The Maturing of the
Quality Improvement Paradigm
in the SEL

Victor R. Basili
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland

The Software Engineering laboratory uses a paradigm for improving the software process and
product, called the Quality Improvement Paradigm [Ba85, BaRo88]. But this paradigm has
evolved over the past 18 years, along with our software development processes and product. Since
1976, when we first began the SEL, we have leamned a great deal about improving the software
process and product, making a great many mistakes along the way. For.example, we tried to assess
the quality of our processes and products before we understood what they were. When trying to
understand, we were data driven rather than goal and model driven. We tried to use other people’s
models to explain our environment rather than recognizing we had to build models of our own

- environment before we could compare it with others. T B

The learning process has been more evolutionary than revolutionary. We have generated lessons
learmned that have been packaged into our processes, products and organizational structure over the
years. We have used the SEL as a laboratory to build models, test hypotheses. We have used the
University to test high risk ideas and develop technologies, methods and theories when necessary.
We have learned what worked and didn’t work, applied ideas when applicable and kept the
business going with an aim at continually improving and leaming.

This paper offers a personal perspective on how our approach to quality improvement has evolved
over time and where I think we are evolving. I will try to carry you through various phases of our
evolutionary learning process, arbitrarily breaking the learning into five year periods. showing you
some of the things we did wrong and what caused us to change our ideas. I will use the Quality
Improvement Paradigm steps themselves, as it presently stands, as a guidelines to how our
thinking evolved based upon experiences in the SEL. ' '

But first, let me give you the Quality Improvement Paradigm, as it is currently defined. In its full
version, it can be broken up into six steps: o

1. Characterize the current project and its environment with respect to the
appropriate models and metrics. : ' ' '

2. Set the quantifiable goals for successful project performance and improve_mént

3. Choose the appropriate process model and supporting methods and tools for
~ this project. . - : . ' ' S

‘4. Execute the processes, construct the products, collect, validate and analyze =
the data to provide real-time feedback for corrective action. '

5. Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvemenits.

SEW Proceedings 39 | | . BEL-93-003

Co

6. Package the experience in the form of updated and refined models and other
. forms of structured knowledge gained from this and prior projects and save it in an
experience base to be reused on future projects.

We often use a shortened version of the paradigm which is defined as three steps: understand,
assess, and package. These steps can be mapped onto the six steps by noting that understand is
step 1, assess is steps 2 through 5 and package is step 6.

Each of these steps changed over time, either in how we defined them or how we implemented
them. Characterization went from collecting metrics to defining baselines to building models. Goal
setting started out as simply data collection, evolved to being goal driven and finally goal and
model driven, i.e., data collected based upon goals and quantifiable models. The processes,
methods and technologies available in the process selection step evoived from combinations of
heuristic methods, to weli-defined technologies, to high impact, combinations of integrated
technologies, methods, and life cycle models, to the evolving and tailoring processes o the
situation. During process execution, we moved from loosely monitored projects to closely
monitored projects with well defined feedback loops. In the beginning we collected too much data,
independent of the process. Later data became embedded in the process. The types of anaiysis we
performed in the beginning were correlations and regressions, and we have evolved to other forms
of model building, based upon the nature of the software engineering data, and to the use of
qualitative analysis. Packaging began as recording and generating lessons leaned but evolved to
focused tailored packages that were integrated into the development processes. We started by
packaging defect and resource baselines and product characteristics and have been evolving to
seeking the relationship between process and product characteristics. ' '

1976 - 1980
What we did

We began the SEL in 1976. At that time, the paradigm looked like:
1. CharseterireInderstand Apply Models _
2. Set-Gesls Measure
3. Seleet-Precess Study Process
4. Execute Process
5. Analyze Data Only

6. Peekege Record

We tried to characterize and understand by using other people’s models. For example we spent a
great deal of time trying to apply such models as the Rayleigh curve model of resource allocation,
reliability growth models, etc. without asking ourselves if they were appropriate for our particular
environment.

We decided on measurement as an abstraction mechanism and developed data collection forms and

measurement tools. We collected data from half a dozen projects for a simple data base and we

?;fu\;redsthe GQM as in informal mechanism to help us organize the data around the study of defects
aWeB4]. '

It had not realty occurred to us to select process as we did not yet understand that process was a
variable that needed to be selected and tailored to the environment. This was because we had not
yet understood our environment sufficiently. So we started to study process, applied heuristically

SEW Proceedings 40 ' © SEL-93-003

defined combinations of existing processes and began to run controlled experiments at the
university with students.

During development, data collection was an add-on activity and was loosely monitored. We
analyzed data only and began to build baselines and looked for correlations. We recorded what we
found, built defect baselines and resource models and measured project characteristics.

What we Learned

During this period we leamed that we needed to better understand the environment, projects,
processes, products, etc. We needed to build our own models to understand and characterize our
environment, we could not just use other people’s models. Those models were built for their
environments and could not be generalized easily.

We learned that we needed to understand what factors create similarities and differences among
projects so we know the appropriate model to apply. This included the need to understand how to
choose the right processes in order to create the desired product characteristics.

We realized that evaluation and feedback are necessary for project control and that data collection
has to be goal driven; we could not just collect data and then figure out what to do with it.

From our perspective, the major improvement technology that emerged from this period was the
Goal/Question/Metric Paradigm, even though it was still quite primitive,

An Example

As an example of what we learned, we tried to apply the 40/20/40 rule in SEL. It had been reported
by Boehm [B073] that approximately 40% of project resources were expended in analysis and
design, 20% in code, and 40% in checkout and test. Shortly thereafter, Walston and Felix reported

that in IBM/FSD, 35% of the resources were expended in analysis and design, 30% in code, 25%
~ in checkout and test and 10% in other, which clearly violated the 40/20/40 rule [WaFe77). Butin
the SEL, we were collecting two types of resource data, phase data and activity data. The phase
data represented milestone data. That is, analysis and design data represented the resources
expended up to the design review milestone (CDR). The activity data represented what a developer
did each week, e.g., 20 hours designing, 10 hours coding, 5 hours in training, 5 hours in travel.
Using the phase data, we found that 20% of the resources were expended in analysis and design,
45% in code, 28% in checkout and test and 5% in other, while using the activity data, we found
that 21% of the resources were expended in analysis and design, 28% in code, 23% in checkout
and test and 27% in other. :

TRW IBM SEL
Phase Activity
Analysis/Design 40% 35% 20% - 21%
Code 20 30 45 28
Checkout/Test 40 25 28 23
Other 10 5 27

SEW Proceedings | a1 - . SEL-93-003

-
LN

e Table 1. Resource Allocation Data

It became clear that the data from the other environments represented phase data rather than activity
data since they did not collect activity data. It also was clear that each of the organizations defined
their milestones and phases differently, so each organization has a different model for resource
allocation and it is hard to compare them. Phase data is highly dependent on how an organization
defines its milestones. Since phase data and activity data represent two entirely different things, it
is not clear what the activity data look like in these other organizations. It should be noted that this
example represents an argument why it would be very difficult to build a national data base across
environments and share and compare data.

1981 - 1985
What we did

In the early eighties, the paradigm had evolved to look more like:
1. Characterize/Understand
2. Set Goals
3. Select Process
4. Execute Process
5. Analyze

6. Paekage Record

To characterize and understand the environment we built our own baselines/models of cost,
defects, process, etc. We began to set goals for all data collected and expanded our definition of the
GQM to perform studies across multiple areas and projects. We began to incorporate subjective
metrics into our measurement process. To help us select process we experimented with well
defined technologies and began experiments with high impact technology sets, e.g., Ada & OOD.
During project execution, we collected Iess data than we had before and moved the data from a file
system to a commercial, relational data base. We began to understand how to combine some of our
off-line controlled experiments with the case studies in the SEL. We shifted the analysis emphasis
to the process and its relation to product characteristics. We recorded lessons learned, and began
formalizing processes, products, knowledge and quality models. '

What we Learned

During this period we learned that software development follows an experimental paradigm, i.e.,
you need to set your goals up front and check that you are achieving those goals. The design of
experiments is an important part of improvement and evaluation and feedback are necessary for
learning. We also learned that we needed to better understand relationships between various kinds
of experiences, e.g., the relationship between processes and the set of product characteristics it
evokes or the resources required to perform it, the relationship between component size and
complexity and defect rate. To do this process, product, and quality models need to be better
defined, experimentally tested, and improved.

We learned that reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement. We need to learn what works and what does not work

and what needs to be modified and what needs to be thrown out. At the same time we needto
experiment with new technologies, motivated by our experiences.

By this time, we had more data than we knew what to do with them, but we did not have the data

SEW Proceedings a2 _ SE1.-93-003

b

we needed to help us interpret what was happening. We leamned that you can drown in too much
data, especially if you don’t have goals. Besides having a good data base, you need to store your
models as well as your data

An Example

As an example of demonstrating that we need to understand the relationship between variables,
consider the study in the SEL where we compared fault rate with component size and complexity.
In a study in the early eighties, we found that the simple minded view that defect rate increases
with size did not hold in the SEL environment. In fact, we found the opposite for the actual data
we had available for study [BaPe84]. We believe this relationship is due to the fact that interface
defects dominate the problem of the complexity of the individual component, when components are
small.

On the other hand, we have hypothesized that as the size grows beyond the developer’s ability to
cope with its size and complexity, the complexity of the individual component will dominate the .
complexity of the interface and fault rate will again grow.

’
.t
»
v
.
"
+

e 'Hypothesized

.
'
ot
G
]

.t
.
v
.
'

Size/Complexity

Figure 1. Relationship between Fault Rate and Size or Complexity
We have since found support for the first statement, i.e., fault rate decrease with size and
complexity in data from several companies. This result was a surprise at the time since most people

believed that smaller components were better, However. the relationship between size and fault rate
appears not to be that simple. T

| 1986 - 1990
What we did ' ' |

It was in this period that the QIP took its current form, recording being changed to packaging. .
- 1. Characterize/Understand o S e

SEW Proceedings : : 43 . A - SEL-93-003

-
[

2. Set Goals

3. Select/Tailor Process
4. Execute Process

5. Analyze

6. Package

To characterize and understand we worked on capturing experience through models. Goals and
models became the commonplace driver of measurement and we built SME [Va87}, a model-based
experience base with dozens of projects. We began to tailor and evolve high impact technologies
based on experience, e.g., Cleanroom, and experimentation and feedback became an integral part
of the QIP. During process execution, we embedded the data collection process into the
development processes and more closely monitored projects, especially those where we were
experimenting with new approaches.We began to demonstrate various (process, product)
relationships, e.g., the effect of a particular method on defect reduction. We developed focused
tailored packages, e.g., generic code components, and learned to transfer technology better
through organizational structure, experimentation, and evolutionary culture change.

What we Learned

We learned that experience needs to be evaluated, tailored, and packaged for reuse. That is, you
just cannot write lessons learned documents, you have to analyze and synthesize wh‘at has bqen
learned and integrate it into the existing knowledge so that it is usable by future projects. This
requires organizational support and resources.

A variety of experiences can be reused, e.g., process, product, resource, defect and quality
models. But processes must be put in place to support the reuse of experience and the development
process must be modified to take advantage of reusable experiences. Experiences can be packaged
in a variety of ways, e.g., equations, histograms, algorithms.

Packaged experiences need to be integrated. When introducing a new process, an organization
needs to make sure it fits and is supported by the other processes being used, that is, it needs to
understand the relationship between various changes in the parameters in one model and the effect
on another model. If I modify my reading technology, what will be the effect on the class of
defects I find, the resources allocated for rework, etc.

There is a tradeoff between reuse and improvement. Evolution is slow asI cannot introduce to0
much change at one time. When I do introduce change, I loose experience and predictability. On
the other hand, processes have 1o be changed to cope with the continuously growing need for
quality. :

* During this period we evolved the GQM to include templates and models [BaRo88] and formalized
the organization via the Experience Factory Organization [Ba89].

An Example

To demonstrate that how a technology is packaged and integrated has a strong effect on its
effectiveness, consider our experiences with evaluating and integrating reading technology.
We ran a controlled experiment comparing equivalence partitioning testing, structural testing, and
reading by step-wise abstraction[BaSe87]. Reading was found to be more effective and efficient
than testing in uncovering defects. Based upon these resuits, we put reading into practice as a
technology in the SEL. But we found that reading had little effect on defects. This appeared to be
because the readers did not read well because they knew they were going to test and believed that,

SEW Proceedings | a4 o SEL-93-003

-
AR S

in spite cf the experimental results, testing was better. Our belief that reading is more effective
when not followed by developer testing motivated our use of the Cleanroom approach
[SeBaBa87]. When embedded in the Cleanroom approach, reading did demonstrate a substantial
lowering of defect rates. _

1991 - 1995

What we are doing

This bring us up to the current ime. The current evolution of the QIP appears to be aimed at
instantiating the steps, making them more specific, providing details, and developing support
technologies.

To characterize and understand the project and environment, we are building a repository of
(process,product) relationship models that characterize the SEL environment. We are working on
automating the GQM in order to support the setting of goals. We are studying what experience is
exportable to other environments in help other organizations take advantage of our process
experience We are working on building models to measure process conformance and domain
understanding.

During execution of the processes, we are working to capture the details of experience by
providing more interaction between developers and experimenters and more effective feedback
mechanism. This will help us to evolve processes that are more focused and detailed for our local
needs and goals. ' '

We are building qualitative analysis approaches to extract our experiences and provide input to the
data models. We continue to evolve SME and we continue the evolution and packaging of the

Experience Factory Organization.

Many of the current, specific SEL activities are covered in this workshop proceedings. However,
there are more global SEL activities aimed at evolving the application of the QIP to other
organizations. These activities concem packaging the SEL organizational experience for other
‘groups in NASA, understanding whether and how to move activities to common use, and better
integrating reuse into the development process '

The research activities are based upon instantiating the steps of the Quality Improvement Paradigm
by providing support technologies and automation, and integrating the various activities.

Where the research is going

The table below shows some of our current research interests aimed at instantiating the Quality
Improvement Paradigm. o _)

Step | | Studi_es / Research Projects
Characterize Perform domain analysis to identify similar projects using techniques
. - appropriate for SE data SRR
. Set goals Automate the model-based GQM as much as. possible

SEW Proceeding_s _ 45 _ _ _ ~SEL-93-003

-~

Choose process Develop technologies tailorable to the specific project needs
Execute prSEesses Build a more powerful, flexible experience base

Analyze data Leam how to run more efficient experiments and combine controlled
experiments with case studies

Package experience Build better models and modeling notations

Table 2: Instantiating the Quality Improvement Paradigm

Example research projects

To give some specific examples of research projects, let us consider three: the work on domain
analysis, reading technologies, and empirical modeling.

Domain Analysis

How do you recognim which projects are most like yours in order to use the experiences from
these projects to allow you to build models, choose similar process, etc.? -

We have established procedures to identify and analyze software domains within and across]
organizations so that opportunities for reuse of experiences may be identified [Lionel Briand]. This
has entailed defining both an experience-based procedure taking advantage of intuition and expert
knowledge as well as a data-based procedure for when data is available. _
Validation S , |
We are using both procedures to identify domains within NASA, and have analyzed data within the
SEL data base to determine whether or not our assumptions are supported locally. -

Focused Tailored Reading Techniques
 How do you tailor a.prooess to the project goais and local organizational characteristics?

Have developed scenario-based technologies for reading various documents that are tailorable and
can be focused for the particular environment. As an example, we have developed several model-
based scenarios that take advantage of local knowledge and technical models to define a technology
~ for reading. For example, defect-based reading is based upon the different defect classes, €.8.,
missing functionality, data type inconsistencies, in a requirements document that have been found
in requirements [BaWe81].

We have run a couple of controlled experiments that show that defect-Based reading is significanty
more effective that ad hoc reading or checklists [PoVo94}. ' .

SEW Proceedings 46 ' - SEL-93-003 -

-
A

Empirical 'Madeling: Optimized Set Reduction

\h

How do you build c;npirical models that allow you to define interpretable, accurate, easy to use
and automate modeling procedures that take into account the specific constraints of software
engineering data?

Current Stats:

OSR has been developed based on pattern matching; searching for similar experiences in the data
set and the use of non-parametric statistics. There are no functional assumptions made; the
approach handles interactions and inter dependencies among variables, and no “learning”
parameters need to be tuned before hand.

We have shown OSR to be easier to interpret and more accurate than regression and tree-based
approaches for cost modeling and defective module prediction [BrBaTh92, BrBaHe93]. A
prototype tool exists and a commercial tool is under development. :

Conclusion

Over the past 18 years we have learned a great deal about software improvement. QOur learning
process has been continuous and evolutionary like the evolution of the software development
process itself. We have packaged what we have learned into our process, product and
organizational structure. This evolution is supported by the symbiotic relationship between
research and practice. It is based upon a belief that software engineering is a Iaboratory science. As
such it involves the interaction of research and application, experimentation and development. Itis
a relationship that requires patience and understanding on both sides, but when nurtured, really
pays dividends! -

References

[Ba85]

V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the First

Pan Pacific Computer Conference, Melbourne, Australia, September 1985 {also available as

}'cchnical Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park,
uly 1985]. _

[Ba89] : _ -
V. R. Basili, “Software Development: A Paradigm for the Future”, Proceedings, 13th Annual

Intemational Computer Software & Applications Conference (COMPSAC), Keynote Address,
Orlando, FL, September 1989 : .

[Ba90] ' ' ‘
V.R. Basili, “Software Modeling and Measurement: The Goal/Question/Metric Paradigm,”
University of Maryland Technical Report, CS-TR-2956, UMIACS-TR-92-96, September 1992.

[BaRo88] _ ' : '
- V. R Basili, H D. Rombach "The TAME Project: Towards Improvement-Oriented

SEW Proceedings N T | - SEL-93-003

b

Software Environments,” IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June
1988, pp. 758-773.

[BaPe8d] B o
V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical Investigation, ACM
Communications, vol. 27, no. 1, January 1984, pp. 45-52.

[BaSe87] _ _
Victor R. Basili, R. W. Selby, "Comparing the Effectiveness of Sofiware Testing Strategies,”
IEEE Transactions on Software Engineering, Vol. SE-13, No. 12, December 1987, pp.
1278-1296.

[BaWe84] : . . "
V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,
IEEE Transactions on Software Engineering, vol. SE-10, no.6, November 1984, pp. 728-738.

[BaWe81] _

V. R. Basili, D. M. Weiss, "Evaluation of a Software Requirements Document by Analysis of
Change Data," Proceedings of the Fifth International Conference on Software Engineering, San
Diego, USA, March 1981, pp. 314-323.

[Bo73] _
B. W. Boehm, “Software and its Impact: A Quantitative Assessment,” Datamation 19, No.5 48-
59 (My 1973). : g - . . _

[BrBaTh92] o

Lionei C. Briand, Victor R. Basili, and William M. Thomas, ‘A Pattern Recognition Approach for
Software Engineering Data Analysis,” IEEE Transactions of Software Engineering, Vol. 18, No. -
11, pp. 931-942, November 1992.

[BrBaHe93] .

Lionel C. Briand, Victor R. Basili, and Christopher J. Hetmanski, “Developing Interpretable
Models for Identifying High Risk Software Components,” IEEE Transactions on Software
Engineering, November 1993.

[PoVo94]
Adam Porter, Larry Votta, “An Experiment to Assess different Defect Methods for Software
~ Requirements Inspections,” Proceedings of the 16th ICSE, Sorrento, Italy, May 1994.

[SeBaBag7]

R. W. Selby, Jr, V. R. Basili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation," IEEE Transactions on Software Engineering, Vol. 13 no. 9, September,
1987, pp. 1027-1037. : ix

[Va87])
J. D. Valett, "The Dynamic Management Information Tool (DYNAMITE): Analysis of the

 Prototype, Requirements and Operational Scenarios,” M.Sc. Thesis, University of Maryland,
1987. : _ : : _ |

[WaFe77]

C. E. Walston and C. P. Felix, “A Method of Programming Measurement and Estimation,” IBM
Systems Joumal, Vol. 16, No. 1, 1977, pp.54-73. - R S :

SEW Procesdings | s o SEL-93-003

