of a basic plan.

plan-name SLAP; (summation)

antecedent

control-variables var#

body cond# == lhs# = lhs# + exp#

initialization lhso#t

firing-condition

consequent
precondition
invariant
function
inner~-addition

where,

> {values}ezp

lhs# £ var# A lhs# is of a discrete ordinal type and has not
been modified by a previous event A
ezp# is an expression that does not include lhs#

true
lhs# = lhso# + ) _{ind | ind €setAcond#|2%7#} ezp#|lT#
lhs# = lhso# + )_{ind | ind final-setAcond#|/3*} ezpt|'oT#

lhs#t = lhso# + Y _{ind | ind Gset/\cond#];’:;#} ezpE|ioT®

The summation of ezp over the set of values.

Fig. 9. Example of an augmentation plan.

information, in case of simple loops, about the variables’ values after the loop exe-
cution ends. It is correct provided that the loop executes at least once. If the loop
does not execute, no variable gets modified. Furthermore, the inner-addition part
1s needed for the complete annotation of inner loops, if any, in nested constructs.

In case of simple loops, the constraint imposed on the control variable results in a
definite behavior of the loop’s control cornputation. s definite behavior is captured,
in the set and final-set parts of the BP’s, to produce specifications with compatible
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definiteness. These parts give knowledge about the set of values scanned by the control
variables at any point during and after the loop execution respectively.

When designing these plans, there is a tradeoff between their complexity and the size
" of the knowledge-base. Making the plans more abstract can reduce their number in the
knowledge-base. However, the increased complexity of a plan complicates its firing process.
The example plans presented in this report are designed with a moderate abstraction level.
This enables us to easily convey the main ideas behind the aralysis technique. The plan in
Fig. 8 represents an enumeration construct that goes over a sequence of values of a discrete
ordinal type in an ascending order with a unit step. The suffix ‘#’ is used to indicate terms
which exist in the antecedent and are not matched with actual values yet or terms which
exist in the consequent and are not instantiated with actual values yet. The plan in Fig. 9
represents a construct that performs an accumulation, by summation, of successive values
of an expression ezp# on the variable [hs# when the condition cond# is satisfied.

When performing analysis of loops in a large domain, the number of plans in the library
becomes an important issue. For example, several plans similar to SLAP,, in Fig 9, might
be needed to cover other operators(e.g., multiplication and concatenation), data types(e.g.,
pointers), and special cases (e.g., ezp# = 1) of the plan. An increase in the number of
library plans leads to a large increase in the search time needed to find the plans which
match the events under consideration. To reduce the number of library plans in such cases,
they can be designed in a more abstract form. For instance, the plan SLAP; can be
further abstracted by replacing the addition operator, 4+, with a more abstract one which
denotes either addition or multiplication. To further reduce the number of plans, their
structure can be made more general. If several similar plans are specializations of a more
general case, they can be grouped together in a generalized plan that has a single general
antecedent and several consequents organized in a tree structure. At the root is the most
general consequent. The children of any node are mutually exclusive specializations of the
parent consequent. When the event matches the antecedent of the generalized plan, the
search for the appropriate consequent starts at the root trying to go-down in the tree as
far as possible. The path between a parent and a child can only be taken if an additional
condition, called instantiation-condition, is satisfied. That is, the firing-condition must
be satisfied in order to select a specific general plan and within the plan the instantiation-
conditions associated with the edges of the consequents’ tree guide the search for the
suitable consequent. In limited domains where such abstracted and/or generalized plans
are not needed, their inclusion in the library should be avoided because the firing process
becomes more complicated and wastes time for no reason.

7.4 The Basic Analysis Strategy

We have argued that the augmentation of a reusable object’s interface with the nec-
essary specifications needed for its sound and correct understanding is crucial for reuse.
While informal specifications are inherently ambiguous, formal ones can accurately state
what is performed by a program segment without having to give unnecessary details. Formal
specifications are not adequately utilized mainly because it is hard to automatically gen-
erate them. We have developed a tool, CARE-FSQ,, which provides automatic assistance to
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Implemeniation Structural Funciional
Abstraction Abstraction Abstraction

Source Co% Symbolic | Data Flow Event
Execution| Analysis | Analysis

Fig. 10. Analysis of flat simple loop structures.

software engineers in generating the formal specifications of programs[1. 2]. Such a specifier.
however, does not assist the ingenious task of annotating loops with their specifications.
That is why we have designed analysis techniques which can provide mechanical assistance
to the generation of formal specifications of different loop classes in many domains. We have
applied these analysis techniques to loops in the domain of basic algorithmic structures and
are in the process of applying them to the domain of scheduling university courses. It
should be emphasized that our goal is to have analysis techniques that are automatable and
flexible enough to be tailored to the needs of many domains. It is not our goal, even if it
were possible, to handle all the cases that can occur in all possible domains.

In this paper. we only describe the analysis of flat simple while loops with noncom-
posite conditions. This description conveys the basic ideas behind our analvsis strategy
and demonstrates how to automatically assist the generation of formal specifications which
enhance the reusability of available code components in a specific domain of interest.

The annotation of flat simple loops having noncomposite conditions with their functional
abstractions is performed in a step by step process utilizing several techniques as depicted
in Fig. 10.

The first analysis phase, which is the symbolic execution of the loop body, abstracts
away a program'’s language and implementation specific features. Hence it maps the source
code to an implementation abstraction of the loop.

The second phase performs data flow analysis to produce an explicit representation of
the dependencies among loop components in the form of basic and augmentation events.
This analysis reveals the structure of the loop and maps its implementation abstraction to
a structural abstraction.

Finally, an analysis of basic and augmentation events. using a plan library. transforms
the structural abstraction into a functional abstraction of the loop. The functional abstrac-
tion reveals the logical, as opposed to the syntactical or structural, details of the loop using
predicate calculus assertions.
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The details of the analysis method are explained below. The descriptions of the analysis
steps are interspersed with their application on the following example. We have chosen a
loop construct of moderate complexity that helps in explaining the basic ideas behind our
approach within the appropriate space limitation. However, we have designed plans which
cover some basic algorithmic structures such as enumeration, value accumulation, sorting,
and searching.

Example

i, j, %, y: integer;
a: array[1..20] of integer;
c: array[1l..10] of integer;

i:=1;

j =105

x = 0;

y :=0;

while i <= 10 do
j=iry
if ¢[i] > O then
~ x :=x + alil;
else

y =y + ali] * a[jl;

fi
i::=1+1;

od

This loop can be classified as a simple loop since the variable ¢ is a unique control
variable. In addition, its modification is not dependent of the values of any other variables
modified within the loop.

The first analysis phase symbolically executes the body of the loop. The purpose of
this symbolic execution is to remove the coupling between the statements in the loop body
and to make the variables’ new values dependent only on the values resulting from the last
iteration of the loop. Applying this analysis phase on the previous loop vields the following
set of statements which are assumed to be simultaneously executed as in a concurrent
assignment. These statements represent an implementation abstraction of the loop body
which eliminates a program’s language and implementation specific features.

Ji=J+1

=141,

cfi] > 0 = z := z +afi],

i) K 0= y:=y+afi]*xa[j + 1]

The second phase decomposes the loop, using data flow analysis, to produce an explicit
representation of the dependencies among loop components in the form of a basic and aug-
mentation events[36]. That is why the output of this phase is called a structural abstraction
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of the loop.

The BE of the loop is constructed by letting the loop condition, B, be the condition of
the BE. If the variable var is the control variable, then the enumeration is the part of the
symbolic execution outcome that modifies var. The initialization, if any, is placed before
the loop and provides the initial value of the control variable.

The symbolic execution result is decomposed into AE’s by first removing the enumera-
tion part of the basic loop. Then, the minimal subsegments of code which do not have data
fiow going to other parts of the loop body are recursively identified and isolated. Whenever
two, or more, independent segments are identified, they are isolated in a random order.
The resulting segments are oggered such that the ones identified first are analyzed last. The
initialization, if any, is placed before the loop and provides the initial values of the variables
modified in the augmentation body.

The application of the second analysis phase to our example yields four events. Since
the segment that modifies z is independent on the segments that modify 7 and y, its relative
order with respect to them is irrelevant. However, any of the resulting orders of the AE’s
should satisfy the condition that the event which modifieds v is ordered after the event which
modifies j. This is because the modification of y is dependent on the way j is modified.
Thus, the ordering of the AE’s makes it possible to propagate the effect of analyzing an
event to the analysis of other events dependent on it. The resulting ordered events are as
follows: '

1. The basic event 2. Augmentation event 1
condition: 7 < 10 body: j:i=j7+1;
enumeration: 7 := ¢+ 1; initialization: j := 10;

initialization: 7 := 1;

3. Augmentation event 2 4. Augmentation event 3
body: ¢[t] > 0 = z := z + a[1}; body: ¢[i] < 0=y := y + a[{] * a[j + 1];
initialization: z := 0; initialization: y := 0;

Finally, we try to match the loop events with the antecedents of the plans stored in the
knowledge-base. The result of matching each event is the name of the plan matched along
with the unification of the terms in the event with the ones in the plan. More formally, the
Analysis Knowledge (AK) of a variable modified by a certain event is the result of matching
this event with the antecedent of a specific library plan. It is represented as a n-tuple where
n is dependent on the specific matched plan. The first term of the tuple is the name of the
matched plan. The remaining (n-1) terms are the unification of the # variables with the
actual ones in the event.

The instantiation of the consequents of the matched plans with the actual variables
gives the contribution of each individual event to the assertions of the loop. The parts of
the loop that cannot be matched with 2 plan antecedent are printed to the user as parts
that could not be handled. The knowledge-base manager can consider adding plans to help
in translating these events later.

Applying the third analysis phase to the results of the data flow analysis matches the
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program events with the antecedents of the plans shown in Figs. 8 and 9 respectively. The
analysis knowledge of the variables modified in the events is as follows:

1. AK(i)= (DBP;, var# : i, T# : integer, varo# : 1, R# :<, ezp# : 10)

2. AK(j)= (SLAP,, var# : i, cond# : true, lhs# : j, exp# : 1, lhso# : 10)

3. AK(z) = (SLAP,, var# : i, cond# : c[i] > 0, lhs# : z, exp# :
4. AK(y) = (SLAP,, var# : i, cond# :

Instantiating the consequents of the identified plans with the actual variables yields the

following results:

afi], lhso# : 0)
c[i) €0, lhs# : y, exp# : ali)*al[j + 1], lhso# : 0)

1. precondition 1<10
invariant 1<:2<11
function 1 = SUCC(mazimum({ind | ind € integer A 1< ind < 10}))
set {ind | ind € integer A 1 <ind <i-1}
final-set {ind | ind € integer A 1 <ind < 10}
inner-addition 1<:<10
2. precondition  true
invariant J =10+ Y {ind, | ind; € {ind | ind € znteger Al1<Lind<i~1}
Atrue} 1
function 7 =104 3" {ind; | ind; € {ind | ind € integer A 1< znd <10}
Atrue} 1
inner-addition j =10+ Y {ind; | ind; € {ind | ind € integer A 1<ind <t—1}
Atrue} 1
3. precondition true
invariant z =0+ {indy | ind; € {ind | ind € integer A 1< ind <i-1}
Acfinds) > 0} afindy)
function z =0+ 3 {inds | indy € {ind | ind € integer A 1< ind < 10}

1nner-addition

Acfindy] > 0} afind,)]
z =0+ Y {indy | ind; € {ind | ind € integer A 1< ind <i-1}
Acfinds) > 0} afind,)]

Since j has been modified before and is responsible for the data flow into the fourth
augmentation, the instantiation is done with j,,.s instead of j. This notation denotes
the value of j as deduced from the invariant of the loop under consideration. It is used
to distinguish the variables which have been changed before from those which have not.
It is obvious from this step how the ordering of AE’s affects the analysis by taking into
consideration the modification of the variable j when analyzing other AE’s that depend on
it.
true

4. precondition tr '
y =0+ Y {inds | ind; € {ind | ind € integer A 1 <ind<i-1}

invariant
Nclinds) < 0} (a[2] * alfpred + 1)ing,
function y =043 {inds | ind; € {ind | ind € integer A 1 < ind < 10}

)linds

Acfinds] < 0 (ali]  aljpree +
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inner-addition y =0+ ) {inds | ind; € {ind | ind € integer A 1< ind i1}
Nclinds] < 0} (afi] * aljpred + 1)},

The functional abstraction of the loop is synthesized from the instantiated plans’ conse-
quents. The precondition, invariant, and function are constructed by taking the conjunction
of the corresponding parts in the instantiated consequents. For instance, the precondition
and invariant of our example have the following form:

Precondition: 1 < 10

Imvariant: (1<i<11) A
=10+ > {ind; | ind; € {ind | ind € integer A'1 <ind<i-1}} 1A
z = 3 {ind; | ind; € {ind | ind € integer A 1 <ind <i-1} A cinds] > 0} afind;] A
y = 2 {inds | indz € {ind | ind € integer A 1< ind <i— 1} A clinds] < 0}
(af2] * aljpred + 1king,

The disadvantage of such general and domain independent functional specifications is
that they are especially hard to read when the components become more complicated. To
improve the readability of such specifications, some of the commonly occurring predicates
can be replaced with a more intuitive and easy to read notation. This more intuitive notation
can be in terms of 2 widely known or a domain specific concept. For example, assume that
in some domain a manufacturer produces 10 different products. For each product, there
are two alternative quantities which can be manufactured. The first alternative produces a
standard quantity of product i as given by a[z]. The second alternative produces a higher
quantity that is a fixed multiple of the standard one. The fixed multiplier of product ¢
is given in the location of the array a pointed to by the high-indez: ¢ + 10. Based on
market studies, it is determined whether to produce the quantity of each product according
to alternative 1, if ¢[z] > 0, or alternative 2, if ¢[i] < 0. The total quantity of products
produced according to alternatives 1 and 2 are called standard-quantity and large-quantity
respectively. The above invariant can thus be replaced with a domain specific one that is
more readable and understandable, in this domain, as follows:

(1<i<11)A
J = high-indez (7) A
z = standard-quantity (a, 1 ..1—1) A
y = large-quantity (a, 1..i—1)

In addition to improving the readability of the specifications, such replacements do not
affect the semantic soundness of the specifications. This is because each new term still has
an underlying rigorous definition that can be utilized if desired. These replacement can be
done explicitly as performed here by producing the functional specifications and then the
more abstract ones. Otherwise, they can be implicitly performed by designing the plans
such that their consequent are directly writter in terms of the more abstract terms. In the
former case the library plans are more general and can be used in several different domains.
The last stage which performs the higher level abstractions can be tailored to the needs of
different domains and thus enhances the portability of the system. The latter approach,
however, is easier to implement, mechanically, but reduces the generality of the plans.

The advantage of the resulting specifications is that they explain the function of the
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* algorithm in concise terms that do not introduce any ambiguities. They explain what the
algorithm does without giving the unnecessary information of how it does it. Hence, such
specifications can help the reuser of a component in understanding it which, in turn, is a
requisite for its correct modification. The clear and concise description of the component
function can also assist in the identification of the component whether this identification is
performed mechanically or not.

7.5 Evolution of the Knowledge-Base

The success of the developed analysis techniques in a specific domain is dependent, to
a great extent, on the efficient and correct design of the plans. The resulting specifications
are as accurate, readable, and correct as the plans are. That is why the task of designing
the plans and managing the knowledge-base for a specific domain of interest should be
performed by an expert in both the desired domain and formal specifications.

To develop the knowledge-base, the desired domain should be analyzed to design an
initial set of plans which is believed to cover a considerable number of loop constructs that
might occur in it. After adding this initial set, the knowledge-base should evolve over time.
It should undergo a process of controlled usage where the knowledge-base manager needs
to closely monitor its utilization.

While using the knowledge-base, a failure to identify the specification of a loop segment
indicates that either the segment is erroneously designed and requires modification or that
" there is 2 missing plan which should be added to the knowledge-base. The user needs
to check the unspecified segment to see if he/she can modify it. If no error is detected,
the knowledge-base manager is notified. Whenever a new plan needs to be added to the
knowledge-base, it should be investigated whether to add it as an independent plan or to
abstract and/or generalize existing plan(s) to cover the new case.

Determining the appropriate generalization and abstraction level of the plans is largely
dependent on the domain under consideration. The basic understanding of a domain is
represented in the initial set of plans constituting the knowledge-base. Further utilization
of the knowledge-base is apt to reveal inadequacies in it with respect to the sufficient number
of plans, the level of abstraction, and the ease of instantiation. This utilization is also likely
to improve the understanding of the domain and increase the knowledge of its details. In
such cases, there is a tradeoff between adding new plans or generalizing and abstracting
existing ones. On one hand, the generalization and abstraction of the plans reduces their
number and thus can lead to a reduction in the search time needed to find the required
ones. It also reduces the space needed to store them. On the other hand, it complicates
the pattern matching and unification performed on them which can lead to an increase in
the search time. It also complicates the instantiation of the proper consequent. Further
research needs to be performed to choose the level of abstraction and generalization of the
plans. The suitable level can be achieved by experimentation and by studying the specific
domain.

The controlled utilization of the knowledge-base serves to adapt the plans and make
their abstraction level, number, and naming conventions suitable for the domain under
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consideration. Any domain specific abstractions and specifications which are felt to be
inappropriate are also reported, by the users, to the knowledge-base manager(s). When
enough consensus is reached, the inappropriate abstractions and specifications are replaced
with more suitable ones.

8 Conclusion

We have discussed the importance of properly packaging reusable components before
adding them to a software repository. The packaging of candidate reusable components can
enhance their reusability by facilitating their 1dent1ﬁcatlon, their understanding, and their
modification during the actual reuse process.

One of the requisites for the success of the reuse process is being able to understand
the component being reused. This can be achieved by augmenting it, during packaging,
with the necessary specifications needed for its sound and correct understanding. These
specifications can also assist in its identification and modification. That is why we have
focused on a knowledge-based approach for annotating reusable components using formal
specifications. We have demonstrated how one can produce abstract specifications which
are readable and have an underlying formal basis at the same time. Even though we have
designed techniques for specifying programs with different loop classes, we only described
the basic analysis strategy. This description served to explain how to produce specifications
that can enhance the reusability of software components.
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