New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Matching

Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu

University of Maryland, College Park

European Symposium on Algorithms – ESA 2016
Online Matching: Known I.I.D. Model

- Input: bipartite graph $G = (U, V, E)$
 - U is set of offline vertices
 - V is a set of online vertex types
Online Matching: Known I.I.D. Model

• Arrivals i.i.d. from a known distribution on \mathcal{V}
 – Each arrival of some v in \mathcal{V} is a distinct vertex
 – WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

- Arrivals i.i.d. from a known distribution on V
 - Each arrival of some v in V is a distinct vertex
 - WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

- Arrivals i.i.d. from a known distribution on V
 - Each arrival of some v in V is a distinct vertex
 - WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

- Arrivals i.i.d. from a known distribution on V
 - Each arrival of some v in V is a distinct vertex
 - WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

- Arrivals i.i.d. from a known distribution on \mathcal{V}
 - Each arrival of some v in \mathcal{V} is a distinct vertex
 - WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

- Arrivals i.i.d. from a known distribution on V
 - Each arrival of some v in V is a distinct vertex
 - WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

• Arrivals i.i.d. from a known distribution on \mathcal{V}
 – Each arrival of some v in \mathcal{V} is a distinct vertex
 – WLOG uniform distribution (integral arrival rates assumed)
Online Matching: Known I.I.D. Model

- Arrivals i.i.d. from a known distribution on \mathcal{V}
 - Each arrival of some v in \mathcal{V} is a distinct vertex
 - WLOG uniform distribution (integral arrival rates assumed)
Variants

• Unweighted
• Vertex-weighted
 – weights only on offline vertices U
• Edge-weighted
• Stochastic rewards
 – Edges exist (independently) with given probabilities
Competitive Ratio

- ALG = any online algorithm
- OPT = optimal online algorithm
- Competitive ratio = $\frac{\mathbb{E}[\text{ALG}]}{\mathbb{E}[\text{OPT}]}$
Related and Our Work

<table>
<thead>
<tr>
<th>Variant</th>
<th>Ratio</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>0.67</td>
<td>Feldman, Mehta, Mirokki, Muthukrishnan (FOCS 2009)</td>
</tr>
<tr>
<td></td>
<td>0.705</td>
<td>Manshadi, Oveis, Gharan, Saberi (SODA 2011)</td>
</tr>
<tr>
<td></td>
<td>0.7293</td>
<td>Jaillet and Lu (Math OR 2013)</td>
</tr>
<tr>
<td></td>
<td>0.7299</td>
<td>This work (ESA 2016)</td>
</tr>
<tr>
<td>Vertex-weighted</td>
<td>0.725</td>
<td>Jaillet and Lu (Math OR 2013)</td>
</tr>
<tr>
<td></td>
<td>0.7299</td>
<td>This work (ESA 2016)</td>
</tr>
<tr>
<td>Edge-weighted</td>
<td>0.6667</td>
<td>Haeupler, Mirokki, Zadimoghaddam (WINE 2011)</td>
</tr>
<tr>
<td></td>
<td>0.705</td>
<td>This work (ESA 2016)</td>
</tr>
<tr>
<td>Stochastic Rewards</td>
<td>0.632</td>
<td>This work (ESA 2016)</td>
</tr>
</tbody>
</table>
Two Phases: Offline & Online

• Offline phase:
 – Preprocess input graph and develop guidelines for the online phase
 – Primary focus of contributions presented here

• Online Phase:
 – Vertices arrive and must be matched to an offline neighbor or discarded
Benchmark LP

maximize \[\sum_{e \in E} w_e f_e \]

subject to \[\sum_{e \in \partial(u)} f_e \leq 1 \quad \forall u \in U \]
\[\sum_{e \in \partial(v)} f_e \leq 1 \quad \forall v \in V \]
\[0 \leq f_e \leq 1 - \frac{1}{e} \quad \forall e \in E \]

Probability some v never arrives = \(\frac{1}{e} \)
Expected value of any edge \(\leq 1-\frac{1}{e} \)
Scaled Dependent Rounding

• Generalizes dependent rounding due to Gandhi, Khuller, Parthasarathy, and Srinivasan (FOCS 2004)
 – Oft called GKPS rounding
• Multiply LP solution by k before rounding
• Properties of dependent rounding still hold

1. Marginal distribution: For every edge e, let $p_e = k.f_e - \lfloor k.f_e \rfloor$. Then, $\Pr[F_e = \lfloor k.f_e \rfloor] = p_e$ and $\Pr[F_e = \lfloor k.f_e \rfloor] = 1 - p_e$.

2. Degree-preservation: For any vertex $w \in U \cup V$, let its fractional degree $k.f_w$ be $\sum_{e \in \partial(w)} k.f_e$ and integral degree be the random variable $F_w = \sum_{e \in \partial(w)} F_e$. Then $F_w \in \{\lfloor k.f_w \rfloor, \lceil k.f_w \rceil\}$.
Edge-weighted
Warm-up Algorithm: Offline phase

- Assign LP values to edges
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
- Separate integral and fractional parts
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
- Separate *integral* and *fractional* parts
- Apply dependent rounding
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
- Separate integral and fractional parts
- Apply dependent rounding
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
- Separate integral and fractional parts
- Apply dependent rounding
- Decompose into 2 matchings
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
- Separate integral and fractional parts
- Apply dependent rounding
- Decompose into 2 matchings
Warm-up Algorithm: Offline phase

- Assign LP values to edges
- Multiply values by 2
- Separate integral and fractional parts
- Apply dependent rounding
- Decompose into 2 matchings
- Randomly order the matchings M1 and M2
Warm-up Algorithm: Online phase

- First arrival of a type
 - Attempt match to M1 neighbor
- Second arrival
 - Attempt match to M2 neighbor
- Third or later arrival
 - Do nothing
Warm-up Algorithm: Online phase
Warm-up Algorithm: Online phase

M1 M2
Warm-up Algorithm: Online phase

M1 M2
Warm-up Algorithm: Online phase
Warm-up Algorithm: Online phase

M1 M2
Warm-up Algorithm: Online phase
Challenge: Two Copies of an Edge
Intuition behind Improvement

• If an edge appears in both matchings, the second arrival is wasted

• Haeupler *et al* (2011) also used two matchings
 – Matchings chosen independently
 – Probability edges appear in both matchings ≤ 0.63

We show correlated rounding reduces this probability to ≤ 0.26

• $2(1-1/e) = 1.26$ ($\text{Pr}[$rounded to 2$] = 0.26$)
Analysis of Warm-up Algorithm

• Three edge types
 – **Type 1:** only in M_1, $Pr[\text{matched}] \geq 0.58$
 – **Type 2:** only in M_2, $Pr[\text{matched}] \geq 0.148$
 – **Type 3:** in both M_1 and M_2, $Pr[\text{matched}] \geq 0.632$

• Two cases for edges
 – **Small:** $f_e \leq 1/2$, $Pr[\text{Type 1}] = Pr[\text{Type 2}] = f_e$
 – **Large:** $f_e > 1/2$, $Pr[\text{Type 1}] = Pr[\text{Type 2}] = 1 - f_e$
 $Pr[\text{Type 3}] = 2f_e - 1 \leq 0.26$
Analysis of Warm-up Algorithm

- “Small” edges ($f_e \leq 1/2$) achieve ratio of 0.729
- “Large” edges ($f_e > 1/2$) achieve ratio of 0.688
 - Warm-up algorithm ratio: 0.688
 - Note: a vertex can have only one large neighbor

Combining two algorithms that favor small and large edges, respectively, gives our edge-weighted ratio: 0.705
Unweighted & Vertex-weighted
Unweighted Variant

• Previous best: $0.7293 = 1-2/e^2$ (Jaillet and Lu)
 – Their analysis was tight
• Negative result: $0.86 = 1-1/e^2$ (Manshadi et al)
• Our result: $0.7299 > 1-2/e^2$

“In some sense, the ratio of $1 – 2/e^2$ achieved in [56] for the integral case, is a nice ‘round’ number, and one may suspect that it is the correct answer.”
- Aranyak Mehta, *Online Matching and Ad Allocation* (Open question 3)
Random Lists Algorithm (Jaillet and Lu)

• Adaptive algorithm for online phase
• Requires special LP solution vector
 – Values in \{0, \frac{1}{3}, \frac{2}{3}\}
 – Certain short cycles removed
• Offline phase
 – LP edge constraint: \(f_e \leq \frac{2}{3} \) instead of \(f_e \leq 1 - \frac{1}{e} \)
 – Cycle breaking step
Our contributions

• Use scaled dependent rounding
 – Multiply by 3, round, divide by 3, achieves values in \(\{0, 1/3, 2/3\} \) if all \(f_e \leq 2/3 \)

• This allows for tighter LP constraints
 – Edge constraint: \(f_e \leq 1-1/e \) instead of \(f_e \leq 2/3 \)
 – Pair of edges constraint: \(f_e + f_{e'} \leq 1-1/e^2 \) for all \(e, e' \) in neighborhood of an offline vertex \(u \)

• Refined cycle breaking subroutine
Bottleneck from Jaillet and Lu

- Length 4 cycles limit performance to $1 - \frac{2}{e^2}$
- Some cycles can be broken, but not this one
Comparison

- Jaillet and Lu: cycle occurs deterministically
- This work: cycle occurs with probability ≤ 0.89
Comparison

• Jaillet and Lu: cycle occurs deterministically
• This work: cycle occurs with probability ≤ 0.89
 • Note: $f_e = 2/3$ and $f_e + f_{e'} = 1$
 • We add constraints:
 $- f_e < 1 - 1/e = 0.63$
 $- f_e + f_{e'} < 1 - 1/e^2 = 0.86$
• Our bottleneck for this cycle:
 $- 3(f_e) < 3(1 - 1/e) = 1.89$
Unweighted and Vertex-weighted

Scaled dependent rounding allows us to use tighter constraints and still produce a nice LP solution in \{0, 1/3, 2/3\}.
Stochastic Rewards
Stochastic Rewards

• Edges have (indep.) probabilities p_e of existing
 – Choose an edge to match, then find out if it exists
 – Motivation: pay-per-click advertising
• Generalization of the edge-weighted problem
• LP-based algorithm gets ratio of $1-1/e = 0.63$

For the natural benchmark LP, $1-1/e$ is tight!
Open: is there is a better LP or negative result?
Conclusion

- **Edge-weighted**
 - Scaled dependent rounding and balancing leads to improved results

- **Unweighted/Vertex-Weighted**
 - Scaled dependent rounding allows for tighter LP constraints to break the $1-2/e^2$ barrier

- **Stochastic Rewards**
 - Introduced problem, achieve ratio of $1-1/e$
Future Work

• Edge-weighted
 – Adaptive approach?

• Unweighted/Vertex-Weighted
 – Can we close the gap between 0.7299 and 0.86?
 – Use scaled dependent rounding with some $k > 3$?

• Stochastic Rewards
 – Tighter benchmark LP?
 – Negative result? Is beating $1-1/e$ even possible?
 • For related problem of non-integral arrival rates, no non-adaptive algorithm can beat $1-1/e$ (Manshadi et al)
Thank You!