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Abstract

This paper presents a knowledge-based analysis approach which generates first order predi-
cate logic annotations of loops. A classification of loops according to their complexity levels is
presented. Based on this taxonomy, variations on the basic analysis approach that best fit each
of the different classes are described. In general, mechanical annotation of loops is performed
by first decomposing them using data flow analysis. This decomposition encapsulates closely
related statements in events, which can be analyzed individually. Specifications of the resulting
loop events are then obtained by utilizing patterns, called plans, stored in a knowledge base.
Finally, a consistent and rigorous functional abstraction of the whole loop is synthesized from
the specifications of its individual events. To test the analysis techniques and to assess their
effectiveness, a case study was performed on a pre-existing program of reasonable size. Results
concerning the analyzed loops and the plans designed for them are given.

Index terms: First order predicate logic, formal specifications, knowledge base, loops, program
understanding, reverse engineering.
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1 Introduction

Program understanding plays an important role in nearly all software related tasks. It is vital
to the maintenance and reuse activities which cannot be performed without a deep and correct
understanding of the component to be maintained or reused. It is indispensable for improving
the quality of software development activities such as code reviews, debugging, and some testing
approaches all require programmers to read and understand programs. There has been considerable
research on techniques and tools for analyzing and understanding computer programs. Within
these efforts, substantial interest is usually directed towards the specific topic of analyzing loops.
This interest stems ma.mly from inherent reasoning difficulties involving repeated program state
modifications and the fact that loops have a major effect on program understandability [36].

To analyze loops and reason about their properties, some approaches define heuristics which
can be used to guide! a search for a loop invariant [19] or function [29]. However, heuristic tech-
niques in general are not always useful. After applying the heuristics a considerable number of
times, one may or may not succeed in finding a correct invariant or function. Other approaches
focus on developing algorithmic techniques for finding the invariants or functions of specific simple
classes of loops. The research performed by Basu and Misra [8], Dunlop and Basili [12], Katz and
Manna [25], and Wegbreit [42] is representative of these loop analysis approaches. The advantage
of these approaches is that they analyze loops through the use of formal, semantically sound, and
unambiguous notation. Although some of them provide guidelines on how to mechanically generate
loop invariants or functions, they were not actually used to implement automatic analysis systems.
A different approach, which analyzes loops by mechanically decomposing them into smaller frag-
ments, is adopted by Waters [41]. Even though Waters’ approach does not address the issue of how
to use this decomposition to mechanically annotate loops, it is espemally interesting because of its
practicality. «

To analyze complete programs, the knowledge-based approaches utilize a knowledge base of
expert-designed plans in providing intelligent analysis results. They are inspired by the cognitive
studies {28, 37, 35] which suggest that the understanding process is a process in which program-
mers make use of stereotyped solutions to problems in making sophisticated high-level decisions
. about a program. These knowledge-based approaches are all implemented, to varying degrees,
in automatic analysis systems. Some of these approaches are: graph-parsing [32, 43]; top-down
analysis using the program’s goals as input {23, 22, 30]; heuristic-based object-oriented recognition
[15, 16}; transformation of a program into a semantically equivalent but more abstract form with
the help. of plans and transformation rules [27, 40]; and decomposition of a program into smaller
more tractable parts using proper decomposition [17] or program slicing [18]. Even though these
approaches demonstrate the feasibility and usefulness of the automation of program understanding,
they lack some important features.

Most of the knowledge-based program analysis and understanding approaches produce program
documentation which is, more or less, in the form of structured natural language text [9, 15, 16, 17,
23, 31, 27, 32, 43]. Such informal documentation gives expressive and intuitive descriptions of the
code. However, there is no semantic basis that makes it possible to determine whether or not the
documentation has the desired meaning. This lack of a firm semantic basis makes informal natural
language documentation inherently ambiguous.

Some of the knowledge-based approaches rely on user-supplied information which m.lght not
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Figure 1: Overview of the analysis approach

be available at all times. For instance, the goals a program is supposed to achieve [23] or the
transformation rules that are appropriate for analyzing a specific code fragment [40] are not always
clear to the user. Others have difficulty in analyzing non-adjacent program statements [27]. In ad-
dition, a significant amount of program analysis and understanding research has used toy programs
to validate proposed approaches. Realistic evaluations of these approaches, which give quantifi-
able results about recognizable and unrecognizable concepts in real and pre-existing programs, are
needed. Such evaluations can also serve as a basis for empirical studies and future comparisons
with other approaches [34].

To address the above mentioned drawbacks, we present a knowledge-based approach to the
automation of program analysis. It combines and builds on the strengths of a practical program
decomposition method [41], the axiomatic correctness notation [19}, and the knowledge-based anal-
ysis approaches. It mechanically documents programs by generating first order predicate logic
annotations of their loops. The advantages of predicate logic annotations are that they are unam-
biguous and have a sound mathematical basis. This allows correctness conditions to be stated and
verified, if desired. Another advantage is that they can be used in assisting the formal development
of software using such languages as VDM and Z [24, 39).

A family of analysis techniques has been developed and tailored to cover different levels of pro-
gram complexity. This complexity is determined by classifying while loops along three dimensions.
The first dimension focuses on the control computation part of the loop. The other two dimensions
focus on the complexity of the loop condition and body. Based on this taxonomy, the analysis
techniques which can be applied to the different loop classes are described.

In general, we annotate loops with predicate logic assertions in a step by step process as depicted
in Figure 1. The analysis of a loop starts by decomposing it into fragments, called events. Each
event encapsulates the loop parts which are closely related, with respect to data flow, and separates
them from the rest of the loop. The resulting events are then analyzed, using plans stored in a
knowledge base, to deduce their individual predicate logic annotations. Finally, the annotation of
the whole loop is synthesized from the annotations of its events [2].

This study tests several hypotheses related to the presented analysis approach:



¢ A loop classification class is an indicator of its amenability to analysis.

o The loop decomposition and plan design methods can make the plans applicable in many
different loops and, hence, increase their utilization.

o The analysis techniques can be automated.

To test the first two hypotheses and to characterize the practical limits of the analysis approach,
a case study on a set of 77 loops in a pre-existing program for scheduling university courses has
been performed. The approach was found to be effective. The program has 1400 executable lines
of code and the loops analyzed have the usual programming language features such as pointers,
procedure and function calls, and nested loops. To test the third hypothesis, a prototype tool,
which annotates loops with predicate logic annotations, was developed.

Section 2 of this paper gives some of the definitions used. Section 3 introduces the loop taxon-
omy. Sections 4 and 5 describe the techniques used for analyzing flat and nested loops, respectively.
Section 6 discusses the approach presented and highlights its advantages and limitations. Section
7 describes how the case study was performed and gives the results of the analysis. Finally, con-
clusions and future research directions are given in Section 8.

2 Definitions

We start by defining some of the notation used throughout this paper. First, we give the
definitions related to the representation of while loops. ‘

A control-flow graph is a directed graph that has one node for each simple statement and one
node for each control predicate. There is an edge from node I to node J if an execution of J can
immediately follow that for I [20].

Let the abstract representation of the while loop be while B do S where the condition B has no
side effects and the statements S are representable by a single-entry single-exit control-flow graph.
This representation abstracts from the syntax of the specific imperative programming language
being used. Though the approach described here applies to all loops having this abstract repre-
sentation, examples and illustrations are given using Pascal. Using this abstract representation, a
control variable of the while loop is a variable that exists in the condition B and is modified in the
body S.

Now, we give some definitions which introduce the language and terminology used in the anal-
ysis. A concurrent assignment is a statement in which several variables can be assigned simulta-
neously. We use the form vy, v2, ..., vn := e, €3, ..., €, to assign every ith expression from
the right hand list to its corresponding ith variable from the left hand list [14, 29]. A conditional
assignment is a set of one or more guarded concurrent assignments separated by commas ‘,’. When
the guard (i.e., the boolean expression), of a concurrent assignment is satisfied, the modifications
performed on a variable are given by the concurrent assignment [14, 29).

Any variable assigned in a conditional assignment defines the data flow out of the statement.
Any variable referenced by a conditional assignment defines the data flow into the statement. Two
conditional assignments are said to be circularly dependent if some variable is responsible for data
flow out of one statement and into the other, either directly or indirectly, and vice versa.



3 A loop taxonomy

To design the analysis techniques that best fit different levels of program complexity, we classify
while loops along three dimensions. The first dimension focuses on the control computation part of
the loop. The other two dimensions focus on the complexity of the loop condition and body. Along
each dimension, a loop must belong to one of two complementary classes as shown in Table 1. In
this classification, the loops in the middle column are expected to be more amenable to analysis
than the corresponding ones in the right column. '

Dimension Complementary classes
1. Control computation v Simple loop General loop
2. Complexity of condition | Noncomposite condition | Composite condition
3. Complexity of body Flat loop Nested loop

Table 1: The three dimensions used for classifying loops

Within the first dimension, we differentiate between simple and general loops. Simple loops
have a behavior similar to that of for loops. They are defined by imposing two restrictions: the
loop has a unique control variable, and the modification of the control variable does not depend
on the values of other variables modified within the loop body. Loops which do not satisfy these
conditions are called general loops.

Along the second dimension, the complexity of the loop condition can vary between two cases.
In the noncomposite case, B is a logical expression that consists of one clause of the conjunctive
normal form [33]. In the composite case, more than one clause exists. Along the third dimension, the
complexity of the loop body varies between flat and nested loop structures. In flat loop structures,
the loop body can not contain any other loop inside it which is not the case in nested structures.

4 Analysis of flat loops

Loop _|Normalize| Decompose| Segmens| Form Evensg | Analyze ‘PrAa::ath.’:gic
Source Code | e presentation Body Events Events
Plan
Knowledge
Base

Figure 2: Analysis of flat loops

As depicted in Figure 2, the analysis of flat loops is performed in a step by step process divided
into four main phases. Descriptions of these phases and their application to the example shown
in Figure 3 are given in the remainder of this section [3]. In this example, a simple loop with a
noncomposite condition scans a segment of the array capacity searching for its minimum.



J tndez, min, num_of_rooms : integer;
capacity : array[l..maz_rooms) of integer;

while j < num_of_rooms + 1 do begin
if capacity[j] < min then begin
indez := j;
min := capacity|j);
end;
j=j+1
end;

Figure 3: Example of a simple loop

4.1 Normalization of the loop representation

The purpose of this phase is to make the loop representation independent of the programming
language and the implementation specific details.

Normalization of the loop condition: The loop condition is converted into an arbitrarily
chosen normal form, which is the conjunctive normal form [33]. This normal form converts a well-
formed formula (wff) in predicate logic into a conjunction of clauses where a clause is defined to
be a wif in conjunctive normal form but with no instances of the and connector. For example,
the loop condition z < @ or (y < b and z < ¢) is transformed to the conJunctxon of two clauses
(zr<aory<b)and (z<aorz<ec). :

Normalization of the loop body: A single unwmdmg of the loop body is performed by symbolic
execution [1, 5] which gives the net modification performed on each variable in one iteration of the
loop, if any [7]. We use the conditional a.551gnment notation to répresent the result of this symbolic
execution.

For the loop given in Figure 3, the condition is a]ready in conJunctwe normal form containing
the one clause j < num.of_rooms + 1. The symbolic execution does not affect the body of the
loop. However, the net modification performed on each variable is given in the form of a conditional
assignment as follows:

Name Conditional assignment
Ch capacity[j] < min = indez := j,
C2  capacity[j] < min => min := capacity[j],
Cs true=>j:=35+1

4.2 Decomposition of the loop body

To facilitate the mechanical generation of loop annotations, the symbolic execution result is
uniquely decomposed into segments of code which can be analyzed separately. Fach segment
encapsulates the statements which are interdependent with respect to data flow. The loop segments
are partitions of the loop body symbolic execution result. Each segment consists of a maximal set
of conditional assignments such that any two conditional assignments in the set are circularly
dependent.



To obtain the loop segments, we assume that the conditional assignments of the symbolic
executjon result correspond to the nodes of a directed graph. An edge from node C; to node C;
exists if and only if there is data flowing out of C; into C; and C; and C are distinct. The strongly
connected components of this graph correspond to the loop segments [10].

For the loop shown in Figure 3, the three conditional assignments of the symbolic execution
result form a directed graph G with three edges: two from Cj3 to C; and Cs, and one from C; to
Ci. Since there are no cycles in G, its strongly connected components correspond to its nodes.
Thus, the loop segments correspond to Cy, C3, and Cs.

Because the analysis of a segment might be dependent on the analysis results of other segments,
a segment analysis result should be obtained before analyzing the segments dependent on it. That
is why we need to order the segments according to their data flow dependencies [41]. Assuming the
S is the set of segments in the loop body, the order of each segment is determined by the following
algorithm: ' '

1. Set m to 1. ’
2. While the number of segments in S is > 1 do

(a) Identify the maximal subset of § such that every segment does not have data flowing
out of it and into other segments of S. '

(b) Let the order of the identified segments be m.
(c) Remove the identified segments from S.
(d) increment m.

3. Let the final order of each segment be (m - old order). O |

Step 2 of the above algorithm assigns unique orders to the segments such that order of §; > order
of Sy if and only if there is data flowing, either directly or indirectly, from segment S; to segment
Si. Step 3 produces an irreflexive partial order of the segments. The resulting ordering relation
‘analyzed before’, is denoted by ‘—’. It is irreflexive because it is meaningless for a segment to be
analyzed before itself. It satisfies the antisymmetric property because any two distinct segments, by
definition, have no circular dependencies. The design of the above algorithm ensures the satisfaction
of the transitive property. Moreover, it is possible for two segments to be unrelated (i.e., they can
have the same order).

In the example given in Figure 3, let the segments of the loop be Sy, S, and $3 which correspond
to Cy, C3, and Cs, respectively. The orders assigned to these segments using the above algorithm
are:

Order Name ~ Segment
1 53 Jj=7+1
2 Sz capacity[j] < min => min := capacity[j]
3 S1 capacity[j] < min => indez := j

Notice that the segment that defines j, Sa, has the lowest order because the other two segments,
$1 and S, reference j (i.e., §3 — S, and S5 — S2). Similarly, §» — $, because min is defined in
S, and referenced in S;. Since the premise of the conditional assignment that modifies j is true, it
is removed.



4.3 Formation of the loop events

To represent the abstract concepts in a loop, we use the loop body segments and the clauses of
the loop condition to form the loop events. We define two categories of loop events: basic events
and augmentation events.

Basic Events (BE’s) are the fragments that constitute the control computation of the loop. A
BE consists of three parts: the condition, the enumeration, and the initialization. The condition is
one clause of the loop condition. The enumeration is a segment responsible for the data flow into
the condition. The initialization is the initialization of the variables defined in the enumeration.

To form BE’s, each clause of the loop condition is combined with the highest order segment(s)
having data flow into it. I a clause has no segment responsible for the data flow into it, this
means that this clause is redundant and should be removed from the loop condition. If a segment
is responsible for the data flow into the condition but remains with no clause associated with it, its
condition is set to true. The initializations of the control variables defined in a BE are included in
the initilization part. ‘

The BE of the loop given in Figure 3 is formed by combining the unique condition clause,
(j < num.of_rooms + 1), with the only segment which is responsible for the data flow into it,
S3. Since the loop under consideration has no initializations, we use the notation j? to denote the
initial value of a variable j. As a result, the BE has the following form:
condition: j < num_of_rooms + 1
enumeration: j:=j4 1
initialization: j := 57
An Augmentation Event (AE) consists of two parts: the body and the initialization. The body
"is one segment of the loop body which is not responsible for the data flow into the loop condition.
The initialization is the initialization of the variables defined in the body.

After identifying the BE’s, The AE’s bodies are the remaining segments of the loop. To complete
the formation of the AE’s, the initialization of each variable defined in an event is included in it.

. For the loop shown in Figure 3, the remaining segments S2 and S; constitute the bodies of
two AE’s given below. The notation min? and indez? are used to denote the initial values of the
variables min and indez.

AE1 AE 2
body: capacity[j] < min = min := capacity[j]  body: capacity[j] < min => indez := j
initialization: min := min? initialization: indez := indez?

Finally, we give each event (basic or augmentation) the same order as the segment it utilizes.
This enforces the condition that the variables referenced in an event are either defined in a lower
order event or not modified within the loop at all. As mentioned in the previous subsection, this
makes it possible to propagate the results of analyzing an event to the analysis of other events
dependent on it.

The three events of the loop shown in Figure 3 are thus ordered as follows:

1. BE (order 1) 2. AE 1 (order 2) .
condition: j < num_of_rooms + 1 body: capacity[j] < min => min := capacity[j]
enumeration: j:= j+1 initialization: min := min?

initialization: j := j7 -



3. AE 2 (order 3)
body: capacity[j] < min = indez := j
initialization: indez := indez?

4.4 A knowledge base of plans

To analyze the loop events, we utilize plans stored in a knowledge base. The term ‘plan’ refers
to a unit of knowledge required to identify an abstract concept in a program. Our plans are used
as inference rules [15, 16]. Their basic structure is divided into two' parts: the antecedent and the
consequent. When a loop event matches a plan antecedent, the plan is fired. The instantiation of
the information in the consequent represents the contribution of this plan to the loop specifications.

The Knowledge base is designed so that any two plans do not have similar antecedents. Thus,
a loop event can only match the antecedent of a unique plan. It should also be noted that the
possibility of designing as many plans as the number of loop events in a specific program is reduced
because the loop events encapsulate abstract concepts which can occur in different loops. Section
7 will examine this issue of the knowledge base size in more detail. '

Corresponding to the two event categories, we have two plan categories: Basic Plans (BP’s)
and Augmentation Plans (AP’). BP’s analyze BE’s and AP’s analyze AE’s. Plans are further
classified according to the kind of loops they analyze.

In case of simple loops, the sequences of values scanned by the control variable during and after
the execution of a simple loop can be easily written because the control computation is isolated from
the rest of the loop. The loop condition, the control variable’s initial value, and the net modification
performed on the control variable in one loop iteration, if any, provide sufficient information for
writing these sequences. This specific information about the control computation of the loop can
be used to produce equally specific loop specifications. The plans that analyze simple loops can
include these sequences and utilize them in writing the loop specifications.

The analysis of general loops is not as straightforward as that of simple ones. In many cases, it
might not be easy, or even possible, to obtain such specific knowledge because the control computa-
tion of the loop is not as determinate and isolated as in the case of simple loops. The sequences of
values scanned by the control variable(s) and the program state at the end of the loop are usually
dependent on the combined indeterminate effects of several events and the values of some program
variables. As a result, the plans that analyze general loops neither include the aforementioned
sequences nor utilize them in writing the loop specifications. The loop postcondition can only
be deduced after the synthesis of the loop invariant. The postcondition is formed by taking the
conjunction of the loop invariant with the negation of the loop condition [19]. Using this condition
to obtain the loop postcondition yields predicates which might not be as informative and concise
as those of simple loops. As a result, additional simplifications might be needed to reduce the
complexity and improve the readability of general loops postconditions.

For instance, consider the simple loop shown in Figure 3. The sequence scanned by the control
variable at any point during the loop execution is j? to j — 1. This sequence is needed to write the
part of the invariant: min = MIN({min?}U{capacity[s?.. —1]}), where MIN (s) is the minimum
of the set s and U is the set union operator. The final sequence of values scanned by the control
variable in this loop is j? to num_of_rooms. This sequence is needed to write the part of the
postcondition: min = MIN ({min?} U {capacity[j?..num of rooms]}).

10



while (j < num_of_rooms + 1)and(flag = false) do begin
if capacity[j] < limit then begin

indez := j;
flag := true;
end;
ji=3+1

end

Figure 4: Example of a general loop

In the general loop given in Figure 4, however, there is no guarantee that the final sequence
scanned by the control variable j will be j? to num.o f.rooms. The value of the final sequence
is dependent on the interaction of the two events which modify flag and j, and the contents of
the variables capacity and limit. As a result of this generality of the control computation, the
sequences of values scanned by the control variable(s) and, consequently, the postcondition parts
of the individual events cannot be written.

To accommodate the differences between simple and general loops, we have two categories of
BP’s. Determinate BP’s (DBP’s) contain in their consequents information regarding the postcon-
dition and the sequences of values scanned by the control variable. Indeterminate BP’s (IBP’s), on
the other hand, do not contain such information. We also have two categories of AP’s. Simple AP’s
(SAP’s) utilize the above sequences in writing the loop specifications, including its postcondition.
General AP’s (GAP’s) do not include the loop postcondition part or utilize the above sequences.
These plan categories are shown in Figure 5. It should also be noticed that if we neglect the in-
formation regarding the control sequences and the postcondition, DBP’s can be used in analyzing
general loops. However, the reverse is not true because DBP’s are more specific than IBP’s.

Plans

Basic Plans (BP’s) Augmentation Plans (AP’s)
Determinate BP’s Indeterminate BP’s Simple AP’s General AP’s
(DBP’s) BP’s) (SAP’s) (GAP’)

Figure 5: Plan categories

In general, The information included in a plans antecedent and consequent are described below.
In this description, the words printed in bold correspond to fields in the plans (see Figures 6 and
7).

An antecedent contains the following information:

1. An individual listing of the control variables, in the control-variables part, which serves to
underscore their importance and to facilitate the design, readability, and comprehension of
the plan.

2. Abstractions of BE’s and AE’s which are used to recognize stereotyped loop events.

11



plan-name
antecedent
control-variables
condition
enumeration
initialization
firing-condition

consequent
precondition
invariant
postcondition
sequence
final-sequence
where,
i..J
SUCC(z)
PRED(z)
SHIFT

DBP; (ascending enumeration)

var#

var# R# exp#

var# := SUCC(var#)

var# = var?#

(R# equals < or <) and

(var#t is of a discrete ordinal type) and
(B noncomposite or general loop)

- PRED(var?#) R# exp#

varl# < var# R# SUCC(ezp#)
var$# = SUCC(SHIFT(exp#))
varl# .. PRED(var#)

varl# .. SHIFT (exp#)

Sequence of integers from 7 up to j inclusive.

The successor of z.

The predecessor of z.

The identity function if R# equals <.
Equals PRED otherwise.

Figure 6: A Determinate Basic Plan

3. Knowledge needed for the correct identification of the plans such as data types’ information
and the previous analysis knowledge of a variable. This knowledge is given in the firing-

condition

A consequent includes the following information:

1. Knowledge necessary for the annotation of loops with their Hoare-style [19] specifications.
The precondition and invariant have the usual meaning [19]. The postcondition part
gives information, in case of simple loops, about the variables’ values after the loop execution
ends. It is correct provided that the loop executes at least once. If the loop does not execute,

no variable gets modified.

2. In case of DBP’s, knowledge about the sequence of values scanned by the control variables at
any point during and after the loop execution is captured in sequence and final-sequence,

respectively.

Figures 6 and 7 show two example plans of the categories DBP and SAP, respectively. To
convey the basic analysis ideas within a reasonable space limit, we only show simplified versions of
the plans. The suffix ‘#’ is used to indicate terms in the antecedent (or consequent) that must be

matched (or instantiated) with actual values in the loop events.

12




plan-name SAP; (find minimum)
antecedent ‘
control-variables v#
body - a#lexp#] R#t lhs# => lhs# := a#[ezp#]
initialization lhs := lhs?4
firing-condition (R# equals < or <)
consequent
precondition true
invariant lhsgt = MIN ({lhs?4#} U {a#lexp#|SZuence]})
postcondition lhs# = MIN({lhs?#} U {a#[ezp#l}’i#hal_sequence]})
where,
MIN(s) The minimum of the set s.

Figure 7: A Simple Augmentation Plan

The plan DBP; (Figure 6) represents an enumeration construct that goes over a sequence of
values of a discrete ordinal type in an ascending order with a unit step. In the case where the
loop has a composite condition, the sequence, final-sequence and postcondition of this plan
are written in a more general form that enables deducing the corresponding sequence, final-
- sequence and postcondition of the loop from the multiple BE’s it contains. The plan SAP;

(Figure 7) searches for the minimum of a segment of the array a# and stores it in the variable
lhs#. :

The knowledge base in a specific application domain should be created by an expert in both
formal specifications and this domain. The expert should analyze the commonly used events in this
domain and create new plans or improve on already existing ones. In creating this knowledge base,
its size should be controlled by increasing the utilization of the designed plans. The loop decom-
position method was designed for this purpose; to reveal the common algorithmic constructs that
- can be incorporated in many different loops. The hypothesis is that this decomposition can have a
positive effect on plan utilization and, hence, on the size of the knowledge base. Improvements on
the structure and/or the knowledge represented in the plans can also make the plans applicable to
a larger set of events.

Knowledge representation improvements, called abstractions, involve replacing some of the terms
in a plan with more abstract ones that make the plan capable of analyzing more cases. For example,
replacing the addition operator, +, in a plan which analyzes an accumulation by summation event
by a more abstract one which denotes either addition or multiplication represents an abstraction
of this plan. The new plan can analyze both accumulation by summation and accumulation by
multiplication events.

Structural improvements to a plan modify the basic structure into a tree structure which allows
the inclusion of several similar plans in one tree-structured plan. The root of the tree corresponds
to an antecedent part that should match loop events. The edges of the tree correspond to firing-
conditions which control the selection of the appropriate loop annotations given in the remaining
tree nodes. In other words, a tree-structured plan consists of a single antecedent and several

13



Antecedent

firing-condition 0
Consequent O
(default)
ﬁring-condiﬁo/n]/ firing-condition 2 firing-condition n
IConsequent 1 Consequent 2| ;
ﬂﬂng-wndiwm&on
Consequent 1.1 Consequent 1 T

Figure 8: The tree structure of a plan

consequents organized into one or more tree structures as shown in Figure 8. The consequents
are organized into one tree if the default consequent exists. Otherwise, they are organized into
more than one tree (forest). In order to select a specific tree-structured plan, a match with the
antecedent should occur first. Then, firing-condition 0 must be satisfied. Within the plan, local
firing-conditions of the consequents guide the search for the suitable consequent. The more
general the consequent, the closer it is to the root of its tree (e.g., consequent 1 of Figure 8 is more
general than consequent 1.1). Consequents located at the same level have mutually exclusive firing-
conditions. This means that only forward search is needed and no backtracking is required. When
the event matches the antecedent and firing-condition 0 of the tree-structured plan is satisfied,
the search for the appropriate consequent starts at the appropriate root going down in the tree as far
as possible. The path between a parent and a child can only be taken if the local firing-condition
associated with the child consequent is satisfied.

Tree-structured plans can be used to detect special cases and output loop specifications that
are simple and concise. They can also be used to analyze similar events whose specifications vary
depending on their environment (e.g., data types, control computation of the loop, . .., etc).

For instance, the plan SAP5 (Figure 7) can be structurally improved as shown in Figure 9. The
antecedent is similar to that shown in Figure 7 except for the firing condition. Firing-condition
.0 allows R# to be matched with more relational operators. Three local firing-conditions and
their consequents cover three different variations. Consequent 1, which is similar to the consequent
of the basic plan in Figure 7, is for finding the minimum. Consequent 1.1 further simplifies the
resulting annotations based on special values of lhs# and the analysis information of the control
variable v#. Consequent 2 is for finding the maximum.

Using the tree-structured plans can lead to a reduction in the size of the knowledge base since
several plans can be combined together into a larger one having a unique antecedent. However, the
Jinstantiation of the proper consequent becomes more complicated.

The construction of the tree-structured plans, especially in case of large knowledge bases, can be
facilitated by the design of automated techniques which assist in their acquisition and development.
For instance, automatically identifying similar plans and combining them into more sophisticated
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Antecedent of SAP5

(Shown in Figure 7)

Ré# is elelment of {<=,>=,<, >}

R# iselement of {<=, < R# iselement of {>=, >}

Consequent 1 Consequent 2
precondition: true - precondition: true '
invariant:  Ths# = MIN({Ihs?#} U {a¥[exp# | m invariant:  Ths# ~ MAX({Ths?#} U {affexp# | 1))
sequence sequence
postcondition: Ths# = MIN({lhs?%} U {a#[exp#Y# m postcondition: Ths# = MAX({lhs?#} U {a#{exp# | 1
final-sequence final-sequence
(v# s analyzed by DBII' with
final-sequence = init# .. final¥) and
% = a#{PRED[ini
Consequent 1.1 (st =2 [rieh))
precondition: true o
invariant:  Ths# = MIN {a#{exp#| 1
PRED(init#. PRED(v#)
postcondition: ths# = MIN {a#{exp# | ]
PRED(init#. PRED(final#)

Figure 9: Structural improvement to the plan SAP;

tree structures is an interesting topic for future study.

4.5 Analysis of the events

The events are analyzed by trying to match them with the antecedents of the knowledge base
plans. When an event matches the antecedent of a plan and firing-condition 0 is satisfied, the
appropriate consequent of the matched plan is instantiated giving the contribution of the event to
the loop specification. The precondition, invariant and postcondition of the loop are formed by
taking the conjunction of the corresponding parts of the event analysis results. When some event(s)
do not match any library plans, we get partial specifications of the loop.

To represent the results of matching the loop events with the plans antecedents, we define
the Analysis Knowledge notation. The Analysis Knowledge, AK(v), of a variable v modified by a
certain loop event consists of an n-tuple where n is dependent on the specific matched plan. The
first term of the tuple is the name of the matched plan. The remaining (n-1) terms are the results
of matching the # terms with the actual values in the event.

The resulting AK tuples and instantiations for the events of the loop given in Figure 3 are
shown below. The event and plan responsible for the production of each predicate are shown to
its left. The first two events are matched with the plans DBP; (Figure 6) and SAPs (Figure 7),
respectively. The plan, SAP,;, which analyzes the third event is not shown here because it is
similar to the plan SAP5. It searches for the location of the minimum instead of the minimum.

AK(j) = (DBP, var# : j, varl# : j7, R# :<, exp# : num_of rooms + 1)
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AK(min) = (SAPs, v# : j, a# : capacity, exp# : j, lhs# : min, lhs?4 : min?)
AK(indez) = (SAPn, v# : j, a#t : capacity, exp# : j, rhs# : min, ths?# : min?, lhs# :
indez, lhs?# : indez?)
Precondition:
Event Plan Predicate
1 DBP; j?-1< numof.rooms+1
2 SAP; true
3 SAP.1 capacity[indez?] = min?

Invariant:

Event Plan Predicate
1 DBP; j?<j < num.of-rooms+ 2
2 SAPs min = MIN({min?} U {capacity[j?..j ~ 1]})
3 SAP,; capacity[indez] = min

Postcondition:
Event Plan Predicate
1 DBP; j=numof.rooms+1
2 SAPs min = MIN({min?} U {capacity[j?..num_of _rooms]})
3 SAP,; capacity[indez] = min
The synthesized specifications of the inner loop are:
Precondition:

(J7—1< num_of_rooms + 1) and
(capacity[indez?] = min?)

Invariant:

(J? £ j < num_of_rooms + 2) and

(min = MIN({min?} U {capacity[j?..j — 1]}) and
(capacity[index] = min)

Postcondition:

(j = num_of_rooms + 1) and
(min = MIN({min?} U {capacity[j?..num.of_rooms]})) and
(capacity[indez) = min)

5 Analysis of nested loops
To rigorously analyze nested loops, the following problems need to be solved:

1. How to represent and utilize the analysis results of inner loops? A technique for

analyzing flat loops has been described in Section 4. Can the same basic technique be used for

~ outer loops (loops containing other loops)? What modifications, if any, need to be performed
on the basic analysis technique to analyze outer loops?
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while :Bo dobegin _Location LI

S,
Location L2
~while B1 do begin

end;

end; :

Figure 10: A nested structure of while loops

2. How to modify the resulting specifications to facilitate Hoare-style verification
[19]? This problem can be further divided into two subproblems, which are explained using
the nested construct shown in Figure 10. In this nested construct, let I; and I, be the
invariants of the inner and outer loops, respectively.

(a) Can the above invariants be used to satisfy Hoare verification conditions which connect
the specifications of inner and outer loops in the nested construct? In other words, is it
possible to prove the following rules:

(I; and ~B;) {S2} I, (1)
(I, and B,) {$i} I 2)

In these rules, the notation P{S}Q means that if the predicate P is true before executing
the first statement of the program part S, and if § term.mates, then the predicate ¢ will
be true after execution of § is complete.

(b) I the above invariants use the notation var? to denote the initial value of a variable var,
does this notation consistently refer to the value of var before the start of the outermost
loop in the nested construct? If not, how can this inconsistency be removed?

To solve these problems, the analysis of nested loops is performed by recursively analyzing the
innermost loops and replacing them with sequential constructs which represent their functional
abstraction. The functional abstraction of an outer loop depends on the functional abstraction of
the inner ones and not on the details of their implementation or structure.

Since this recursive analysis approach is performed bottom-up, complete knowledge of the inner
loops functions is available during the analysis of an outer loop. Thus, the invariant of an outer
loop can be directly designed to satisfy the verification rules which are similar to rule (2) listed
above. However, inner loops are analyzed in isolation of the outer ones enclosing them. As a
result, their invariants and, consequently, postconditions might not be strong enough to satisfy the
verification rules which are similar to rule (1). Some predicates might need to be added to the inner
loops invariants and postconditions to enable the verification of such rules. The contezt adaptation
phase derives these predicates and adds them to the inner loops specifications. Moreover, the
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i, j, index, min, num_of_rooms : integer;
capacity : array[l..maz rooms] of integer;

i:=1;
while ¢ < num_of_rooms — 1 do begin
index := 1
min := capacity[i];
t:=1+1;
ji=1
while j < num_of_rooms + 1 do begin
if capacity[j] < min then begin

indez := j;

min := capacitylj];
end;
ji=j+1

end;
capacity[index] := capacityfi — 1];
capacity[i — 1] := min

end;

Figure 11: Example of a nested loop

consistency of using the notation var? to denote the initial value of a variable var is ensured using
the initialization adaptation phase.

We start in Section 5.1 with some definitions which explain how we extract the initilization
of a loop in a nested construct, whether it is the outermost loop or an inner one. Sections 5.2-
5.4 present solutions to the two research problems mentioned above. Sections 5.2 and 5.3 offer a
solution to the first research problem. Section 5.4 presents a partial solution to the second problem.
In these sections, the descriptions of the analysis steps are interspersed with their application on
the selection sorting example given in Figure 11. In this example, a simple nested loop repeatedly
scans an array segment searching for its minimum. It interchanges the minimum with the first
element in the segment. It stops after the array capacity[l..num_of _rooms) has been sorted in
ascending order. The inner loop of this example is the same one given in Figure 3.

5.1 Definitions

In the following definitions, we limit the initilization of a loop to assignment statements which serve
to make the resulting loop specifications both informative and readable. Conditional statements
are not considered as initializations to limit the complexity of the resulting loop specifications and
make them representative of the loop functionality without composing them with specifications of
external compound statements. ‘ :

The initilization of a loop that is not enclosed by another loop is assumed to be a set of assign-
ment statements of the form identifier := expression, which are immediately placed before its
start. These statements give initial values for identifiers that get modified within the loop body.

18



If this assumption cannot be satisfied or, equivalently, the loop initialization is unavailable, the
notation v? is used to denote the initial value of a variable v just before the start of the loop.

If we have two nested while loops, the adaptation path of the inner loop is a sequence of
statements extracted from their control-flow graph representation. This sequence contains all the
statements, simple or compound, which are completely located on the paths starting from the
control predicate node of the outer loop and ending at the control predicate node of the inner loop
exclusive. In addition, the relative order of the statements is kept unchanged.

The initialization of an inner loop in a nested construct is obtained by, first, symbolically exe-
cuting its adaptation path to produce the net modification performed on each variable, if possible.
Statements of the form identifier := ezpression are, then, extracted from the symbolic execution
result. Statements are extracted if they satisfy the following two conditions:

1. The identifier is one of the variables modified within the inner loop body.

2. The ezpression does not reference any of the variables modified along the adaptation path.

If the initilization of a variable v that gets modified within the loop body is not given by the
extracted statements, the notation v? is used to denote its initial value just before the start of the
loop.

The first condition, in the above definition, ensures that the initialization statements are utilized
by the inner loop events. The second condition ensures that the values of identi fier and ezpression,
just before the start of the inner loop, are equal. For example, if the adaptation pathis i := i+1;j :=
i, then its symbolic execution gives the concurrent assignment i, j := i+1, i+1, Taking j := i+1
as an initialization statement is not allowed because the values of j and i + 1, just before the start
of the loop, are not equal (the values of j and ¢ are equal). The second condition also prevents
using statements of the form, say, z := z + 1 as initializations.

To extract the initilization of the inner loop given in Figure 11, we use the above definitions.
The adaptation path is:
index := §; min := capacity[i]; i =i+ 1; j = .
The symbolic execution of the adaptation path yields the following concurrent assignment:
index, min, i, j := 1, capacity[i], i+ 1, i+ 1.

According to the definition of the initialization of an inner loop in a nested construct, all the
resulting assignments are unacceptable initializations because the second condition is not satisfied.
In addition, the assignment to i does not satisfy the first condition. As a result, the initialization
is written by using the notation v? to denote the initial value of a variable v.

5.2 Analysis of inner loops and representation of their analysis results

The analysis of inner loops is performed using the same four phases described, in Section 4, for
flat loops. To analyze an outer loop in a nested construct, the analysis results of its inner loops
must be represented in a way that reveals the functionality of the inner loops and the flow of data
into and out of the inner loops. The data flow information is needed to perform the decomposition
of the outer loop body.
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Though the resulting AK tuples or predicate logic annotations can be used to represent the
inner loop analysis results, they either include too much detail or the deduction of the required
information is difficult, respectively. Hence, the solution is to use a formalism that is similar to
function calls; the name encapsulates the functionality while the arguments indicate the data flow
information. The formalism used for this purpose is called an Abstraction Class (AC).

An AC is a knowledge base object which transforms the detailed analysis results of an inner
loop to a more abstract representation that facilitates the analysis of outer loops. It groups AK
tuples based on some common functionality and ignores the unnecessary implementation specific
details. The common functionality is documented to explain the purpose of designing the AC and
to enhance its modifiability. Furthermore, the definition of an AC offers an abstract representation
of its elements that specifies the data flow information to facxhta.te their mechanical manipulation.
An Abstraction Class (AC) consists of three parts:

1. The elements part consists of generic AK tuples which are separated by the symbol ¢|.

2. The Common-function describes the functionality that the elements of this class share
by using common instantiated: final-sequence, postcondition, or invariant parts of the
matched plans.

3. The representation is a unique abstract representation that gives the class name, followed
by the following arguments (separated by semicolons and enclosed between two parentheses):
the list of expressions responsible for the data flow into this AC, the list of variables defined by
the AC, the control variables of the loop under consideration, and a unique number identifying
the loop being analyzed. O

The representation part contains the class name which is an arbitrary and unique name. It also
contains the arguments responsible for the data flow into and out of the AC so that they can be
used during the data flow analysis. The control variables and unique number of the loop are used
in the design of some plans’ consequents. To simplify the presentation, the last 2 arguments are
only listed when needed. :

The AK of some variable belongs to a specific AC if it matches an AK tuple existing in the
elements part. The symbol ‘«’ is used to denote irrelevant information. An expression, ezp,
enclosed between two brackets in the elements part implies that the expression should be matched
" with the corresponding instantiated element of the actual AK to deduce the value of the variables
defined in it. Some of these variables are utilized in forming the AC arguments.

The AK of the variable j analyzed in the inner loop of Figure 11 has the following form:

AK(j)= (DBP, var# : j, var?# : j7, R# :<, exp# : num_of _rooms + 1).

This AK belongs to the AC in Figure 12 because it matches the first AK tuple of the elements
part. If we had implemented this loop with the condition j < num_of_rooms instead of j <
num_of_rooms+ 1, it would have belonged to the same AC. This is because it matches the second
AK tuple of the elements part. These two different implementations belong to the same AC
because they have the common function of going over a sequence of values of a discrete ordinal
type in an ascending order. :

Using similar analysis, the AK of the variable min is found to belong to ACgsr, (Figure 13). The
AK of the variable index belongs to ACsz,,,. Because ACgyz,, is similar to ACgy,, it is not shown
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elements (DBP,, var# : [v], var?# : %, R# :<,
ezp# : [final])
I

(DBP, var# : [v], var?# : x, R# :<,
ezp# : [SUCC(final)])

common-function The instantiated final-sequence of the plan is:
v? .. final

representation ACsp, (v, final; v)

Figure 12: An abstraction class for ascending enumeration

elements (SAPs, v# : [v], a# : [a], ezp# : [PRED(v)],
lhs# : [lhs], lhs?# : %), where
AK(v) € ACsp,([SUCC(final)],[SUCC (init)])
I

(SAPs, v# : [v), a# : [a], exp# : [v],

lhs#t : [lhs), lhs?# : x), where

. AK(v) € ACsg,([final), [init]) or
AK(v) € ACsp,([init],[final])

|

(SAPs, v# : [v], a# : [a], ezp : [SUCC(v)],
Ihs#t : [lhs), lhs?# : x), where
AK(v) € ACsp,([PRED(init)],[PRED(final)))
common-function The instantiated postcondition of the plan is:
lks = MIN({lhs?} U {a[init..final]})
representation ACsy,(a, init, final, lhs; lhs)

Figure 13: An abstraction class for finding the minimum

here. ACgy, includes the AK tuples which have the common function of finding the minimum of an
array segment irrespective of the enumeration direction (ascending or descending) and the index of
the array element being checked (v, PRED(v), or SUCC(v)). It should be mentioned that ACgp,
is similar to ACgp, but for descending enumeration. The AC’s of the variables modified in the
inner loop of Figure 11 are, thus, as follows: .

AK(j) € ACsp,(j, num_of rooms; j)
AK(min) € ACsr,(capacity, j, numof rooms, min; min)
AK(indez) € ACsy,, (capacity, j,num.of rooms, min,indez; index)
After analyzing an inner loop, it is replaced with the concurrent assignment that assigns to the
list of variables modified by it the result of their analysis. If the AK of a variable belongs to a

predefined AC, its abstract representation, as deduced from the identified AC, is assigned to it.
If the AK of the variable, var, does not belong to a predefined AC, we assign the form UAC(ak-
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list; var) to it, where UAC stands for Unknown AC and ak-list is a list representing the AK data.
The ak-list and var are used, during automatic analysis, to provide information on the unanalyzed
parts of the loop.

Conceptually, the described replacement is equivalent to replacing the inner loop with a set
of function calls that assign to each variable changed in the inner loop the desired value. This
replacement preserves the control flow dependencies because the concurrent assignment is placed
. at the same relative location within the outer loop body. It also preserves the data flow dependencies

between the variables because the AC’s clearly state what variables are responsible for the data
flow into and out of it. :

Replacing the inner loops given in Figure 11 with the described concurrent assignment gives
the following modified outer loop:

t:=1;
while ¢ < num_of_rooms — 1 do begin
indez := 1;
min = capacity[i);
ii=141;
j=1 :

J,min,indez := ACsp, (j, numof_rooms; j),
ACsr,(capacity, j, num_of_rooms, min; min),
ACst,, (capacity, j,numof _rooms, min, indez; indez);
capacity[indez] := capacity[i — 1];
capacity(i — 1] := min
end;

5.3 Analysis of outer loops

After modifying an outer loop body, we analyze it using the previously described method for
analyzing flat loops (Section 4), as if it does not contain any other loops inside it. This can be done
since the inner loop(s) have been replaced by ordinary sequential constructs. The only difference,
in this case, is that high-level plans are used in addition to the usual (low-level) ones. High-level
plans are those which utilize AC’s.

Adding another classification level, based on whether the plan is low-level or high-level, to the
four plan categories shown in Figure 5, we get 8 plan categories. These new plan categories are
shown in Figure 14.

The strength of this approach for analyzing nested constructs is that it can scale up to handle
more than two nested loops. This is because the inner loops can be recursively analyzed and
replaced by sequential constructs. Any outer loop can thus be analyzed by using the high-level
plans in addition to the low-level ones. An outline of the application of the analysis steps on the
modified outer loop of Figure 11 is given below.

The ordered events of the modified outer loop are as follows:

1. BE (order 1)
condition: ¢ < num_of_rooms — 1
enumeration: ¢:=¢+ 1
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Figure 14: New plan categories

initialization: i :=1
2. AE (order 2)

body: capacity[i], capacity[ACsyL,, (capacity,i+ 1, num.of.rooms capaczty[z] i;indez))

:= ACgy, (capacity,i+ 1, num_of _rooms, capacity[i]; min), capacity|i]
initialization: capacity := capacity?
3. AE (order 2)

body: j := ACsp, (i + 1,num_of_rooms; j);

initialization: j := 3?7
4. AE (order 3)

body: min := ACsy,(capacity, i+ 1, num_of_rooms, capacity[i]; min)

initialization: min := min?

5. AE (order 3)

body: index := ACsy,, (capacity, i+ 1, num.of_rooms,capacity[i], i; indezx)

initialization: index := index? :

The first event is matched with the antecedent of the plan DBP; (Figure 6). The second event
is matched with a Simple High-level AP (SHAP) which represents the selection sorting concept.
Because the variables j, min and indez do not explicitly contribute to the outer loop specifications, '
the last 3 events are matched with SHAP’s which produce true predicates. These variables implicitly
affect the outer loop specifications through their abstraction classes which get used by the second
event. For details concerning the plans used and the event analysis results, refer to [2]. The final
synthesized analysis results are given below. The first event is responsible for the production of the
first conjugate of each predicate. The second event is responsible for the production of the rest of
the specifications. '

(0 < num_of_rooms)
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Invariant:

(1 £¢< num_of.rooms) and
(FORALL ind: 1<ind <i-1: capacity[ind] = MIN({capacitylind..num.of rooms]}) and
PERM(capacity, capacity?)

Postcondition:

(i = num_of _rooms + 1) and

(FORALL ind: 1< ind < num_of_rooms—1: capacity[ind] = MIN({
capacityfind..num_of_rooms]}) and

PE RM (capacity, capacity?)

The resulting predicate logic annotations produced for the inner and outer loops can be used
to assist the undérstanding of the nested construct. An understanding of the sorting algorithm can
be formed using the predicate
(min = MIN({min?} U {capacity[j?..num_of rooms]})) and (capacity[indez] = min)
of the inner loop postcondition and the predicate
(FORALL ind: 1< ind < num.of_rooms —1: capacity[ind] = MIN({

capacity[ind..num_of_rooms]}) and
PERM (capacity, capacity?)
of the outer loop postcondition. However, such specifications cannot be proved using Hoare-style
[19] axiomatic correctness. To be able to prove the outer loop invariant, the predicate:

(1 <i-1< num_of_rooms) and :
(FORALL ind: 1<ind <i-2: capacity[ind] = MIN ({capacity[ind..num.of.rooms]}) and
PERM(capacity, capacity?)

should be added to the invariant of the inner loop. This predicate provides information about
the context of the inner loop, which is needed to prove rule (1) at the beginning of this section.
In addition, j?, min?, and indez? in the inner loop specifications should be replaced with ¢,
capacity[i — 1), and ¢ — 1, respectively.

5.4 Adaptation of inner loops specifications

To be able to prove the specifications of nested constructs, the specifications of the inner loops
need to be strengthened to include information about the context of outer loops enclosing them.
To ensure that the notation var? is consistently used to denote the initjal value of a variable var
before the start of the outermost loop, variables of the form var? in specifications of inner loops
need to be replaced by their actual values. These tasks are performed in the context and initilization
adaptation phases. The remainder of this subsection describes how to perform these adaptations.
In this description, it is assumed that the adaptation path of an inner loop only includes assignment
and conditional statements. The cases in which this assumption is not satisfied are discussed in
Section 6.

Context adaptation: While analyzing the outer loop, we have complete knowledge of an inner
loop function. Thus, this is the best time to generate the context related predicate inner-addition,
which strengthens inner loops invariants. By studying the differences between the current outer
loop invariant part and the generated inner loop invariant part, we design and add an inner-
addition field to the consequents of the knowledge base plans. This field provides any predicates
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that should be added to the invariants of inner loops to enable the verification of rules similar
to: (I; and —B;) {S2} I,. The predicate inner-addition is synthesized, by conjunction, from the
inner-additions defined in the consequents of the outer loop plans.

For instance, assume that the plan DBP; (Figure 6) is used to analyze an ascending enumeration
construct of an outer loop having the control variable var#. While analyzing the inner loop in
isolation, no knowledge exists about var# being an outer loop control variable which scans a specific -
sequence of values. Hence, the inner-addition filed of DBP; should provide this information in.

the form of the predicate: var?# < var# R# expit.

Analyzing the BE of the outer loop given in Figure 11 using DBP; yields the fo]lowmg instan-
tiated inner-addition:
(1 £ i < num_of_rooms).

- Similarly, when the inner loop of this sorting example is analyzed in isolation, its invariant does not
include any information about the sorted segment of the array capacity. Thus, the inner-addition
part of the outer loop selection sorting plan should provide the following predicate:

(FORALL ind: 1< ind <i—1: capacityind] = MIN({capacity[ind.num.of rooms]}) and
PERM (capacity, capacity?).

By taking the conjunction of the two instantiated inner-addition parts, the inner-addition of the
example given in Figure 11 is:

(1 £ i < num-of_rooms) and

(FORALL ind: 1< ind < i—1: capacityind] = MIN({capacity[ind..num_of _rooms]}) and
PERM (capacity, capacity?) :

However, the synthesized inner-addition is designed to be correct at a fixed reference point
which is location L; (see Figure 10). This is because during the design of the library plans there
is no knowledge, a priori, of the statements physically located along the adaptation path. The
effect of the statements along the adaptation path should be taken into consideration to get the
corresponding correct predicate, inner-additiony, at location L,.

By comparing the inner-addition produce for the loop given in Figure 11 to the predicate which
~ should be added to the inner loop specifications (given at the end of Section 5.3), it is clear that
they are not exactly the same. This is because the effect of the statements along the adaptation
path has not been taken into consideration yet.

The context adaptation uses inner-addition and the adaptation path to find inner-addition,.
The predicate inner-addition; is deduced by reversing the effect of the statements along the adap-
tation path on the variables in inner-addition. For example, if the adaptation path changes i
to i — 1, then all the free occurrences of ¢ in inner-addition are replaced by i + 1 to generate
znner-addztzong

This reversing is performed, mechanically, by introducing a set of auxiliary variables which
replace all the free occurrences, in inner-addition, of the variables modified along the adaptation
path. Conceptually, the auxiliary variables denote the state of the corresponding original ones at
location L;. .

For the example shown in Figure 11, the auxiliary variable i; replaces the variable i in inner-
addition. Since the variable capacity is not modified along the adaptation path, no corresponding
auxiliary variable is introduced for it. The modified inner-addition, which is called inner-addition,,
has the form:
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(1 <4 < num_of_rooms) and
(FORALL ind: 1< ind < iy —1: capacity[ind] = MIN ({capacity|ind..num.of rooms]}) and
PERM (capacity, capacity?) -

The relation between the auxiliary variables, used at location L;, and the corresponding original
ones, used at location Ly, is represented in the predicate auz-values. The predicate auz-values is
formed using the symbolic execution result of the adaptation path. First, the introduced auxiliary
variables should replace their corresponding actual ones which are responsible for the data flow
into the symbolic execution result. The predicate equivalent of the statements which modify the
original variables are, then, generated and conjunctioned together.

The predicate equivalent of an assignment statement is produced by replacing the assignment
sign with an equal sign. Conditional assignments can be converted into assignment statements of
the form: var.:= choice(conditionl, valuel, condition2, value2, ..., etc), where the right hand
side is equal to valuel if conditionl is true, value2 if condition?2 is irue, and so on. The resulting
assignment statement is converted into a predicate as described before.

In the example shown in Figure 11, the symbolic execution result of the adaptation path is:
indez, min, i, j = i, capacity[i], i+ 1, i+ 1.
The context adaptation replaces i by 4; in the right hand side to produce:
indezx, min, i, j := iy, capacity[t], i1+ 1, iy + 1.

The statement which modifies the original variable i is 7 := ¢; + 1. The predicate equivalent of this
statement, ¢z = ¢; + 1, is the predicate auz-values.

The required correct predicate inner-addition; is the conjunction of auz-values and inner-
addition;. The predicate inner-addition,, which is actually added to the inner loop invariant, has
the form:

(1 L 43 < num_of_rooms) and

(FORALL ind: 1<ind <4 —1: capacity[ind] = MIN ({capacity[ind..num_of rooms|}) and
PERM (capacity, capacity?) and :
i=i+1

Initialization adaptation: The initialization adaptation replaces each variable of the form var?,
in an inner loop specification, with its value as deduced from its adaptation path and the invariant
of the enclosing loop. After this replacement, the notation var? is reserved for referring to the state
of a variable var before the start of the outermost loop. The notation varyys., is used to refer the
value of var as deduced from the invariant of the loop enclosing it.

The initial value of a variable var is extracted from the symbolic execution result of the adap-
tation path. If the symbolic execution result assigns the value VATqdapt 10 var, then vary4q.y: is
the needed initial value. However, var,4qp¢ needs to be modified so that it is expressed in terms
of the program state at location L, and not location L;. This modification is performed in the
-same way we modified inner-addition. That is, var,4ep¢ is modified to (varadapt)iﬁiﬁ*:f;i?&ﬁﬁ;-
However, if var itself occurs in varydqpt, it should, first, be replaced by var,yser to avoid a circular

definition of the initial value of v%r. In short, every var? in the inner loop specification is replaced
var original variables
by ((varadapt)—uarwn, )auziliary variables*

For instance, the symbolic execution result of the adaptation path of the example shown in
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Figure 11 is:
indez, min, i, j = 1, capacity[i], i+1, i+ 1.
The variable j? in the inner loop specification is replaced by ((i + l)me )’1 , where i = ¢; + 1. So,

j? is effectively replaced by i. Similar analysis shows that min? and index? should be replaced
with capacity[i — 1] and i — 1, respectively.

In summary, the specification of the inner loop shown in Figure 11 is adapted by adding the
predicate inner-addition, which is simplified to:

(1< i-1< num_of_rooms) and

(FORALL ind: 1< ind < i—2: capacity[ind) = MIN ({capacity[ind..num_of _rooms]}) and
PE RM(capacity, capacity?).

The initial variables j7, min?, and indez? are replaced with i, capacity[i—1], and ¢—1, respectively.
These adaptation results are exactly the ones described at the end of Section 5.3.

6 Discussion

In this paper, a knowledge-based program understanding approach has been described. The
resulting predicate logic annotations are unambiguous and have a sound mathematical basis which
allows correctness conditions to be stated and verified, if desired. The analysis approach does not
rely on user-supplied information and can analyze non-adjacent loop parts.

However, there are limitations to this approach. These limitations are:

o Practical limitations which are related to the effort and ingenuity needed for the design of
the plans.

o Theoretical limitation which is related to the ability to produce concise postconditions for
general loops. '

o Theoretical limitation which is related to the ability to perform the context and 1mt1a11zat10n
adaptations for some nested loops.

The practical limits are based on the plan designers ability to formally analyze complicated
loops and find their invariants. The resulting specifications are as accurate, readable, and correct
as the plans are. That is why the tasks of designing plans and managing the knowledge base, for
a specific application domain of interest, should be performed by an expert in both the desired
domain and formal specifications.

To develop the knowledge base, the desired application domain should be analyzed to design
an initial set of plans which is believed to cover a considerable number of loop constructs that
might occur in it. After adding this initial set, the knowledge base should evolve over time. It
should undergo a process of controlled usage where the knowledge base manager. closely monitors
its utilization. )

The first theoretical limit was discussed in Section 4.4. In case of general loops, we cannot
produce loop postconditions as intelligently and concisely as for simple loops because it was not
possible to include postcondition parts in the plans designed for analyzing individual events of
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general loops. This, in turn, can require additional simplifications of the postconditions which
transforms them into more readable ones. The second theoretical limit occurs in nested structures
having the following characteristic: the adaptation path of an inner loop contains statements other
‘than assignment and conditional statements (e.g., loops or procedure calls). The context and
initjalization adaptation cannot, in general, be performed for such cases. These limits only affect the
ability to prove the resulting specifications. They do not affect the ability to assist the understanding
of nested loops. This is because the approach still produces meamngful specifications of the whole
construct. For instance, it has been shown that an understanding of the sorting algorithm in our
example was possible before performing the adaptation steps.

The reason for the second limitation is that the context and initialization adaptations are based
on the fact that assignment statements and, to a lesser extent, conditional statements can be easily
inverted in a mechanical way [14]. However, if there are loops, procedure calls, or function calls,
this inversion cannot be performed mechanically. Performing such an inversion is equivalent to
finding the specifications of arbitrary program fragments containing nonsequential constructs and
representing their analysis results in terms of equational specifications that can be easily inverted.
The presented approach can perform symbolic execution of sequential constructs and can produce -
first order predicate logic specifications of loops. However, these two different capabilities have
not been integrated to produce invertible equational specifications of arbitrary program fragments.
The context and initialization adaptation can be performed in some special cases. One special case
occurs when the variables used in the inner-addition do not get modified along the adaptation
path. Another special case happens when variables, whose initial values need to be replaced, do
not get modified along the adaptation path. In the first case, the context adaptation does not need
to modify the predicate inner-addition. In the second case, the initialization adaptation directly
replaces var?, if any, with its value as deduced from the outer loop invariant. A third special case
occurs when the loops located on the adaptation path are simple ones. In this case, the adaptation
of an inner loop specification can be performed using postcondition parts of its preceding loop,
which are in equational form, instead of its outer loop invariant. It should be noted that the first

_theoretical limit partly affects the second one. If we were able to include equational postconditions
in the plans that analyze general loops, they could have been used in the adaptation steps

7 Case Study

The program chosen as a case study of our loop analysis process deals with scheduling a set of
university courses. It has about 1400 lines of executable Pascal source code. There are a total of 39
modules (functions and procedures). A complete listing of the requirements, specifications, design,
and code documents is given elsewhere [21].In. this program, there are 77 loops that cover all the
classes in our taxonomy.

7.1 Objectives

The main objective of this case study was to test our analysis approach and to assess its effec-
tiveness when applied to a fixed set of loops in a real and pre-existing program of some practical
value. To this effect, we collected the data needed for performing the following validations and
characterizations:
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o Test the hypothesis that a loop classification class is an indicator of its amenability to analysis.

o Test the hypothesis that the loop decomposition and plan design methods of our approach
can make the plans applicable in many different loops and, hence, increase their utilization.

o Characterize the practical limits of the analysis approach.

7.2 Method

The case study was performed, manually, prior to the implementation of the prototype tool.
Case study results are, thus, not affected by the limits of the implementation. The set of 77 loops
in the described program were extracted along with their initializations. This set included 25 for
loops, which were transformed to their equivalent while loops. The loops analyzed had the usual
programming language features such as pointers, procedure and function calls, and nested loops.

During the study, every loop under consideration was first decomposed into its basic and aug-
mentation events. Then, every event was analyzed in order to design a plan suitable for it. If
no plan was available in the knowledge base to match the event under consideration, or a similar
event, a new plan was developed with designer defined, candidate specifications. The plan was then
modified and tailored to give correct specifications by trying to prove the loop invariant using Hoare
techniques [19]. If a plan that matched a similar event, but not the exact one under consideration,
_ existed in the knowledge base, improvements on the structure and/or the knowledge represented
in the existing plan were considered.

As the number of analyzed loops increased, the experience gained led to the evolution of the
knowledge base. The controlled utilization of the knowledge base served to adapt some of the plans
in terms of their structure, knowledge content, number, and naming conventions. As a result, the
knowledge base was more suitable for the domain under consideration.

The designed plans were not only limited to those which provided functional specifications but
also included plans which discarded unnecessary detail about temporary variables and plans which
provided warning and error messages. It should also be mentioned that the resulting specifications
were not formulated in terms of concepts specific to the application domain. Even though such
specifications can increase the chance of reusing the plans, they sometimes have the disadvantage
of being more difficult to read.

We decided not to specifically design plans for the analysis of 12 loops (15.6%) in the case study.
The major reason for this was the complexity and specificity of these loops that made the reuse
of their plans unlikely. These loops are arbitrarily numbered from pl through pl2. They were
analyzed using the available set of plans to determine whether or not useful partial specifications
could be obtained. o

7.3 Results and analysis

Tables 2 and 3 give the data that was collected to examine the relationship between a loop
classification class and its amenability to analysis. Table 2 gives the number of loops completely
analyzed in each class defined by our taxonomy. Along the first dimension, the available and
analyzed numbers of Simple (S) and General (G) loops are given. In the second dimension, the
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Dimension

Analysis statistics 1 2 3

S G N C F N
Available loops 52 25 46 | 31 53 24
Loops analyzed 48 17 42 23 52 13
(92.3%) | (68%) | (91.3%) | (74.2%) | (98.1%) | (54.2%)

Table 2: Number of completely analyzed loops along the three dimensions

Analysis Equivalence class
statistics - SNF SCF SNN |SCN |GNF{ GCF | GNN | GCN
Available loops 31 6 15 0 0 16 0 9
Loops analyzed 31 6 11 - - 15 - 2
(00%) | (100%) | (73.3%) | - | — |(os8%) | - | (22.2%)
Number of events 75 18 61 - - 51 - 8
Average events/loop | 2.42 3 5.55 - - 34 - 4

Table 3: Number of completely analyzed loops in the available classes

available and analyzed numbers of loops with Noncomposite (N) and Composite (C) conditions
are given. Finally, the available and analyzed numbers of Flat (F) and Nested (N) loops are given
along the third dimension.

Using the three classification dimensions, any loop must belong to one of the 8 (2%) equivalence
classes given in Table 3. In this table, the available and analyzed numbers of loops in each of these
equivalence classes are shown. The table also gives the total numbers of events and their averages
for the analyzed loops in each class.

The results given in Tables 2 and 3 support the hypothesis that the classification taxonomy
helps in predicting a loop amenability to analysis. Table 2 shows that the presumably more com-
plex classes always have lower percentages of completely analyzed loops than the presumably less
complex ones. For example, the percentages of completely analyzed flat and nested loops are 98.1
and 54.2, respectively. All flat loops were completely analyzed except for one loop (loop 10p) which
contained a call to a procedure with a partially analyzed nested loop (loop 9p). This percentage
variation is even more notable when further investigated along the five available equivalence classes
of Table 3. Percentages range from 100% for SNF and SCF to 22.2% for GCN. The numbers of
events in the analyzed loops further support the interpretation that the classification of a loop is
an indicator of its complexity and, correspondingly, its amenability to analysis. For example, while
SNF loops (Flat) have an average of 2.42 events/loop, SNN loops (Nested) have an average of 5.55
events/loop.

Table 4 summarizes the data that was collected to examine the plan utilization issue. It shows
the number of events analyzed by each of the designed plans. It also shows the total utilization of
the plans in each of the six available categories. Since only one high-level basic plan (IBPg) was
designed, we do not differentiate between low and high-level BP’s. The * or + superscript is used to
denote plans which underwent structural or knowledge representation improvements, respectively.
during the iterative process of their design. For example, plan DBP; was used 45 times and had a
tree-structured design.
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Plan name - Plan category
(subscript) | DBP [ IBP | SLAP | GLAP | SHAP [ GHAP
1 45* 4 | 23+ 4 3t 3
2 6* | 15* | 19% [ 13*t | 13** 2
3 8 | 1| 3 1 1 —
4 9* 2 1 2 1 —
5 1 2 1 1 1 —
6 — | 2 1 1 1 —
7 — | =1 1 1 2 —
8 - | — 20 1 2 —
9 - | — 3 — 2 —
10 — | = - —_ 1 —
11 - | — — — 2 —
12 — | =] - — 1 —
13 - | — — — 1 —
14 — | =1 = — 1 —
15 - | — — — 2 —
16 — =] = — 1 —
17 — | -] = — 3 —
18 — | = = — 1 —
Total 69 | 26 [ 72 24 39 5

Table 4: Utilization of the designed plans

The 48 plans designed were utilized in analyzing a total 235 events. A closer examination of the
results in Table 4 shows that a set of 27 plans (56.3%) analyzed 214 events (91.1%). The remaining
21 plans were only used once. These results indicate that if we focus on a specific application
domain, there is bound to be a kernel of events which can be captured by a relatively reasonable
number of plans. On the other hand, there will also be plans which, as in our study, may be used
just once. The emphasis should be on the design of the plans that cover the kernel.

The 10 plans which underwent improvements to their structure and knowledge representation
(20.8%) analyzed 149 events (63.4%). The average number of utilizations of the plans vary from
4.9 (with standard deviation of 7.97) for all 48 plans to 14.9 (with standard deviation of 11.8) for
the 10 improved plans which are marked with the * and + superscripts. These numbers support
the argument that commonly used plans get more chances to be revised and adapted and this, in
turn, leads to their higher utilization. "

We also notice, from Table 4, that even though 9 SLAP’s analyzed 71 events, double the number
of SHAP’s (18) only analyzed 39 events. This indicates that simple ‘low-level’ blocks of code are
more frequently utilized than the more complex ‘high-level’ ones.

In general, the results in Table 4 show that the events/plan ratio is high (4.9), especially in
case of the plans that underwent structural and knowledge representation improvements (14.9).
This indicates that the decomposition and plan design methods tend to have a positive effect on
plan utilization and, consequently, on the size of the knowledge base. However, since our main
objective was to validate and evaluate the analysis approach, we designed many plans (21) which
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Characteristics
Loop | Class | Events | Executable | Modified variables Pointer | Procedure | Function | Inner
# SLOC | control | non-control | variables | calls calls | loops
pl |GeN | 13 48 3 10 0 5 4 1
P2 | GCN 9 30 3 6 0 2 2 1
p3 | GCN 13 46 3 10 0 3 2 2
p4 | GON 9 32 3 6 0 2 2 1
p5 |GeN | 13 49 3 10 0 4 -2 2
p6 | SNN 17 53 1 16 2 7 2 1
P7 | sSNN | 20 53 1 19 4 0 1 1
P8 | GCN 8 36 2 7 2 4 0 1
P9 | SNN 5 29 1 4 3 0 0 2
p10 | GCF 5 13 2 4 0 1 2 0
pll [Gen | 12 52 3 11 4 1 4 2
pl2 | sNN 19 77 1 20 4 1 4 3
Table 5: Characteristics of the 12 partially analyzed loops
Characteristics Completely analyzed | Partially analyzed
(in terms of average numbers) IOOpS loops
Events 3.28 11.92
(SD = 2.05) ~ (SD = 4.77)
Executable SLOC 10.45 43.2
(SD = 8.29) (8D = 15.7)
Modified variables 3.42 124
(SD = 2.45) (SD = 4.9)

Table 6: Comparison between the completely and partially analyzed loops

were only used once. These plans helped us in evaluating the analysis approach in loops with, say,
high nesting level or a large number of procedure calls. Since these plans were designed to handle
single specific events, they are probably not fully developed. The analysis of more loops in the
same application domain should either eliminate or improve them.

Tables 5 and 6 summarize the data that was collected to determine which kinds of loops are
more appropriately analyzed by the approach. Table 5 provides some insight into the practical
- limits of the approach. It gives different characteristics of the partially analyzed loops. Table 6
compares some of these characteristics to the corresponding ones of the completely analyzed loops.
Since it was difficult to rigorously decompose some of the partially analyzed loops into events, the
numbers of events were estimated by thoroughly reading the code and inspecting the data flow
dependencies between the different statements.

The theoretical limitation, described in Section 6, only occurred in loop p9. That is, the partial
analysis of the 12 loops in this case study was mainly because of practical limitations. Analyzing
loops pl-p6 and p8-p9 using the current set of plans yielded no partial results. Loop pl0, whose
characteristics are compatible with those of the completely analyzed loops, was almost completely
analyzed; four out of five events were analyzed. The fifth event was not analyzed because it
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contained a call to an unanalyzed procedure. Loops p7 and p12 yielded some minor partial analysis
results. Loop p11 gave considerable partial analysis results.

It is clear from Table 5 that almost all of the partially analyzed loops are nested (11 out of
- 12) and contain procedure calls (10 out of 12). They have an average size of 43.2 executable
source lines of code and an average of 12.4 modified variables. Table 6 shows that some of these
characteristics are considerably different from the corresponding ones for the completely analyzed
loops. For example, the completely analyzed loops have an average size of 10.45 executable source
lines of code and an average of 3.42 modified variables. While the average number of events in the
completely analyzed loops is 3.28, the partially analyzed loops have 11.9 events on the average.
‘This case study has given us the impression that loops of up to 5 events were more easily analyzed
than others.

However, we noticed in some loops (p7, p8, p11 and p12) that some events closely match some
of the designed plans. A larger domain of study could have improved those plans or resulted in
designing similar ones that can contribute more to the specifications of such loops.

Even though the results of the case study are encouraging, further experimentation is, in our
opinion, needed to investigate the generality and efficiency of the presented approach with respect
to various application domains. This experimentation can serve to characterize the cases in which
this approach can work best.

8 Conclusion

In this paper, a knowledge-based loop analysis approach has been described. This approach
mechanically generates rigorous unambiguous predicate logic annotations of computer programs.
It is a bottom-up analysis approach which does not rely on user-supplied information that might
not be available at all times (e.g., the goals a program is supposed to achieve). In addition, it
enables partial recognition and analysis of stereotyped, non-adjacent program parts.

A case study was performed on a real and pre-existing program of some practical value. This
case study served to partially validate the analysis approach and to characterize its practical limits.
To demonstrate the feasibility of automating our knowledge-based analysis approach, a prototype
tool, which annotates loops with predicate logic annotations, has been designed and implemented
[4]. | |

The approach can assist in the maintenance and reuse activities by producing semantically sound
and expressive predicate logic annotations of programs. Since many programs are undocumented,
underdocumented, or misdocumented, a major part of the maintenance task is spent in recognizing
and understanding abstract programming concepts [6, 26]. Automation of program analysis and
understanding can, thus, contribute to maintenance tools and methods and provide support for
various maintenance activities. Program analysis and understanding is also crucial for code reuse
since the reuser must be aware of what a code component does. Understanding reusable code
components can be achieved by augmenting them with a precise and clear description of their
functionality [7]. I these descriptions are in the form of formal specifications, they can be further
used in generating test cases and assessing the correctness of the implementation. Automation of
program understanding is needed to facilitate the quick and efficient population of a reuse repository
with well documented components [5, 11].
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However, when annotating complicated and large program parts, these formal specifications can
become hard to read. The readability of such specifications can be enhanced if they are further
abstracted. This abstraction can be performed by replacing a formal statement with another
one that is formulated in terms of a more widely known and understood concept [13]. Domain
abstractions can further abstract the formal specifications with concepts specific to the application
domain. The domain specific replacements can be explicitly performed by producing the abstract
and then the domain specific ones. Otherwise, they can be implicitly performed by designing the
plans such that their consequents are directly written in terms of the domain specific terms. In
the former case, the knowledge base plans are more general and can be used in several different
domains. The last stage which performs the higher level abstractions can be tailored to the needs of
different domains and thus enhances the portability of the system. The latter approach, however,
is easier to implement mechanically but reduces the generality of the plans.

With respect to software development, predicate logic plays an important role in development ‘
of software using such languages as VDM and Z [24, 38, 44]. Since our loop analysis technique
produces predicate logic annotations, it can assist such formal development methods [4]. Our
reverse engineering approach can provide assistance in the last development stage which moves
from operation specifications to imperative programming language implementations. That is, the
presented loop analysis technique can help in showing that the proof obligations generated during
the operation refinement process are.satisfied. It should be noted, however, that the mathematical
notations used in VDM, Z, and our plans are not the same. To transform one mathematical notation
to another, simple syntactic variations need to be performed.

There are some practical and theoretical limits to the presented approach. The practical limits
are due to the difficulty of designing the knowledge base plans. The theoretical limits occur in nested
structures with adaptation paths that contain statements other than assignment and conditional
statements. They also occur while deriving the postconditions of general loops.

Future work includes extensions and improvements of the analysis approach, experimenting
with the techniques in various application domains, and improvements on the prototype tool. The
analysis approach needs to be expanded to perform an intelligent analysis of complete. program
modules which include non-algorithmic constructs such as stacks and queues. We need to investi-
gate the utilization of additional information and knowledge in the source code (e g., comments,
variable names) to assist in plan recognition. Performing empirical studies in various application
domains can serve to address and investigate several issues related to the acquisition and develop-
ment of plans and the generality and efficiency of the presented approach with respect to different
application domains. Finally, the developed tool served to demonstrate that the analysis techniques
can be automated [4]. For practical utilization of such a tool, it needs to be enhanced to support
additional programming language features and improve the user interface.
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