THE EXPERIENCE FACTORY

Victor R. Basili - Gianluigi Caldiera
University of Maryland

H. Dieter Rombiich‘“'
Universitat Kaiserlautern

Reprinted from
Encyclopedia of Software Engineering - 2 Volume Set
ISBN #1-54004-8

Copyright 1994 by John Wiley & Sons, Inc.
All Rights Reserved

EXPERIENCE FACTORY

INTRODUCTION

Reuse of products, processes and experience originating
from the system life cycle is seen today as a feasible solu-
tion to the problem of developing higher quality systems
at a lower cost. In fact, quality improvement is very often
achieved by reusing, and modifying over and over the same
elements, learning about them by direct experience.

This article presents an infrastructure, called the expe-
rience factory, aimed at capitalization and reuse of life
cycle experience and products. The experience factory is a
logical and physical organization, and its activities are
independent from the ones of the development organiza-
tion. The activities of the development organization and
of the experience factory can be outlined in the following
way:

¢ The development organization, whose mission is to
develop and deliver systems, provides the experience
factory with product development and environment
characteristics, data, and a diversity of models (re-
sources, quality, product, process) currently used by
the projects in order to deliver their capabilities.

e The experience factory, through processing this infor-
mation and other state-of-the-practice notions, will
return direct feedback to each project activity, to-
gether with goals and models tailored from previous
project increments. It will also produce, store and
provide upon request baselines, tools, lessons learned,
data, all presented from a more generalized perspec-
tive.

MOTIVATION

Any successful business requires a combination of techni-
cal and managerial solutions. These include:

s ‘A well-defined set of product needs to satisfy the cus-

tomer, assist the developer in accomplishing those
~ needs and create competencies for future business.

¢ A well-defined set of processes to accomplish what
needs to be accomplished, control development, and
improve the overall business.

o A closed-loop process that supports learning and feed-
back.

470 EXPERIENCE FACTORY

The key technologies for supporting these requirements
include: modeling, measurement, and the reuse of pro-
cesses, products, and other forms of knowledge relevant
to the business.

In order to be successful in the software business there
are some basic requirements (Basili, 1985, 1989; E. Dem-
ing, 1986). First, we must understand the software process
and product. Second, we must define our business needs
if we are to achieve them, i.e., we must define process and
product qualities. Third, we must evaluate every aspect of
the business, i.e., we need to evaluate our various successes
and failures. Fourth, we must have a closed-loop process,
i.e., we must feed back information for project control.
Fifth, each project should provide information that allows
us todo business better, i.e., we must learn from our experi-
ences. Sixth, we must build competencies in our areas of
business, i.e., we must package and reuse units of experi-
ence relevant to our business to be able to achieve more
in the future. ‘

Almost any business today involves the development or
use of software. It is either the main aspect of the business,
the value added to the product, or on the critical path to
project success. It permeates every aspect of life. If an
organization is not investing heavily in the basic aspects

-of the software business then it will not be competitive
and may not be in the business in the future.

Part of the problem with the software business is the
lack of understanding of the nature of software and soft-
ware development. To some extent, software is different
from most products. First of all, software is developed in
the creative, intellectual sense, rather than produced in the
manufacturing sense. Each software system is developed
rather than manufactured. Second, there is a nonvisible
nature to software. Unlike an automobile or a television
set, it is hard to see the structure or the function of soft-
ware.

The software business requires understanding, continu-
ous improvement, and the packaging of experience for
reuse. There are certain conicepts that have become under-
stood with regard to software:

¢ There are factors that create similarities and differ-
ences among projects; this means that one model for
software development does not work in all situations.

e There is a direct relationship between process and
product; this means one must choose the right pro-
cesses to create the desired product characteristics.

¢ Measurement is necessary and must be based on the
appropriate goals and models; that is, appropriate
neasurement provides visibility.

¢ Evaluation and feedback are necessary for project
control: this means a closed loop process for project
control is needed.

¢ Software development follows an experimental para-
digm, thus, learning and feedback are natural activi-
ties for software development and maintenance.

¢ Process, product, knowledge, and quality models need
to be better defined and tailored; the components of
the software business have an evolutionary nature
and must be defined according to it.

¢ Evaluation and feedback are necessary for learning;
a closed loop for long range improvement, as well as
for individual project control, is needed.

¢ New technologies must be continually introduced; or-
ganizations and researchers need to experiment with
technologies.

* Reusing experience in the form of processes, products,
and other forms of knowledge is essential for improve-
ment, that is, reuse of knowledge is the basis of im-
provement.

¢ Experience needs to be packaged; organizations must
build competencies in software.

¢ Experiences must be evaluated for reuse potential;
an analysis process is required. ‘

e Software development and maintenance processes
must support reuse of experience, where reuse must
be defined in terms of what, how and when to reuse.

e A variety of experiences can be packaged: process,
product, resource, defect and quality models can be
developed and updated based on experience.

» Experiences can be packaged in a variety of ways; we
can use equations, histograms, algorithms, etc. as
mechanisms for packaging experience.

e Packaged experiences need to be integrated; an expe-
rience base, is a repository of integrated information,
relating similar projects, products, characteristics,
phenomena, ete. '

To address the business needs of software, software
equipment offers a framework based on an evolutionary
quality management paradigm tailored for the software
business, the Quality Improvement Paradigm. The Para-
digm is supported by a tool for establishing project and
corporate goals and a mechanism for measuring against
those goals, the Goal Question Metric Paradigm (qv), and
by an organizational approach for building software com-
petencies and supplying them to projects, the Experience
Factory Organization.

The rest of this article will define and discuss the Expe-
rience Factory Organization concept, after a preliminary
discussion of its basic methodological device, the Quality
Improvement Paradigm.

THE QUALITY IMPROVEMENT PARADIGM

The Quality Improvement Paradigm is the basic method-
ological device for the Experience Factory, and as such it
is abasic component of our discussion. Therefore it is useful
to take a closer look at some of the issues associated with
it and with its phases.

The Quality Improvement Paradigm developed by Ba-

sili and co-workers (1985) is the result of the application .

of the scientific method to the problem of software quality
improvement. As such it is related to the Shewart-Deming
Cycle Plan/Do/Check/Act (Deming, 1986) widely used in
the industry for the implementation of quality manage-
ment plans.

The Quality Improvement Paradigm is articulated into

the following six steps (Fig. 1):

Package Characterize

Analyze Set goals

Execute - " Choose process

Figure 1. The six steps of the Quality Improvement Paradigm.

1. Characterize. Understand the environment based
upon available models, data, intuition, etc. Establish
baselines with the existing business processes in the
organization and characterize their criticality.

2. Set Goals. On the basis of the initial characterization
and of the capabilities that have a strategic relevance
to the organization, set quantifiable goals for suc-
cessful project and organization performance and im-
provement. The reasonable expectations are defined
based upon the baseline provided by the character-
ization step.

3. Choose Process: On the basis of the characterization
of the environment and of the goals that have been
set, choose the appropriate processes for improve-
ment, and supporting methods and tools, making
sure that they are consistent with the goals that
have been set.

4. Execute: Perform the processes constructing the
products and providing project feedback based upon
the data on goal achievement that are being col-
lected.

5. Analyze: At the end of each specific project, analyze
the data and the information gathered to evaluate

the current practices, determine problems, record -

findings, and make recommendations for future proj-
ect improvements.

6. Package: Consolidate the experience gained in the
form of new, or updated and refined, models and
other forms of structured knowledge gained from this
and prior projects, and store it in an experience base
so it is available for future projects.

The Quality Improvement Paradigm implements two
feedback cycles: '

1. The project feedback cycle (control cycle) is the feed-
back that is provided to the project during the execu-
tion phase: whatever the goals of the organization,
the project used as a pilot should use its resources

in the best possible way; therefore quantitative indi-

EXPERIENCE FACTORY 471

cators at project and task level are useful in order
to prevent and solve problems.

2. The corporate feedback cycle (capitalization cycle) is
the feedback that is provided to the organization
and has the double purpose of providing analytical
information about project performance at project
completion time by comparing the project data with
the nominal range in the organization and analyzing
concordance and discrepancy. Accumulating reus-
able experience in the form of software artifacts that
are applicable to other projects and are, in general,
improved based on the performed analysis.

An appropriate and unambiguous characterization of
the environment is a prerequisite to a correct application
of the paradigm. This characterization requires that we
classify the current project with respect to a variety of
characteristics. It allows us to isolate the class of projects
with similar characteristics and goals to the project being
developed. This way we can distinguish the relevant proj-
ect environment for the current project. Characterization
provides a context for goal definition, reuse of experience
and products, process selection, evaluation and compari-
son, and prediction.

There are a large number of project and environmental
characteristics that affect the software development pro-
cess and product (Basili, 1981; Basili and co-workers,
1986). These include people factors, such as the number
of people, level of expertise, group organization, problem

. experience, process experience; problem factors, such as

the application domain, newness to state of the art, suscep-
tibility to change, problem constraints; process factors,
such as life cycle models, methods, techniques, tools, pro-
gramming language, other notations; product factors, such
as deliverables, system size, required qualities, e.g., relia-
bility, portability; and resource factors, such as target and
development machines, calendar time, budget, existing
software.

A realistic definition of the goals is an important corre-
late to the characterization of the environment. We need to
establish models and goals for the processes and products.
These goals should be measurable, driven by models, and
defined from a variety of perspectives, e.g., the user, cus-
tomer, project, corporation. There are several techniques
for defining measurable goals: the Quality Function De-
ployment Approach (QFD) (Kogure, 1983), the Goal/
Question/Metric Paradigm (GQM) Basili and Weiss, 1984,
and the Software Quality Metrics Approach (SQM) Boehm
and co-workers, 1976.

The Goal/Question/Metric Paradigm is the mechanism
used by the Quality Improvement Paradigm for defining
and evaluating a set of operational goals using measure-
ment. It represents a systematic approach for tailoring and
integrating goals with models of the software processes,
products and quality perspectives of interest, based upon
the specific needs of the project and the organization.

The choice of the process execution model involves
choosing and tailoring an appropriate genetic life cycle
model, a set of methods, and techniques. It should be noted
that choosing and tailoring any form of process involves
providing its goal and procedure definition. Choosing and

472 EXPERIENCE FACTORY

tailoring are always performed in the context of the envi-
ronment, project characteristics, and goals established for
products and processes.

For the purpose of discussion, we define and differenti-
ate the terms technique, method, life cycle model:

® Technique is a basic algorithm, or set of steps to be
followed in constructing or assessing the software.
For example, code reading by stepwise abstraction is
a technique for assessing the code.

* Method is an organized approach based upon applying
some technique. A method has associated with it a
technique, as well as a set of guidelines about how and
when to apply the technique, when to stop applying it,
when the technique is appropriate and how we can
evaluate it. For example, a method will have associ-
ated with it a set of entry and exit criteria and a
set of management supports. Code Inspection is a
method, based upon some reading technique, which
has a well-defined set of entry and exit criteria as
well as a set of management functions defined for
how to manipulate the technique.

¢ Life cycle model as an integrated set of methods that
covers the entire life cycle of a software product.

There are a variety of software life cycle models, each of
which is useful under different circumstances (Basili and
Turner, 1975; Boehm, 1988; Royce, 1970). The waterfall
model (Royce, 1970) is basically a sequential process model
where each of the major documents are developed in se-
quence, starting with the most abstract, 1.e. the require-
ments document. Thewaterfall modelis most efficient when
the problem is well defined and the solution is well under-
stood, that is, when there are not a lot of iterations through
the cycle. If the problem or the solution are not well-defined,
other process models may be more effective. The iterative
enhancement model (Basili and Turner, 1975) is an incre-
mental model that builds several versions of the system,
each with more functionality. It starts with a simple initial
implementation of a subset of the problem and iteratively
enhances the existing version until the full system is imple-
mented. At each step of the process, not only extensions but
design modifications are made, based upon what we have
learned about the problem and the solution. This process
model results in several versions of the system. Iterative
enhancement is effective when the problem or solution are
not well understood, schedule for full function a risk, or the
requirements changing over time. It allows the developer
to learn through each cycle of development and the user to
provide timely essential feedback, improving each version
until the final version of the system is produced. The spiral
model (Boehm, 1988) is another incremental model that or-
ganizes the activities like a spiral with many cycles: the ra-
dial dimension of the spiral represent the cost of the system,
the angular dimension represents the progress of the proj-
ect. At each stage of the development, the, model requires
the identification of uncertainties and asks involved, and
the development of strategies for resolving them. Another
effective process model is prototyping. It involves the devel-
: .opment of an experimental version of some aspect of the sys-

tem. The prototype is typically built in a very high level lan-
guage or using some modeling or simulation tools. It
provides a better specification of the problem requirements
and is effective when the user is unsure of the system needs,
some aspect of the system is unclear, or an experimental
version of the system is needed for analysis.

In order to execute the processes, experience should be
accessible in a packaged form as processes that have been
chosen, prior products available for reuse, appropriate re-
source and data models, and software development models
that allow to take advantage of the reusable packages. One
needs to analyze the data according to the project specific
models and goals in close to real time in order to make the
project visible to management and feed back information
for corrective action. Data collection must beintegrated into
the processes, not considered as an add on, e.g., the defect
classification form should be part of the configuration con-
trol mechanism. Data validation is important to assure we
are making decisions based upon valid data. It is clear that
automation is necessary to support some mechanical tasks,
deal with the large amounts of data and information, and
aid in the data analysis.

There is a wide variety, of data that can be collected. Re-
source data include effort by activity, phase, type of person-
nel, computer time, and calendar time. Change and defect
data include changes and defects by various classification
schemes. Process measurement includes process definition,
process conformance, and domain understanding data.
Product data includes product characteristics, both logical,
(e.g., application domain, furiction) and physical (e.g. size,
structure) and use and context information.

THE EXPERIENCE FACTORY

The Quality Improvement Paradigm is based upon the no-

tion that improving the software process and product re-
quires the continual accumulation of evaluated experiences
(learning) in a form that can be effectively understood and
modified (experience models)into a repository of integrated
experience models (experience base) that can be accessed
and modified tomeet the needs of the current project (reuse).
The paradigm implies the logical separation of project de-

- velopment (performed by the Project Organization) from

the systematic learning and packaging of reusable experi-
ences (performed by the Experience Factory) (Basili, 1989).

The Experience Factory is a logical and/or physical orga-
nization that supports project developments by analyzing
and synthesizing all kinds of experience, acting as a reposi-
tory for such experience, and supplying that experience to
various projects on demand (Fig. 2). It packages experience
by building informal, formal or schematized, and product-
ized models and measures of various software processes,
products, and other forms of knowledge via people, docu-
ments, and automated support.

The development organization, whose goal is to produce
and maintain software, provides the analysis organization
with project and environment characteristics, development
data, resource usage information, quality records, and pro-
cessinformation. It also provides feedback on the actual per-
formance of the models processed by the expenence factory
and utilized by the project.

Environrpent
Characterize charactenstm; Project |
Setgoals P _ | support
Choose process [~ "
Goals, Processes A
Tools,Products,
. Resource models, -
Execution Defect models Package
plans Y
|
N\ Data EXPERIENCE {
Lessons
- |earned -
Execute process . ! * A
BRI N — N |
Project
analysis | Analyze
Project Organization ' Experience Factory

Figure 2. Experience Factory.

The analysis organization, by processing this informa-
tion received from the development organization, will re-
turn direct feedback to each project, together with goals and
models tailored from similar projects. It also produces and
provides upon request baselines, tools, lessons learned, and
data, parametrized in some form in order to be adapted to
the specific characteristics of a project.

The support organization sustains and facilitates the in-
teraction between developers and analysts, by saving and
maintaining the information, making it efficiently retriev-
able, and controlling and monitoring the access to it.

The analysis and interpretation of the data collected is
based upon the goals. We can use this data to:

o Characterize and understand, (e.g., what project char-
acteristics affect the choice of processes, methods and
techniques? which phase is typically the greatest
source of errors?).

o Evaluate and analyze, (e.g., whatis the statement cov-
erage of the acceptance test plan? does the Inspection

Process reduce the rework effort?).

¢ Predict and control, (e.g., given a set of project charac-
teristics, what is the expected cost and reliability,
based upon our history).

¢ Motivate and improve, (e.g., for what classes of errors
is a particular technique most effective?).

Systematic learning requires support for recording experi-
ence, off-line generalizing and tailoring of experience, and
formalizing experience. Packaging useful experience re-
quires a variety of models and formal notations that are tai-
lorable, extendible, understandable, and accessible.

An effective experience base contains an accessible and
integrated set of analyzed, synthesized, and packaged expe-
rience models that capture past experiences. Systematic
reuse requires support for using existing experience, and
necessary generalizing or tailoring of candidate experience.
This combination of ingredients requires an organizational
structure that supports them. This includes: a software evo-
~ lutionmodel that supportsreuse, aset of processes forlearn-

EXPERIENCE FACTORY 473

ing, packaging, and storing experience, and the integration
of these two functions. The experience factory is the organi-
zational unit that performs this integration.

It is important to understand that the term “reuse” is
used here to mean more than product reuse. Reuse, in the
software domain, has been a long sought after goal with lit-
tle historical success. Why has reuse been a problem in the
software domain? There are several reasons. First we need
to reuse more than just code, we need to reuse the context
from which the code originates. Second, the reuse of experi-
ence is too informal, not fully incorporated into the develop-
ment or maintenance process models. Third, experience has
not yet been analyzed and evaluated for it reuse potential,
nor has been appropriately packaged. Fourth, it is often as-
sumed that reuse means reuse as is. On the contrary most
experiences need to be tailored in some way to meet the
needs of a new context. Lastly, it is also often assumed that
reusable packages of experience, be it product, process or
any other form of experience, could be developed as a by-
product of the project. Clearly this is not the case. The proj-
ect focus is delivery, not reuse. If we want reuse, the activi-
ties that create reusable packages of experience need to be
outside of the project.

The packagmg of experience is based on tenets and tech-
niques that are different from the problem solving activity
used in project development.

In a correct implementation of the experience factory
paradigm projects and factory will have different process
models: each project will choose its process model based
upon the charactenstlcs of the software product that will
be delivered, while the experience factory will define (and
change) its process model based upon organizational and
performance issues.

This creates the need for separate organizations, at least
from a logical point of view: the Project Organization for
product development and the Experience Factory for pack-
aging experience. Both organizations have different focuses
and priorities, use different process models, and have differ-
ent expertise requirements. Trying to mix them in the same
organization is destined to failure (Caldiera and Basili,
1991).

In practice, the Quality Improvement Paradigm/Experi-
ence Factory Organization approachisimplemented by first
putting the organization in place. This means collecting
data to establish baselines, e.g., defects and resources, that
are process and product independent, and measuring the
strengths and weaknesses of the organization in order to
provide business focus and goals for the improvement pro-
cess. The initial data collection is also critical for establish-
ing the product quality baseline that should be improved
through the program. Using this information, the organiza-
tion selects methods and techniques to improve process and
products, and experiments with them. Better and measur-
able processes can be defined and tailored based on the expe-
rience and knowledge gained within the project environ-
ments. The results are always validated with respect to
process conformance and domain understanding.

When the relationship between some process character-
istics and product qualities within a specific environment
is better understood, the organization is ready to manipu-
late its processes to achieve those product characteristics.

474 EXPERIENCE FACTORY

Changes in processes establish new baselines and provide
new goals for improvement.

In this way the organization defines itself as continu-
ously improving, even if its maturity level is not very high,
because it learns from its own business, not from an exter-
nal, ideal process model. Process improvements are based
uponthe understanding of the relationship between process
and product in the specific organization. Technology infu-
sion is motivated by the local problems, and people are more
willing to try something new.

EXAMPLES OF PACKAGED EXPERIENCE

The experience factory can package all kinds of experience.
It can build resource models and baselines, change and de-
fect models and baselines, product models and baselines,
process definitions and models, method and technique mod-
els and evaluations, products and product models, a library
of lessons learned, and a variety of quality models.

There are a variety of forms for packaged experience:

e Equations defining the relationship between vari-
ables, (e.g., Effort=a*Size). ’

¢ Histograms or pie charts of raw or analyzed data, (e.g.
% of each class of fault).

¢ Graphsdefiningranges of “normal”(e.g., graphs of size
growth over the with confidence levels).

¢ Specific lessons learned associated with project types,
phases, activities, (e.g. reading by stepwise abstrac-
tion is most effective for finding interface faults), or in
the form of risks or recommendations, (e.g., definition
of a unit for unit test in Ada needs to be carefully de-
fined).

¢ Models or algorithms specifying the processes, meth-
ods; or techniques, (e.g. an SADT diagram defining
Design Inspections with the reading technique as
variable dependent upon the focus and reader per-
spective).

Examples of resource models and baselines include cost
models, resource allocation models for staffing, schedule,
and computer utilization, and the relationship between re-
sources and various factors that affect resources, e.g. spe-
cific methods, customer complexity, the application, the en-
vironment, and defect classes (Basili and Beane, 1981).

In building resource models, the experience factory is in-
terested in capturing data associated with a variety of fac-
tors associated with prior projects, e.g., size, effort, pages of
documentation, calendar time. These relationships can be
used to build equations that define the empirical relation-
ships between these factors. Using these data it can either
generate separate equations representing characteristi-
cally different environments (based upon characterizing
factors), orit can use the characterizing factors to adjust the
equations to provide better fits to the range of data. These
relationships package the organization’s experience with
respect to variousresources. The characterizing factors also
provide insight into those factors that effect resources. The
equations can be used for prediction, project monitoring,
and evaluation.

Examples of change and defect models and baselines de-
veloped by an experience factory include: change baselines
by various classifications, defect baselines by various classi-
fications, defect prediction models, reliability models
(Weiss and Basili, 1985). ’

An appropriate analysis can capture the number of er-
rors, faults and failures associated with various phases, e.g.,
in total, by various classes (error domain, time of detection,
omission/commission, software aspect, failure by resolution
date opened/date closed). Histograms and Pareto charts are
builtto analyze the various defect classes in order toidentify
overall patterns as well as common patterns representing
characteristically different environments. These defect dis-
tributions package the organization’s experience with re-
spect to defects associated with various project characteris-
tics. They can be used for prediction, project monitoring,
evaluation, and provide specific focuses for improvement.

Project characteristicmodels and baselines developed by
an experience factory include: growth and change histories
for size, staffing, computer use, number of test cases, test -
coverage, etc. These can be compared with the norm for the
environment or for a set of characteristically similar proj-
ects to make predictions and estimates for the current proj-
ect and provide guidance for the project manager based
upon variation from expectation (McGarry, 1985).

For a variety of data the experience factory can define
graphs of various variables over time. The accumulation of
such data over a variety of projects provides baselines for
planning and monitoring projects. For example, it can plot:
growth inlines of code vs. schedule, CPU hours vs. calendar
time, the amount of code covered vs. number of tests run,
the amount of reuse in each project over time.

The experience factory packages experiences with tech-
niques, methods, and life cycle models by defining and refin-
ing models of their definitions and goals, understanding
where they are appropriate and how they need to be tailored
toaparticular set ofenvironmental characteristics. To focus
on improvement, the organization needs to introduce new
technology. It needs to experiment and record the findings
in terms of lessons learned and eventually adjustments to
the current processes. When the technology is substantially
different from what we are currently using, the experimen-
tation may be off-line. It may take the form of a controllied
experiment (for detailed evaluation in the small) or of a case
study (to study the scale effects). In both cases, the Goal/
Question/Metric paradigm provides an important frame-
work (Basili and co-workers, 1986).

Based upon experimentation, a set oflessons learned can
be written that can be made available in the experience base
for future uses of the technology. New methods and tech-
niques can be defined or old ones refined.

The main product of the experience factory is the Experi-
ence Package. The content and the structure of an experi-
ence package vary based upon the kind of experience clus-
tered in the package. There is a central element that
determines what the package is: a software life eycle prod-
uct or process, a mathematical relationship, an empirical or
theoretical model, adatabase, etc. The experience packages
are defined by thelife cycle product. Examples of experience
packages are:

1. Product Packages have as their central element a life-
cycle product, clustered with the information needed
toreuseit and the lessonslearned in reusing it. Exam-
ples: Programs, Architectures, Designs.

9. Process Packages have as their central element a life-
cycle process, clustered with the information needed
to execute it and the lessons learned in executing it.
Examples: Process models, Methods.

3. Relationship Packages have as their central element
a relationship or a system of relationships among ob-
servable characteristics of a software project. There
are time based relationships and time independent
relationships. In any case, these packages are used
for analysis and/or forecast of relevant phenomena.
Examples: Cost and Defect Models, Resource Models.

4. Tool Packages have as their central element a specific
tool, either constructive (Examples: Code Generator,
Configuration Management Tool) or analytic (Exam-
ples: Static Analyzer, Regression Tester)

5. Management Packages have as their central element
any container of reference information for project
management. Examples: Management Handbooks,
Decision Support Models.

6. Data Packages have as their central element a collec-
tion of defined and validated data relevant for a soft-
ware project or for activities within it. Examples: Proj-
ect databases, Quality records.

EXAMPLES OF EXPERIENCE FACTORIES

A software organization that has for a long time recognized
the value of accumulation and reuse of experience is the
NASA Goddard Space Flight Center which has developed
since 1977 the Software Engineering Laboratory, in con-
junction with the Department of Computer Science of the
University of Maryland and with the Computer Sciences
Corporation.

The Software Engineering Laboratory (SEL) is today a
very advanced example of the concept of experience factory.
The experience packages developed by the SEL have mainly
focused on project management and control, acquisition and
tailoring of new technologies for software development and
maintenance. The SEL has produced several types of expe-
rience packages, specific toits application domain, flight dy-
namics applications (Druffel and co-workers, 1983).

One of the most interesting experience packages devel-
oped by the SEL is the Software Management Environment
(SME): a set of data, tools, manuals and analysis techniques
supplied to the project management in order to control the
execution of a project, compare it with similar ones, detect
and analyze problems, identify solutions. An essential part
ofthe SME packageis the SEL database, an on-line informa-
tion base for storage and retrieval of software engineering
data.

Another interesting experience package developed by
the SEL is built around the Cleanroom process model pro-
posed by Mills. Here the analysts produce the requirements
and the developers produce and verify designs and code that
are then released to the testers who run statistical tests and
release a system with certified reliability. Systematic de-

EXPERIENCE FACTORY 475

sign, implementation without testing, and statistical test-
ing are the cornerstones of the Cleanroom model. The rele-
vant existing models in the experience base include: the
standard SEL models, the IBM/FSD Cleanroom Model
(Mills, 1987), and a Cleanroom model used for a controlled
experiment at the University of Maryland (Selby and co-
workers, 1987).

The U.S. Department of Defense has supported several
efforts in the direction of the accumulation of software expe-
rience, especially in the field of code reuse. The original goal
ofthe STARS (Software Technology for Adaptable and Reli-
able Systems, 1983-1995) Program (Druffel and Redwine,
1983)is the expansion of the technological basis available to
a software project. Several products of the STARS program
can be seen as experience packages. The RAPID Center, de-
veloped by SofTech for the US Army Information Systems
Engineering Command (ISEC), operates as an experience
factory in the area of composition technologies for software
reuse Guerrieri, 1988. The RAPID Center supports the ac-
tivities of other ISEC development centers by

o Developing and maintaining a repository of reusable
software components.

e Assisting the development centers in the selection and
use of the needed reusable components.

e Assisting the development centers in the design, im-
plementation and identification of reusable compo-
nents.

e Providing methods, tools and strategies for maximiz-
ing reuse and associated benefits.

e Collecting data and measuring the program progress.

The major software industries, Japanese (Toshiba, Hitachi,
NEC, Fujitsu) and American (GTE) have identified experi-
ence accumulation and reuse as a strategic objective (Cusu-
mano, 1991). The Japanese software factories have chosen
a strategy based on small improvements, slowly but con-
stantly introducing new technologies, tools and organiza-
tional solutions that in many cases can be seen as partial
implementations of the software factory. The scenarios tar-
geted by specific quality improvement and experience pack-
aging programs in those software factories have been: code
reuse, reliability modeling, productivity improvement, ser-
vice quality enhancement.

EXPERIENCE FACTORY IMPLICATIONS

The Experience Factory offers an organizational structure
that separates the product development focus from the
learning and reuse focus. It supports learning and reuse and
generates a tangible corporate asset in the form of packaged
experiences. It aidsin the formalization of management and
development processes. It links focused research with de-
velopment.

The Experience Factory can be used to consolidate and
integrate activities, such as packaging experience, consult-
ing, quality assurance, education and training, process and
tool support, and measurement and evaluation.

The Experience Factory makes existing technologies
more relevant, e.g., verification techniques for product

476 EXTENDABILITY (EXPANDABILITY)

packaging. It forces research tofocus on corporate needs and
technology transfer. Areas of research for supporting the
activitiesinclude defining and tailoring models, the integra-
tion of technologies, scaling-up techniques and methods,
building and accessing the experience base, and automa-
tion. :

It makes existing education in formalism, models and
notations more relevant. It requires education in verifica-
tion technologies, formal requirements and specification
notations, formal models of measurement and manage-
ment, and assessment technologies.

How the experience factory is funded depends upon the
organizational structure of the corporation. Clearly the
project organization and the experience factory should be
separate cost centers, initially funded out of corporate over-
head. However, eventually one would like to have projects
billed for packages, so that the factory can be self-support-
ing and focused toward project support.

There are costs involved in instituting such a program.
The level of funding clearly depends upon the size of the
program. However, some relative data is available. Based
upon the SEL experience where a full measurement pro-
gram has been in progress for over 14 years, project data
collection overhead is estimated to be about 5% of the total
project cost. Although our experience shows that this typi-
cally does not affect total project cost, since the data collec-
tion activity pays for itself on the first project in terms of
improvement, it must be established as an up-front cost.
With regard to the Experience Factory, the costs depend
upon the number of projects supported, level of effort and
set of activities performed, e.g., quality assurance, process
definition, tool building, education and training, etc. One
might consider that it takes a minimum of two people, how-
ever to create the critical mass necessary to develop such
and activity at the minimal level.

BIBLIOGRAPHY

V.R.Basili, “Data Collection, Validation, and Analysis,” in Tutorial
on models and Metrics for Software Management and Engineer-
ing, IEEE Catalog No. EHO-167-7, 1981, pp. 310-313.

R. Basili, “Quantitative Evaluation of Software Engineering Meth-
odology,” Proceedings of the First Pan Pacific Computer Confer-
ence, Melbourne, Australia, Sept. 1985.

R. Basili, “Software Development: A Paradigm for the Future,” Pro-
ceedings of the 13th Annual International Computer Software &
Applications Conference (COMPSAC), Keynote Address, Or-
lando, Fla., Sept. 1989.

R.Basiliand J. Beane, “Canthe Parr Curve helpwith the Manpower
Distribution and Resource Estimation Problems,” Journal of
Systems and Software, 2 (1), 47-57 (1981).

R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
Software Engineering,” IEEE Transactions on Software Engi-
neering, SE-12(7), 733-743 (July 1986).

R. Basili and A. J. Turner, “Iterative Enhancement: A Practical
Technique for Software Development,” IEEE Transactions on
Software Engineering SE-1(4) (Dec. 1975).

R.Basiliand D. M. Weiss, “A Methodology for Collecting Valid Soft-
ware Engineering Data,” IEEE Transactions on Software Engi-
neering, SE-10(6), 728-738 (Nov. 1984).

W.Boehm, “A Spiral Model of Software Development and Enhance-
ment,” IEEE Computer, 61-72 (May 1988).

W. Boehm, J. R. Brown, and M. Lipow, “Quantitative Evaluation
of Software Quality,” Proceedings of the Second International

" Conference on Software Engineering, 1976, pp. 592-605.

Brophy, W. Agresti, and V. R. Basili, “Lessons Learned in Use of
Ada Oriented Design Methods,” Proceedings of the Joint Ada
Conference, Arlington, Va., March 1619, 1987.

G. Caldiera and V. R. Basili, “Identifying and Qualifying Reusable
Components,” IEEE Software, 61-70 (Feb. 1991).

A. Cusumano, Japan’s Software Factories, Oxford University

" Press, New York, Feb. 1991,

E. Deming, Out of the Crisis, MIT Center for Advanced Engineering
Study, MIT Press, Cambridge, Mass., 1986

E. Druffel, S. T. Redwine, and W. E. Riddle, “The STARS Program:
Overview and Rationale,” IEEE Computer, 21-29 (Nov. 1983).

Guerrieri, “Searching for Reusable Software Components with the
RAPID Center Library System,” in Proceedings of the Sixth Na-
tional Conference on Ada Technology, March 14-18, 1988, pp.
395-406.

Kogure and Y. Akao, “Quality Function Deployment and CWQC in
Japan,” Quality Progress, 2529 (Oct. 1983).

E. McGarry, “Recent SEL Studies,”Proceedings of the 10th Annual
Software Engineering Workshop, NASA Goddard Space Flight
Center, Dec. 1985. i

McGarry and R. Pajerski, “Towards Understanding Software - 15
Years in the SEL,” Proceedings of the 15th Annual Software En-
gineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, Software Engineering Laboratory Series, SEL-
90-006, Nov. 1990.

D. Mills, M. Dyer, and R. C. Linger, “Cleanroom Software Engineer-
ing,” IEEE Software, 19-25 (Sept. 1987).

W. Royee, “Managing the Development of Large Software Systems:
Concepts and Techniques,” Proceedings of the WESCON, Aug.
1970. ’

W. Selby, Jr., V. R. Basili, and T. Baker, “CLEANROOM Software
Development: An Empirical Evaluation,”JEEE Transactionson
Software Engineering, 13(9), 1027-1037 (Sept. 1987).

M. Weiss and V. R. Basili, “Evaluating Software Development by
Analysis of Changes: Some Data from the Software Engineering
Laboratory,” IEEE Transactions on Software Engineering, SE-
11(2) 157-168 (Feb. 1985).

Vicror R. BasiLi
GianLuict CALDIERA
University of Maryland
H. DieTeErR RoMBACH
Universitat Kaiserlautern

