Questions?

- Midterm results
- Project step 2 available

GOMS (Card et al.)

- Family of methods (KLM, CMN-GOMS, NGOMSL, CPM-GOMS)
- Describe the user behavior in term of
 - Goals
 - A thing to do
 - Like a function name independent of application (i.e., "print page" works in any word processor)
 - Operators
 - Elementary perceptual, motor or cognitive actions.
 - Methods
 - Sequences of sub-goals and operators that can accomplish a goal.
 - *Like the body of a function implements a goal.*
 - Selection rules
 - Used if several methods are available for a given goal
 - Not subjective GOMS should run like a program
- For skilled users only only (models cognitive tasks, not problem-solving)

GOMS example I

٠

• Setting

Analysis

GOMS example II

(From HCI Models, Theories and Frameworks, J. Carroll)

• Using a text editor to edit the following text as shown

- Goals and sub-goals?
- Operators?
- Methods?
- Selection rules?

• GOAL: CUT-TEXT

GOAL: HIGHLIGHT-TEXT

Keystroke Level Model (KLM)

- Focused on expert user no selection rules
- Describe the task using the following operators:
 - K: pressing a key or pressing (or releasing) a button
 - $t_K = 0.2 \ sec$
 - P: pointing
 - $t_P = 1.1 \text{ sec}$ (without button press)
 - H: Homing (switching device) $t_H = 0.4 \ sec$
 - M: Mentally prepare
 - $t_M = 1.35 \ sec$
 - R(t): system response time $t_R = t$

How to use KLM

- Encode using all physical operator (K, P, H, D(n,l), R(t))
- Apply KLM rules [0-4] to add M's
- Transform R followed by an M
 - If $t \le t_M \colon \mathbf{R}(t) \to \mathbf{R}(0)$
 - If $t_M < t : \mathbf{R}(t) \to \mathbf{R}(t t_M)$
- Compute the total time by adding all times
 - Will describe expert user behavior

KLM <u>Heuristics</u> (Raskin p. 77)

0: Insert M

- In front of all K
- In front of all P's selecting a command
- 1: Remove M between *fully anticipated* operators
 - $PMK \rightarrow PK$
- 2: if a string of MKs belong to *cognitive unit* delete all M but first
 - 4564.23: MKMKMKMKMKMKMKMK \rightarrow MKKKKKKK
- 3: if K is a *redundant terminator* then delete M in front of it

4a: if K terminates a constant string (command name) delete the M in front of it

• $cd \downarrow: MKKMK \rightarrow MKKK$

4b: if K terminates a variable string (parameter) keep the M in front of it

Converting Temperature

("Humane Interface", Raskin)

• Convert 92.5F to Celsius

Assume :

- the focus is on the dialog box
- 4 characters for temperature

Converting Temperature

("Humane Interface", Raskin)

• Convert 92.5F to Celsius

Assume :

- the focus is on the dialog box
- 4 characters for temperature
- MKKKKMK (3.7s)
- HMPKHMKKKKMK (7.15s)
- => Average: 5.4s

Converting Temperature

- Your design. Can you do better?
- Design interface in pairs
- Perform KLM analysis and report

Try Google:

- 92.5f in c
- 37c in f

Converting temperature: Raskin's Redesign

("Humane Interface", Raskin)

MKKKK => 2.15s

Pros and Cons

What are other factors?

- Learnability
- Accuracy
- Cognitive load

GOMS: Application and limitations

- Applications
 - CAD system
 - Telephone operator (CPM-GOMS)
 - Text editing with keyboard and mouse (KLM)
- Limitations
 - Skilled users
 - Does not deal with error
 - Does not deal with skill acquisition
 - Does not deal with high level issues (Functionality, workload, Fatigue)
 - Better for relative than absolute timing

NYNEX Example

Worked well, but:

- Compared to marketing data
- Compared to very expensive field trial
- Individual Goal estimates very inaccurate (~50% off)
- Core analysis obvious in retrospect (savings not in bottleneck don't help)

Was GOMS necessary, or could an expert analysis have revealed this?

Value of KLM/GOMS?

- Possibly good for high value decisions
- Possibly good for making strong argument
- Definitely good for helping designers develop an intuition about works and doesn't and the impact of design decisions on speed
- Look at <u>www.hcibib.org</u> for work on GOMS