Qualitative vs. Quantitative

- Qualitative: Develop understanding of human experience
- Quantitative: Objectively measure human performance
- Less about more vs. more about less

When are each appropriate?

Quantitative Evaluation

- Gather (performance) measurements
- Methods
 - User events collection
 - Mouse clicks, keys pressed,...
 - Data collected during system use
 - Google, Amazon
 - Controlled experiments
 - Set forth a testable hypothesis
 - *Manipulate one or more* independent *variable*
 - Observe effect on one or more dependent variable
 - Can be reproduced by others

Controlled experiment

- State a lucid, testable hypothesis
- Identify independent and dependent variables
- Design the experimental protocol
- Choose the user population
- Apply for human subjects protocol review
- Run a couple of pilots
- Run the experiment
- Run statistical analysis
- Draw conclusions

Question Experiment

- Is it reliable?
 - Does the experiment take into account variations between subjects?
 - Need for testing a sample of subjects
- Is it valid?
 - Does the experiment reflects target use?
 - Were users typical?
 - Were tasks typical?
 - Was the setting realistic?
 - Was the experience biased?

Are results significant?

- Statistical significance
 - Comparing to the null hypothesis: "There is no effect"
 - Type I errors are the most disruptive

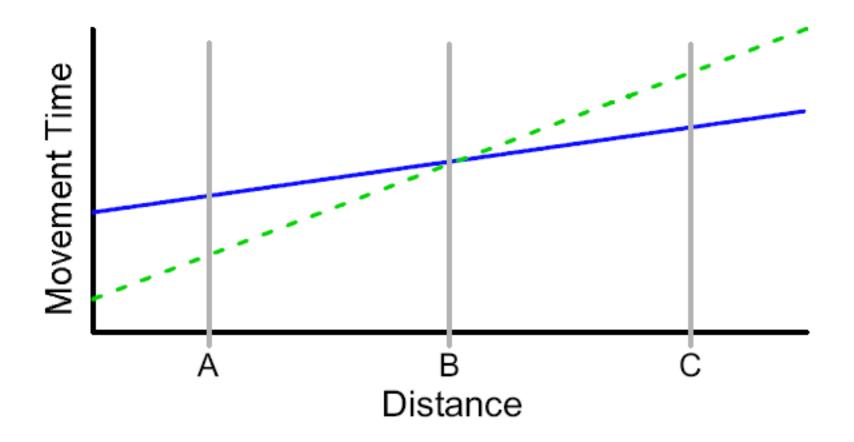
	Actual Situation: Null Hypothesis is		
Researcher's Decision	True	False	
Fail to reject the null hypothesis	Correct decision	Type II error	
Reject the null hypothesis	Type I error	Correct decision	

- Design significance?
 - 3.00s versus 3.05s?

Are results significant?

- Statistical significance
 - Comparing to the null hypothesis: "There is no effect"
 - Type I errors are the most disruptive

	Actual Situation		
Researcher's Decision	NO effect	Effect	
NO effect	Correct decision	Type II error	
Effect	Type I error	Correct decision	


- Design significance?
 - 3.00s versus 3.05s?

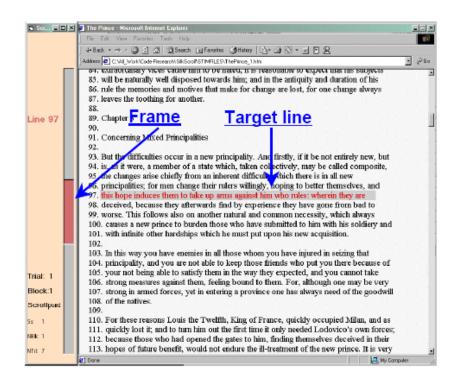
Running example

- Compare Scrolling Techniques [Hinckley et al. '02]
 - ScrollPoint
 - Standard Wheel
 - Accelerated Wheel (2 methods)

State a lucid, testable hypothesis

"With a proper acceleration function, a scroll-wheel based system can be faster than a ScrollPoint."

Choose the variables

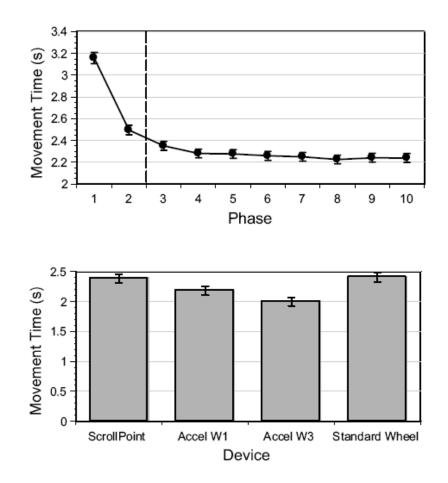

- Manipulate one or more *independent* variable
 - Method
 - Device type...
- Observe effect on one or more *dependent* variable
 - Time to completion
 - Accuracy
 - Error rate...
- Running example
 - Independent variable: method
 - Dependent variable: speed, error rate, user satisfaction...

Design the experimental protocol

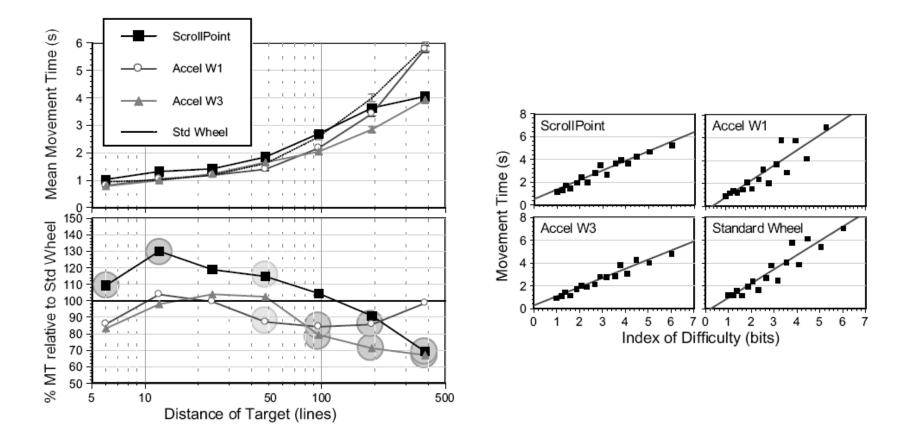
- Between or within subjects?
 - Between subjects: each subject runs one condition
 - Need more subjects
 - Difference between subjects might introduce a bias
 - Within subjects: each subject runs several conditions
 - Need fewer subjects but possible problem with learning effects
 - Very important for the statistical analysis phase
- Which task?
 - Must reflect the hypothesis
 - Must avoid bias
 - Instructions, ordering...
 - In doubt, always favor the null hypothesis

Design the experimental protocol

- Running Example:
 - Navigating in a document
 - Using a simplified navigation task
 - Use Fitts' law as the experimental framework


Chose the user population

- Pick a well balanced sample
 - Novices, experts, average
 - Age group
 - Sex...
- Population group may be one of the independent variable
- Running example
 - Used a wide range of age


Run the experiment

- Always run pilots first!
 - There are always unexpected problem!
 - When the experiment has started you cannot pick and choose
- Use a check-list so that all subjects follow the same steps
- Don't forget the consent form!
- Don't forget to debrief each subject

Running example result I

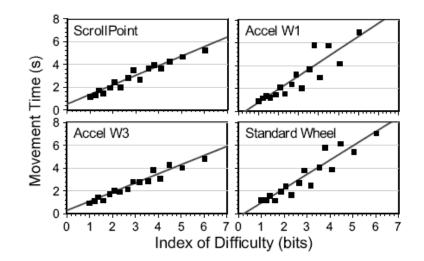
Running example result II

Run statistical analysis

- Properties of our population
 - Mean, variance...
- How different data sets relate to each other
 - Are we sampling from similar of different distributions?
- Probability that our claims are correct
 - Statistical significance:

"The hypothesis that technique X is faster is accepted (p < .05)" means that there is a higher than 95% chance the hypothesis is true

- Typical level are .05 and .01 level


Statistical tools I

- T-test
 - Compare the mean of 2 populations
 - Null hypothesis: no difference between means
 - Can only examine a single independent variable
 - Assumptions
 - Samples are normally distributed
 - Very robust in practice
 - Population variances are equal
 - Reasonably robust for differing variances
 - Individual observations in samples are independent
 - Very important

Statistical tools II

- Correlation
 - Measure the extent to which 2 concepts are related
 - Caveats
 - Correlation does not imply cause and effect (hidden variable)
 - Ice cream consumption and drowning
 - Third variable problem
 - Directionality problem
 - Need a large enough group
- Regression
 - Calculate the "best fit"

	R	R ²	Slope	Intercept (s)	IP (bps)
ScrollPoint	0.97	0.94	0.84	0.42	1.19
Accel W1	0.90	0.81	1.16	-0.51	0.86
Accel W3	0.97	0.95	0.80	0.18	1.25
ScrollPoint Accel W1 Accel W3 Wheel Std	0.94	0.88	1.25	-0.42	0.80

Statistical tool III

- ANOVA
 - Single factor analysis of variance
 - Compare three or more means
 - Analysis of variance
 - Compare relationship between many factors
 - Beginners type at the same speed on all keyboards,
 - Touch-typist type fastest on the qwerty
- Running example
 - Accept the hypothesis
- Your protocol influences the kind of test you can use – If in doubt, consult with a statistician before starting the experiment!

Reporting Results

- "This analysis revealed a significant main effect for Device, F(2,15)=15.2, p<0.001."
- "As one would expect, movement times increased as either W decreased or D increased (i.e., as the task got more difficult: for W, F(2,25)=801, p<0.001; and for D, F(3,54)=1429, p<0.001)."