Information Visualization
Some Examples

- Smart Money Market Map
- Visual Complexity
The Challenge

- Huge quantities of data
- How to know what questions to ask?
- Identify
 - Trends
 - Patterns
 - Outliers
- Goals
 - Communication
 - Discovery
Information Visualization

- Provide tools that present data in a way to help people understand and gain insight from it

- Cliches
 - “Seeing is believing”
 - “A picture is worth a thousand words”

“The use of computer-supported, interactive, visual representations of abstract data to amplify cognition.”
Information Visualization

- **Information Visualization**
 - Items, entities, things which do not have a direct physical correspondence
 - Examples: baseball statistics, stock trends, connections between criminals, car attributes...

- **Scientific Visualization**
 - Primarily relates to and represents something physical or geometric
 - Examples
 - Air flow over a wing
 - Stresses on a girder
 - Weather over Pennsylvania
Key Attributes

- **Scale**
 - Challenge often arises when data sets become very large

- **Interactivity**
 - Want to show multiple perspectives on the data

- **Tasks**
 - Want to support specific tasks not just to create a cool demo
 - Support discovery, decision making, explanation
O-ring damage index, each launch

26°-29° range of forecasted temperatures (as of January 27, 1986) for the launch of space shuttle Challenger on January 28

Temperature (°F) of field joints at time of launch

Presentation is everything!
“First” Visualization Success Story

Illustration of John Snow’s deduction that a cholera epidemic was caused by a bad water pump, circa 1854.

Dots indicate location of deaths.

Slide from Marti Hearst
First modern “Info Vis”
HomeFinder

Visual Information-Seeking Mantra
Shneiderman

“Overview first, Zoom and Filter Details on Demand”

HCIL
Univ. Maryland
1992

Video
Hierarchies (Trees)

- **Definition**
 - Data repository in which cases are related to subcases

- **Pervasive**
 - Family histories, ancestries
 - File/directory systems on computers
 - Organization charts
 - Animal kingdom: Phylum, …, genus, …
 - Object-oriented software classes
 - …
Two main representation schemes

- Node-link
- Space-filling

Approaches to scale:

- Complex representation
- Navigation
- Elide (don’t show) some nodes
- Show nodes at different sizes
Help understand node characteristics or tree structure?

Some kinds of tasks:

- Find a node
- Revisit node
- List node ancestors
- Understand local topology
- Understand global topology
Node-Link Diagrams

- Root at top, leaves at bottom is very common
Why Put Root at Top?

Root can be at center with levels growing outward too

Can any node be the root?
Examples

Good for?

Bad for?
Drawing a Tree
Treemap – Shneiderman et. al.

Slice-and-dice

Cluster

Squarified

Pivot-by-middle

Pivot-by-size

Strip

Treemap Software

Layout Comparison
Variation: Cushion Treemap

Add shading and texture to help convey structure of hierarchy

Van Wijk ‘99
Questions

- What tasks are best supported by each vis?
- Can multidimensional data per node be portrayed?
- How does the visualization scale?
- Can users quickly understand the representation?
Doing More

- Visualize your data: Many Eyes

- Make your own – toolkits:
 - Piccolo – Low-level structured graphics toolkit with zooming (Java, C#)
 - Prefuse – Higher level, many visualizations included (Java, Flash)
 - The InfoVis Toolkit – More sophisticated and flexible, but more “techy”.