Questions?

- Project #1 presentation in class next week
- Homework #4 due Thursday
- Hall of fame/shame presentations now scheduled
- NY Times article on Google and Marissa Mayer

Human Information Processor (Card, Moran, Newell)

- Very influential
- Brought together several aspects of cognitive psychology
- Made accessible for computer scientists
- Practical model **not** description of how things actually work
- What are the three components?

Perceptual Processor

- Physical sensing, here sight, into Visual Image Store
- Difference between **perceptual memory** and **working memory**?
- Decode for transfer to working memory
 - Progressive
 - Example: 10ms/letter
 - Selective
 - Spatial
 - Pre-attentive: color, direction...
 - Not semantic (can't do "odd numbers")

Perceptual Processor

- Capacity
 - Example: 17 letters
- Visual image store fades
 - Half-life: 200 ms [90 1,000ms]
- Cycle time
 - Initial impression to being available in visual image store
 - $-\tau = what?$ 100 ms [50 200 ms]
- What is Slowman, Middleman, and Fastman?
- Why do events separated by < 0.1sec seem causally related?
- Why are films shown at 24 fps then instead of 10 fps?

Pre-attentive perception: How many 3s?

Pre-attentive perception: How many 3s?

358922659865986554897689269898 **3**2769285460986772098 **3**4579802790759047098279085790847729087590827908754 **3**790472190790709811450

Where are the cherries?

From Information Visualization, C. Ware

Where are the cherries?

From Information Visualization, C. Ware

Other examples of pre-attentive variables

Size

Gray/value

Enclosure

Number

Convexity/concavity

From Information Visualization, C. Ware

Perceptual Processor

• Decay: 200ms

Perceptual Processor

- Cycle time
 - Quantum experience: 100ms
 - Percept fusion
 - Causality

Working Memory

- Why is "UMDMSNBC" much easier to remember the "MCUSMBDN"?
- Access in chunks
 - Task dependent construct
 - 7 +/- 2 (Miller)
- Decay
 - Content dependant
 - Limit attention span
 - Half-life ~7 secs

दिष्ठ

Long term memory

- Very large capacity
 - Semantic encoding
- Associative access
 - Fast read: 70ms
 - Expensive write: 10s
 - Several Rehearsal and/or recall,
- Context at the time of acquisition key for retrieval
- Noisy
- What is half-life?
 - Infinity!
 - But retrieval might fail if:
 - No associations can be found
 - Associations to other items interfere

Cognitive Processor

- Cycle time: 70ms
 - Can be modulated
- Typical matching time
 - Digits: 33ms
 - Colors: 38ms
 - Geometry: 50ms...
- Fundamentally serial
 - One locus of attention at a time
 - Eastern 401, December 1972
 - Crew focused on checking the landing gear indicator bulb,
 - Meanwhile the aircraft is loosing altitude (horn, warning indicator...),
 - Aircraft crashed in the Everglades
 - see "The Humane Interface" by Raskin, p25
 - But what about driving and talking?

Motor Processor

- Receive input from the cognitive processor
- Execute motor programs
 - Pianist: up to 16 finger movements per second
 - Point of no-return for muscle action

Questions?

- HW#3 due Wednesday
- Project #1 presentation next Monday

Human Information Processor (Card, Moran, Newell)

Perceptual Processor

Cycle time: 100 ms

Cognitive Processor Cycle time: 70 ms

Motor Processor

Cycle time: 70 ms

It is a model – understandable by computer scientists Predictive, but simplistic Does not describe actual underlying mechanisms

Put it together: Do two letters have same name?

a A

Perceive first letter Start clock Perceive second letter (τ_P) Recognize letter (τ_C) Match (τ_C) Initiate response (τ_C) Respond (τ_M)

$$=> \tau_P + 3\tau_C + \tau_M = 100 + 3*70 + 70 = 380$$
ms

You try it

How many days are in March, 2009:

Perceive calendar (τ_P) Recognize last day (τ_C) Decide to move eye to last day (τ_c) Move eye to last number (τ_M) Perceive number (τ_P) Recognize number(τ_C) Initiate response (τ_C) Respond (τ_M)

$$=> 3\tau_P + 3\tau_C + 2\tau_M = 3*100 + 3*70 + 2*70 = 650ms$$

March 2009									
М	Т	W	Т	F	S	S			
23	24	25	26	27	28	1			
2	3	4	5	6	7	8			
9	10	11	12	13	14	15			
16	17	18	19	20	21	22			
23	24	25	26	27	28	29			
30	31	1	2	3	4	5			

Eye movement

- Eye movement time
 - 230 ms [70 700ms]
- If you move one saccade per phrase while reading, and one phrase is 2.5 words, then (60 sec/min)/(.230 sec/saccade x 1/2.5 saccade/word) = 652 word / minute
- ⇒So, speed readers (2,500 words / minute) don't see all words

Putting it together: Reading Speed

How can you speed up reading?

 \Rightarrow RSVP

- $\tau p + \tau c = 100ms + 70ms$
- (2.5 word / phrase) x (60 sec / min) / (.170 sec / phrase)
- = 882 word / minute

Put it together: Fitts' law (tapping task)

 $T = I_M \log_2(D/S + 0.5)$

Implications: Fitts' Law

All paths taken by adult participants to click on a 32 pixel target at a distance of 256 pixels.

Hourcade, J. P., Bederson, B. B., Druin, A., & Guimbretière, F. (2004) Accuracy, Target Reentry and Fitts' Law: Performance of Preschool Children Using Mice, *Transactions* on Computer-Human Interaction, New York: ACM, 11 (4), pp. 357-386.

Implication: Fitts' Law

All paths taken by 5 year-old participants to click on a 32 pixel target at a distance of 256 pixels.

Implication: Fitts' Law

All paths taken by 4 year-old participants to click on a 32 pixel target at a distance of 256 pixels.

Implication: Fitts' Law

- Location of buttons on screen
 - Windows vs. Mac
 - Borders around buttons
 - Pull-down menus vs pie menus
 - What are the best locations on the screen?
- Size/distance trade-off. Which is faster?

Hick's law

- Cost of taking a decision: $H = \log_2(n + 1)$
- Why log rather than linear?

Learning

("Learning and memory" Anderson)

• The time T_n to perform a task on the nth trial follows a power law: $T_n = T_1 n^{-\alpha}$

Problem Solving

- 1. States Characteristics of a situation
- 2. Goals The state you are trying to achieve
- 3. Operators The steps you can follow to change states
- 4. Search Find a sequence of operators that transforms state from current state to goal state

Learning consists (roughly) of:

- Learning operators
- Optimizing search

Difference Reduction

- "Greedy" algorithm Transform state to move closer to goal
- Optimizes simple metric
- => get stuck in local minima

Operator Subgoaling

- <= Working backward from goals
- Requires memory for state
- Like AI-style "planning"

Stages of skill acquisition ("Learning and memory" Anderson)

Example: Using a manual transmission

- Cognitive
 - Verbal representation of knowledge
- Associative
 - Proceduralization
 - From rehearsal to recognition
- Autonomous
 - More and more automated
 - Faster and faster
 - No cognitive involvement
 - Difficult to describe what to do
 - The importance of motor program

Production Rules

- Condition-action pairs represent procedural knowledge
- Can be applied with less memory
- Can recognize directly what to do without having to think through all the possibilities.
- (i.e., linear search replaced with immediate recognition)
- How does this apply to counting?
- How does this relate to long-term memory?

Experts

- Practice
- Knowledge
- Rules
- => Automatized Skills
- Doesn't engage cognitive system
 - No working memory load
 - Not interruptible
 - Perception goes away as system goes open-loop

Closed Loop vs. Open Loop

Closed Loop

- Feedback from perception through cognitive to motor
- Examples?

Open Loop

- Control is planned in advance and motor executes without perception or cognitive
- Examples?

Implications: confirmation steps

• Pros and Cons?

Quicken 2002 for W	indows	×	Quicken 20	002 for Windows	×
The acc perman	count " ently removed.	" will be		The account " permanently removed.	" will be
Are you sure you w	rant to delete this accour	nt?	Are you	sure you want to delete this a Type "yes" to confirm:	ccount?
				DK Cancel	Help

• See also "The humane interface" Raskin, p23

Implications: dynamic menus

• Pros and Cons

Midterm

- Covers everything up to and including today
- Last year's midterm available online