Information Visualization CMSC 838B – Spring 2003

Introduction

Benjamin B. Bederson Computer Science Dept., Asst. Prof. Human-Computer Interaction lab, Director University of Maryland www.cs.umd.edu/~bederson

Data Explosion

- Between 1 and 2 exabytes of unique info produced per year

 - 250 meg for every man, woman and child
 - □ Printed documents only .003% of total

Peter Lyman and Hal Varian, 2000 Cal-Berkeley, Info Mgmt & Systems www.sims.berkeley.edu/how-much-info

Data Overload

- Problem: How to make use of the data
 - □ How do we make sense of the data?
 - How do we harness this data in decision-making processes?
 - □ How do we avoid being overwhelmed?

The Challenge

- Transform the data into information (understanding, insight) thus making it useful to people.
- Support specific tasks
- Improve performance as compared to existing mechanisms

Information Visualization

- Provide tools that present data in a way to help people understand and gain insight from it
- Cliches
 - □ "Seeing is believing"
 - □ "A picture is worth a thousand words"

"The use of computer-supported, interactive, visual representations of abstract data to amplify cognition."

Main Idea

- Visuals help us think
 - Provide a frame of reference, a temporary storage area
- External cognition
 - □ Role of external world in thinking and reason
 - Multiplication exercise

-	

Information Visualization

- What is "information"?
 - Items, entities, things which do not have a direct physical correspondence
 - Examples: baseball statistics, stock trends, connections between criminals, car attributes...
- Scientific Visualization
 - Primarily relates to and represents something physical or geometric
 - Examples
 - Air flow over a wing
 - Stresses on a girder
 - Weather over Pennsylvania

Key Attributes

- Scale
 - Challenge often arises when data sets become very large
- Interactivity
 - Want to show multiple different perspectives on the data
- Tasks
 - Want to support specific tasks not just to create a cool demo
 - □ Support discovery, decision making, explanation

- Which state has highest Income?
- Relationship between Income and Education?
- Outliers?

Table - StateData ()			II	15-2-1-2			
			Load	Snap	Minnesota.	30.4%	14389
	State	College Degree %	Per Capita I	ncome	Mississippi	19.9%	9648
	Alabama	20.6%		11486	Missouri	22.3%	12989
П	Alaska	30.3%		7610	Montana.	25.4%	11213
Н	Arizona	27.1%		13461	Nebraska.	26.0%	12452
Н	Arkansas	17.0%		10520	Nevada	21.5%	15214
Н		31.3%		16409	New Hampshire	32.4%	15959
Н	California				New Jersey	30.1%	18714
L	Colorado	33.9%		14821	New Mexico	25.5%	11246
ш	Connecticut	33.8%		20189	New York	29.6%	16501 12885
	Delaware	27.9%		15854	North Carolina North Dakota	28.1%	11051
	District of Columbia	36.4%		18881	Ohio	22.3%	13461
	Florida	24.9%	1	14698 🗎	Oklahoma	22.8%	11893
	Georgia	24.3%	1	13631	Oregon	27.5%	13418
	Hawaii	31.2%	1	15770	Pennsylvania	23.2%	14068
	Idaho	25.2%	1	11457	Rhode Island	27.5%	14981
П	Illinois	26.8%		15201	South Carolina	23.0%	11897
Н	Indiana	20.9%		13149	South Dakota	24.6%	10661
Н	lowa	24.5%		12422	Tennessee	20.1%	12255
Н	Kansas	26.5%		13300	Texas	25.5%	12904
Н		17.7%		11153	Utah	30.0%	11029
Н	Kentucky				Vermont	31.5%	13527
H	Louisiana	19.4%		10635	Virginia	30.0%	15713
_	Maine	25.7%		12957	Washington	30.9%	14923
	Maryland	31.7%		17730	West Virginia	16.1%	10520
	Massachusetts	34.5%	1	17224	Wisconsin	24.9%	13276
	Michigan	24.1%	1	14154	Wyoming	25.7%	12311
	Minnocote	20.4%		14200	4		

So Why Vision? Why not "perceptualization"? Sonification Touchification Smellification Tastification Bandwidth, bandwidth, bandwidth Tasks in Info Vis Search □ Finding a specific piece of information ■ How many games did the Braves win in 1995? What novels did Ian Fleming author? Browsing □ Look over or inspect something in a more casual manner, seek interesting information Learn about crystallography What has Jane been up to lately? Tasks in Info Vis Analysis Comparison-Difference □ Outliers, Extremes □ Patterns Assimilation Monitoring Awareness

Knowledge Crystallization – Work Process

- Information foraging
- Search for schema (representation)
- Instantiate schema
- Problem solve to trade off features
- Search for a new schema that reduces problem to a simple trade-off
- Summarize and communicate

How Vis Amplifies Cognition

- Increasing memory and processing resources available
- Reducing search for information
- Enhancing the recognition of patterns
- Enabling perceptual inference operations
- Using perceptual attention mecahnisms for monitoring
- Encoding info in a manipulable medium

•		
•		
•		
•		

The Need for Critical Analysis

- We see many creative ideas, but they often don't really work
- This course will emphasize
 - Getting past the coolness factor
 - Examining usability studies
- Example: Treemaps (www.cs.umd.edu/hcil/treemaps)
 - Show a hierarchy as a 2D layout
 - □ Size on screen indicates relative size of underlying objects

Early Treemap file browser

Slide from Marti Hearst

Treemap Problems

- Too disorderly
 - What does adjacency mean?
 - Large aspect ratios lead to skinny boxes that clutter
- Color difficult to understand
- What are the tasks?
 - Don't need all this to just see the largest files in the OS
 - But are there tasks where this would be appropriate?

Slide from Marti Hearst

Successful Application of Treemaps

- Think more about the use
 - Break into meaningful groups
 - Improve aspect ratio
- Use visual properties properly
 - Use color to distinguish meaningfully
- Provide excellent interactivity
 - Access to the real data
 - Makes it into a useful tool

Slide from Marti Hearst

Treemap 3 HCIL's latest Control over the data and mappings Control over the color Better layout algorithms Better interaction www.cs.umd.edu/hcil/treemap3 - the software www.cs.umd.edu/hcil/treemaps - the HCIL Treemap story

Course Administration Look at Syllabus Readings □ Everyone reads every paper every class – no kidding □ Everyone is prepared to talk about every paper every class - no kidding First homework due next week WAM accounts next week How to Prepare for Readings What is the problem (specifically what tasks does it solve)? What assumptions are made? Who are the intended users of the research? Have those users been involved in the design or evaluation of the work (i.e., is the solution usable?) Is the solution scalable (how much data does it work with)? Is the solution generalizable (does the solution work in other domains)? What is the key contribution? Research Class Creativity No "right" answer Reasoning/argument is more important Self motivation Open ended Contribute to the state-of-the-art

	-
Class Project	
Build a new visualization	
EvaluationGroups 2-4	
Choose topic Literature review	
Design itBuild it	
Evaluate itWrite a paper about it	
Give a presentation.	
Question to think about	
Is a spreadsheet a visualization?	
a is a spicausificet a visualization:	
	-