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1. Introduction 

Much attention has been focused lately on the no- 
tions of structured programming, a crucial factor when 
dealing with the design of large programming systems. 
Rather than viewing programming as an art and the 
programmer as the perpetual artist, in structured 
programming we are provided with a more systematic 
(and in a way more restricted) approach which facili- 
tates debugging and proving assertions about  pro- 
grams. 

One of the ideas developed by advocates of struc- 
tured programming is the top-down elaboration of 
program control structures by a recursive process of 
successive refinements [7, 15]. No such process has 
been developed for dealing with data structures. The 
main reason for this is the improper intermixing of the 
semantic and the implementation concepts [3] of a 
data structure. The failure to distinguish between these 
concepts is a result of the conflicting factors involved 
in choosing a data structure: simplicity of element ac- 
cess, minimization of search time, dynamics of growth 
or elimination of data, simplicity of restructuring and 
extension, efficiency of storage utilization, and others. 

With these in mind we propose a "structured" Data 
Structure facility, which we call a Data Structure De- 
scription and Manipulation Language (DSDML) to 
maintain a similar terminology to other groups (see 
CODASYL Report  [I]). The DSDML provides data struc- 
ture definitions in addition to the data definitions avail- 
able in the host language (e.g. PL/I or COBOL). It will 
include explicit declarations of commonly used data 
structures and information about  their access and 
manipulation characteristics. These characteristics 
include such features as reset pointers or end pointers 
and search rules. 

The main advantages of such a facility can be sum- 
marized as follows. 
1. It provides (some) control mechanism over the 
behavior of data structures. Just as the "go to"  is con- 
sidered harmful to modular programs [2], in dealing 
with data structures, we want to eliminate unrestricted 
branches or edges. The permissible operations in the 
DSDML are more restricted than those in the CODASYL 
Report, but allow the creation of a wide variety of com- 
monly used structures. The DSDML will be a useful 
tool in verifying that our structures are indeed "well 
formed" (i.e. enabling us to prove assertions about 
data structures). Declarations of variables in a pro- 
gramming language provide the compiler with the in- 
formation necessary to prevent incorrect mixed mode 
operations from occurring. In FORTRAN, for example, 
one can declare variables to be REAL, INTEGER, LOGI- 
CAL, DOUBLE PRECISION, or COMPLEX. In a similar way, 
the DSDML (see Appendix) will prevent the programmer 
from mistakenly converting a binary tree into a three- 
way tree or from inserting a queue where a ring is ex- 
pected or from obtaining undesired cycles, and so on. 
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The semantics will include provisions to prevent in- 
valid operations. For  example, if a one-way list with a 
bo t tom pointer and with reset pointers (pointing back 
to the first node f rom each node) is defined, it is not 
possible to make insertions along the bot tom pointer 
or reset pointers. 
2. Top-down programming can be achieved in terms 
of data structures, too. This follows f rom the fact 
that the DSDML allows for definitions of multilevel data 
structures in which the nodes of a given level structure 
serve as headers for the structures at the next level. 
Take, for example, the following application program 
involving a telephone system. A number  of telephones 
are connected to a switchboard by lines. The switch- 
board has a number of links which can connect any 
two lines, but only one connection at a time can be 

Fig. 1. 
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made to each line. Assume that initially we disregard 
blocked calls; i.e. calls are lost if no links are available 
(obviously, the case is that there are more lines than 
links). The programmer  might decide he needs a one- 
way list to keep track of all the free lines and run the 
program for this case. Later on, he might want to take 
into account the blocked calls and associate with every 
free line a waiting list of  calls which could not be 
serviced because no link was previously available. In 
this case the desirable structure would be a one-way 
list of  one-way lists. As mentioned above, the DSDML 
allows this kind of refinement by providing a multi- 
level structure, in which a higher level node represents 
the entire lower structure emanating f rom it. I f  the 
higher level routines have been written with sufficient 
generality and have been debugged, they will work for 
the refined structure. We need now only pay attention 
to the lower level routines. 
3. I t  might be possible to obtain a more optimal 

storage allocation. By providing a data structure defi- 
nition, the compiler (or run-time package) may have 
the ability to allocate storage in a more efficient way 
than the usual "space available stack" technique em- 
ployed for most  dynamic storage allocation schemes. 
For  example, by declaring a binary tree with reset poin- 
ters, some information is provided about  the amount  
of storage necessary for the nodes of the structure. 

2. M a t h e m a t i c a l  Pre l iminar ies  

Before proceeding further with the DSDML, we pre- 
sent our view of data structures which follows the 
graph-theoretic model developed in [14]. For the reader 
unfamiliar with graph theory see Harary [4]. 

We formally associate with every data structure a 
quadruple G:  

G = (E,D,L,F) where 
(1) E is a set of entry nodes, which are instantly 
accessible. 
(2) D is a set of data nodes containing the infor- 
mation 
(3) L is a set of labels, indicating the different ac- 
cessing branches. 
(4) r is a mapping which describes the relationship 
between the nodes and is defined as: 17 : (E U D) × 
L---* D. 

Note that I' is a partial function that is one-one and onto 
(i.e. a partial bijective function). 

As an example of this notation, consider the fully 
balanced binary tree in Figure 1. Here, 

E = {el} 
O = {dl, d 2 , . . . , d ~ } ,  n = 2 k -  1 

for some integer k, which represents the number of  
levels in the tree 

L = { INTREE,  L ,R  } 

The mapping r is given by: 

F(el , I N T R E E )  = dl 
F(dg,L)  = d2~, if i <  2 k - ~ -  1, 

= ~b, i f  i >  2 k-l, 
F ( d i , R )  = d2i+1, if i < 2 k - l -  1, 

= 4~, if i >  2 k-t, 

¢ being the null element. 
Furthermore,  the restriction is made that we deal 

only with well-formed structures (see [11]). G = (E, 
D,L,I') is a well-formed structure if and only if: 

(1) E U D is a connected set of  nodes, that is, if 
we consider the undirected graph which corre- 
sponds to G, there is a path between every pair of 
nodes; and 
(2) E is a nonempty set with each node in E having 
in-degree zero (searching has to start at some entry 
point). 
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Formally, 

E ~ ¢ & Ve  Vl (e  ~ E & l ~_ L ~ F-t(e, 1) = q~). 

Note that the set D can be empty. This allows us to 
take into account cases like that of a queue with no 
elements in it at a given moment.  

(3) Any node in D is reachable from at least one 
node in E. The transitive closure of £ restricted to 
(E X L) yields D: 

n *  

U r II(ExL) = D 

Fig. 2. 

I 

where n* is the smallest integer for which the 
equality holds, t 
This condition is meant  to exclude structures such 

as Figure 2 which contain unreachable nodes. 
When dealing with "structured" data structures of 

the form G = (E,D,L,£),  the limitation IEl= 1 is 
imposed. All such structures thus have a single entry 
point which is always available for access by invoking 
the name of the structure. This restriction is necessary 
when defining multilevel structures, described later in 
more detail. 

We now define the uniform insertion of two struc- 
tures. This forms the basis for the idea behind the for- 
mation of multistructures. 

Given two data structures G1 = (EI,D1,L~,F~) 
and G2 = (E2,D2,L2,£2),  the uniform insertion of 
G2 in G1 denoted by: GI<I  G2 is: 

G = G~<I G2 = (El ,  {D1 U D2}, { L I U L 2 } , F )  

where ] E1 [ = [ E2 I = 1 and £ is defined as: 
(i) on the set (El U D1) X L~ : 
F(el ,  [j) = Fl(el ,  ]j), if el C E1 and lj C L I ,  
(ii) on the set (D2 X L2): 
£(d/ ,  lk') = re(d/ ,  lk'), if d /  E 32 ,  / J  E L2, 
(iii) 
I'(d~, 17) = I'2(e2, lj), ifd~ C D1, lj C L2, 
On the "boundary"  between G~ and G2, I' maps the 

elements of  D~ into the elements of D2. The entry 
nodes of G2 get "absorbed"  by each of the data nodes 
of G~. The branches emanating f rom the data nodes of 
Gx bear the same labels as the branch emanating f rom 
the entry node of G2. 

3. Overview of the Data Structure Description and 
Manipulation Language 

The facility described below is meant  as an addi- 
tion to the host language in much the same way that  
the CODASYL group [1] proposes to extend currently 
existing programming languages. The DSDML includes 
declarations for linear structures (one-way lists, two- 

l In general, r"(dl, li) = r"-l(v(di, It), lj) and r({dt, d2, 
...dkl,lj) = U~-W(d,, tj). 

way lists, rings, stacks, etc.) and tree, (binary, 3-ary, 
etc.) together with their access and manipulat ion 
characteristics (bot tom pointer, back pointer, search- 
able option, etc.) and declarations for the operations 
on data structures (insert, delete, etc.). Combinat ions 
of  these structures are also possible, such as one-way 
lists of  trees, a ring of stacks, etc., and this is done in a 
PL/I-like mode by declaring different levels of nodes. 
These combinations are called multistructures. 

A fundamental  concept in the system is that of an 
interval, which is closely associated with the definition 
of  the delete operation. An interval of a node d~ con- 
sists only of  that node for linear structures. For trees, 
the interval is given by specifying the node d~ and a 
branch label l~. The subtree rooted at the successor 
of  d~ along 1~, i.e. I'(d~,l~), constitutes the interval 
to be deleted. This is in accordance with the common  
way in which additions and deletions are made. Addi- 
tions or deletions f rom lists are made one node at a 
time, while additions and deletions f rom trees are 
made by processing subtrees. The assumption is that  
by deleting an interior node in a tree, we want to delete 
all its successor nodes, too. There might be a case when 
after deleting an interior node in a tree the user might 
want to restructure the tree, but we chose for the sake 
of simplicity (and control) not to implement this 
overly powerful operation. 

The second fundamental  concept in this system is 
that  in multistructures a higher level node is the owner 
of  the entire lower level structure emanating f rom it. 
Consider the example of  a one-way list with an end 
pointer (level 1) each of whose nodes is a binary tree 
(level 2) illustrated in Figure 3. Leaving out the defini- 
tion of each node's  data, we can describe the structure 
a s :  

DECLARE EXAMPLE 
: (description of data in entry node) 

LEVEL(l) LIST(START) ONEWAY(NEXT) END(LAST) 
: (description of data in each node of the list) 

LEVEL(2) TREE(INTREE) 2-BRANCH(L,R) 
: (description of data in each node of the tree) 

The deletion of a node in the tree implies the dele- 
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Fig. 3. 
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tion of the entire subtree associated with that node. 
The deletion of a node in the one-way list implies a 
deletion of the entire list emanating from it and a 
chaining through operation to remove the node from 
the one-way list. Notice that for simplicity we no longer 
name the nodes. For  all the manipulations performed 
on the data structure, a "working" pointer is main- 
tained pointing to the current node. By specifying the 
address of ' the  current node and the branch label to 
travel along, the successor will be unique if it exists 
(since F is a partial bijective function). 

The DSDML comprises four components: the Defini- 
tion Statements, the Search Statements, the Manipu- 
lation Statements, and the Extended Manipulation 
Statements. 

3.1 Definition Statements 
Every structure definition begins with a DECLARE 

statement (production 1 in Appendix) followed by 
the name of the structure and a data description of the 
information to be kept at the entry node. For example, 
in the case of a file structure this information might 
include the date of creation, date of last alteration, a 
description of the information in the structure, or other 
descriptive information. Following the DECLARE state- 
ment, the system creates the structure by allocating 
space for its entry node. Recall that the entry node in- 
formation is made available by merely invoking the 
name of the structure. 

All structures must have at least one level, but could 
have several. In discussing a one-way list of trees of 
stacks, the one-way list is level one, the trees are at 

level two, and the stacks are at level three. It is possible 
to have more than one structure at each level. Consider 
a one-way list in which each node has a tree and a 
deque emanating from it. The one-way list is at level 
one, but both the trees and the deques are at level two. 
The levels must be described in ascending numerical 
order beginning with LEVEL (1) without skipping 
levels (productions 2 and 3). The nodes in a LEVEL (k) 
structure are the header nodes for structures in LEVEL 
(k q- 1). When there is more than one structure at a 
level the sequence of level numbers mimics COBOL or 
PL/I structure definitions, for example, I, 2, 3, 2, 3. Re- 
call the definition of uniform insertion of two struc- 
tures to understand why for a one-level structure the 
entry point is the only header node, while for a multi- 
structure, in addition to this, the nodes of a given 
level k serve as headers for the structures emanating 
from them. 

It might be useful to distinguish here between two 
classes of objects which appear in the process of using 
data structures. These resemble very much the data 
and program objects which are part of any program- 
ming language [6]. Data objects can have a value, 
which may be changed in the course of the program 
(e.g. an integer variable, a pointer variable, a fixed 
character string). Program objects do not have values, 
but may be invoked to compute values for data objects 
(e.g. a procedure, a statement, an entire program). 
The dynamics of data structures presents us with two 
similar classes of objects: static and dynamic [3]. Static 
objects are in existence as long as the data structure is, 
while dynamic objects are created at run-time and have 
to be referenced through the static objects. Static nodes 
are headers of data structures (or entry points, in our 
terminology), and the branches emanating from them 
are also static objects. Dynamic nodes in a data struc- 
ture are created by the different primitives operating 
on it (insert, delete, etc.) and thus may have a limited 
existence. Dynamic nodes can be referenced only 
through branches. To conclude, the branches emanat- 
ing from dynamic nodes are also dynamic and repre- 
sent the access path in the structure. 

Ih particular, for the data structure definitions in the 
DSDML: the entry node (static) is made available by 
invoking the name of the structure; the pointer from 
the entry node to the first data node has a different 
label than the labels of the inner branches since it 
corresponds to a static branch. The data nodes and 
the pointers emanating from them are obviously dy- 
namic objects. 

The structure descriptions (production 4-9) provide 
information about the type of organization and branch- 
ing structure. 

3.1.1 Lists 
Lists (production 4) have a specified pointer from 

the entry node to the first data node. The branch labels 
for the data nodes in one-way lists or two-way lists are 
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specified in productions l l and 12, respectively. Reset 
branches which point to the first node are given labels 
in production 13. Finally, the header node for a list 
may contain a pointer to the last data node, the END 
pointer, as specified in production 15. The branch 
label names for searching, for reset, and for the end 
positions are chosen by the programmer;  but the sys- 
tem checks for compatability. 

As an example, consider the declaration of a two- 
way list with an end pointer and with reset pointers (see 
Figure 4) : 

DECLARE DUBLCHA1N 
: (data description of information at the entry node) 

LEVEL(l) LIST(FIRST) TWOWAY(NEXT,LAST) 
RESET(HOME) END(BOTTOM) 

: (data description of information at each node) 

A file structure consisting of a variable number  of 
records, each having a variable number of fields can 
be described as a one-way list of one-way lists with end 
pointers at both levels (see Figure 5): 

DECLARE FILE 

LEVEL(l) LIST(FIRSTi ONEWAY(NEXTRECORD) 
END(LASTRECORD) 

LEVEL(2) LIST(FIRSTFIELD) ONEWAY(NEXTFIELD) 
END (LASTFIELD) 

3.1.2 Trees 
The tree description has to start with a branch label 

for the pointer emanating f rom the entry node, fol- 
lowed by the branching information for each node of 
the tree. This includes specifying the number  k of maxi- 
m u m  possible branches f rom every node and their cor- 
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responding unique names. The maximum number  of 
branches is implementation dependent. The difference 
between a 1-BRANCH tree and a one-way list is in the 
size of  the interval for a node. In a one-way list the 
interval for a node contains only that node. In 1- 
BRANCH tree the interval for a node consists of all 
the nodes which are its successors. The back option 
permits the inclusion of labeled branches which point 
to the immediate predecessor or parent of a node. 
Finally, the reset pointer permits the inclusion of a 
pointer f rom each node to the first data node. 

The definition of a binary tree (with back option 
pointers) of one-way lists would be (see Figure 6): 

DECLARE BINTREE 

LEVEL(l) TREE(ROOT) 2-BRANCH(LEFT,RIGHT) 
BACK(BACK) 

LEVEL(2) LIST(L) ONEWAY(NXT) 

3.1.3 Other Linear Structures 
Rings are similar to lists, differing only on one de- 

tail: the last node in the list points back to the first node, 
thus (willingly) creating a cycle. In this sense the ring 
is not purely a linear structure. 

Queues are also similar to lists, the difference being 
in the permissible operations. The queue can be en- 
tered by either of  two pointers available f rom the entry 
node. Additions and deletions to queues may be made 
only at the tail or head of the queue, respectively. The 
tail and head nodes of a queue and any lower level 
structure emanating f rom them are available for search- 
ing, but interior nodes are not automatically accessible. 
I f  the ability to search interior nodes is required, this 
must be explicitly indicated by using the searchable 
option, in which one or two directional searching may 
be described. A one-way search begins at the head and 
leads to the tail; for two-way searching the second 
branch label indicates the tail-to-head direction. 

Stacks are lists in which additions and deletions may 
be made only at the top. A distinction is usually made 
between stacks and pushdown lists: in the former all 
nodes are searchable; in the latter only the topmost  
nodes are accessible. To permit implementation of this 
distinction, the searchable option is included. Although 
the reset and end options are permitted, there is nor- 
mally little use for them. 

Deques are queue-like structures in which additions 
and deletions may be made at either end. 

3.2 Search Statements 
Searching these structures can he described in simple 

terms. Moving f rom node to node is accomplished by 
setting a pointer to point at the current node looked 
upon. Any number  of pointers may be declared by the 
user program to keep track of several nodes at once. (It 
is sometimes desirable to keep a pointer to the pre- 
viously searched node, too.) This process might be 
visualized as adding temporary  entry nodes to the 

structure. Pointers may be saved, copied or compared 
exactly as is now permitted in aL/L The reserved word 
NULL is used as the value of the pointer variables where 
there is nothing to point to, such as at the end of a one- 
way list. 

To begin searching a structure, the pointer assignment 
statement given in production 23 has to be used. Since 
searching begins at the entry node, we ENTER the given 
structure name and set the current-node pointer to the 
address of the entry node. To move f rom the entry node 
or from any other node, the GET statement (production 
22) is used providing the node location and the branch 
label to indicate the direction in which we want to travel. 
To search through the file structure in Figure 5, which 
was discussed earlier, the structure must be entered, 
searched down the records, and then searched across 
the fields. The following program, written in "extended" 
PL/I seeks out a particular field in the FILE structure. 
MATCHRECORD and MATCHFIELD stand for blocks of  
statements, or procedures, which check if the node cur- 
rently retrieved is in the right record or field respectively. 

DECLARE GRIPHOS 

LEVEL(l) LIST(FIRST) ONEWAY(NEXT RECORD) 
END(LAST RECORD) 

LEVEL(2) LIST(FIRSTFIELD) ONEWAY(NEXTFIELD) 
END (LASTFIELD) 

CURNODE = ENTER(GRIPHOS); 

CURNODE = GET(CURNODE,FIRST); 
DO WHILE(CURNODE~ = NULL); 
IF MATCHRECORD THEN 

DO; 
CURNODE = GET(CURNODE,FIRSTFIELD); 

DO WHILE (CURNODE~ = NULL); 

IF MATCHFIELD THEN CALL FOUND; 
ELSE 
CURNODE = GET(CURNODE,NEXTFIELD); 
END; 

END; 
CURNODE = GET(CURNODE,NEXTRECORD); 
END; 

3.3 Manipulation Statements 
The restriction to linear structures and tree-like 

structures permits the use of a simple set of primitives. 
A standard interpretation can be given to these primi- 
tives which depends only on these two classes of data 
structures. Standard interpretation refers to the prop- 
erty that the primitives should always produce the same 
result, independent of  the sequence of operations which 
have preceded it and independent of  the current status 
of  the structure. The notions of interval and multistruc- 
ture enable the realization of these primitives in the 
DSDML. Recall that additions and deletions to lists are 
made one node at a time, while additions and deletions 
to trees a.re made by subtree manipulation. This is in 
accordance with their respective interval definitions. 
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With regard to multistructures, the addition or deletion 
of a node at level k will affect the whole structure from 
level k down. 

3.3.1 Insert Operation 
The insert operation is defined in production 24. The 

structure specified, is inserted along the given branch 
label, emanating from the node specified. Note that the 
insertion has to be uniform, meaning that the structure 
to be inserted must match the structure definition of the 
receiving structure; trees may be added to a one-way 
list of trees; queues may be added to a one-way list of 
queues; nodes may be added to lists. For  trees the insert 
operation can be interpreted as an "append"  operation. 
It is defined only on incomplete nodes. An incomplete 
node is a node for which the branches defined in the 
declaration statement are not all in use. Other imple- 
mentations would allow for more than one result. 

The run-time package would prevent the insertion of 
a stack into a tree of queues or the insertion of a tree 
into a one-way list. The second function of the run-time 
package is to prevent the insertion of nodes along end 
pointers, reset pointers, etc. These two basic checks help 
prevent the creation of invalid structures. Only the 
structures that have been defined can be produced. 

3.3.2 Delete Operation 
When dealing with the delete operation two critical 

situations have to be avoided. First, care must be taken 
to ensure that a portion of the structure does not become 
unreachable (the so-called "hanging" structure). This 
danger is avoided in DSDML by the interval organization 
strategy. When a node is deleted, the entire interval is 
deleted, and a rechaining operation may take place. In 
one-way lists the deleted node is "chained through," 
and the pointers are reset to preserve the list properly. 
In trees an entire subtree is deleted and the branch 
entering the deleted subtree is set to NULL. 

A second danger is that the deletion of a node will 
leave certain pointers with incorrect values. By explicitly 
defining the labels of every branch in the data structure, 
it is possible to properly reassign the pointers associated 
with the structure after such a manipulation has been 
performed. For  example, the deletion of the top node 
in a stack must be accompanied by a resetting of the 
top pointer; and the deletion of the last node of a one- 
way list must be followed by the setting of a NULL 
pointer in the next to last node. 

Two formal delete operations are defined in produc- 
tion 25 and 26. The delete operation as defined in p/'o- 
duction 25 is used for linear structures. Only the node 
to be deleted need be specified, and the meaning of the 
operation is precisely defined. The chain is preserved, 
the end pointer is reset, the reset pointer is deleted, etc. 
In two-way lists, the proper branches are altered. 

The delete operation as defined in production 26 is 
used for trees. The node and branch label specified point 
to the root  node of the subtree to be deleted. After the 
deletion, the branch label specified is set to NULL. 

The space freed in performing a deletion may be 
returned to the free space list by a garbage collection 
technique. (Note that a more complicated situation ap- 
pears when dealing with rings, which gives some of the 
flavor of the problem encountered with cyclic struc- 
tures. The chain pointers are preserved the same way as 
in lists, but upon deleting the first data node (i.e. the 
node pointed by the entry node) additional arguments 
have to be taken into consideration for resetting the 
entry pointer.) 

3.3.3 Detach Operation 
The detach operation defined in production 27 and 

28 is similar to the detete operation except that the nodes 
removed are not destroyed. They become an inde- 
pendent structure whose name is that specified in the 
statement. A detached structure may be inserted back 
into another structure at a later time in the processing. 

3.4 Extended Operations 
3.4.1 Copy Operation. A structure or substructure 

may be copied and assigned a new structure name by 
the use of the statement defined in production 29. The 
copy statement is similar to the detach statement except 
that the original structure remains unchanged. 

3.4.2 Interchange Operation. This operation (pro- 
duction 30 for linear structures, production 31 for trees) 
permits two nodes which have the same definition and 
are at the same level, to be interchanged. It is equivalent 
to detaching both nodes and reinserting them in the 
alternate positions. Thus, two nodes in a list or a ring 
could be interchanged by the issuance of one statement, 
instead of four statements. Interchanging a tree and a 
one-way list would not be permitted, but interchanging 
two subtrees is permitted. 

The statement 

INTERCHANGE(nodel, left, node2, left) 

is equivalent to the following sequence of statements: 

DETACH(node1, left, name1) 
DETACH(node2, left, name2) 
INSERT(nodel, left, name2) 
INSERT(node2, left, name1) 

to perform the interchange of two subtrees. Notice that 
nodel  and node2 are not moved, only their left subtrees 
are interchanged. 

3.4.3 Replace Operation. The replace operation (pro- 
duction 32 for linear structures, production 33 for trees) 
permits a node or a subtree to replace another node or 
subtree if they have the same definition and are at the 
same level. It is equivalent to deleting one node, de- 
taching a second node, and inserting the second node in 
the position occupied by the first node. Replacing a tree 
by a list would not be permitted, but replacing a sub- 
tree by another subtree would be permitted. The state- 
ment 

REPLACE(node1, left, node2, right) 
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is equivalent to the following sequence of statements: 

DELETE(nodel, left) 
DETACH(node2, right, name) 
INSERT(nodel, left, name) 

3.4.4 Insertion of a List. It is often necessary to insert 
an entire list in another list. This can be accomplished 
by detaching and inserting one node at a time, but this 
can be tedious and unpleasant for programmers. To 
simplify the operation for the user, the INSERTLIST opera- 
tion (production 34) is defined. This operation permits 
the insertion of an entire list into another list if their 
definitions are compatible. 

Note that all these extended operations do not give 
additional computational power, but are simplifying 
operations which have higher conceptual meaning to 
programmers. 

4. Estimation of the DSDML and Comparison with 
Other Systems 

Most commercial systems which provide some kind 
of data structure description and manipulation facility 
limit themselves to one or two structure types. For  ex- 
ample, the Integrated Data Store [5] system mainly re- 
stricts the programmer to the use of rings; and although 
networks can be obtained by interconnecting different 
rings, storage is not efficiently used and the underlying 
structure is hidden behind the superimposed structure 
supplied by the system. It appears that the problem is 
created by the fact that their "world-view" is essentially 
based on records with fixed format, fixed fields (a speci- 
fied number of fields have to be in a record). This con- 
sideration limits the access mechanisms to operate on 
specialized structures. 

The major design effort by the CODASYL Data Base 
Task Group [1] to develop a Data Description Lan- 
guage and a Data Manipulation Language for a gen- 
eralized Data Base Management System was very much 
concerned with selecting a useful set of data manipula- 
tion primitives. They have solved some of the problems 
posed by earlier systems, but the complexity of the sys- 
tem makes it (sometimes) difficult to follow the effect of 
the operations. The situation is that the same operations 
might produce different effects depending on a detailed 
set of declarations made in a complicated Data Defini- 
tion Language. For  example, the STOaE operation 
creates a node and possibly connects it to one or more 
structures, depending on how the structure has been 
defined. The complexity and danger in deleting nodes 
have led the designers to define no less than four DELETE 
operations, each of whose functions vary depending on 
which node is referenced and on how the structure is 
defined. As a result, the user who implements a compli- 

The DSDML could be implemented in an extensible lan- 
guage, like Algol 68. 

cared structure in this system would have to be extremely 
careful when invoking the operations. 

A different approach to describe the various struc- 
tures and operations may be found in attempts to define 
a generalized graph programming language [8, 9]. Each 
of these systems gives the necessary primitives to manip- 
ulate a graph in an arbitrary manner. Complex struc- 
tures such as acyclic graphs and networks can be 
created, but no guarantee is given to prevent the user 
from obtaining an illegal logical structure. Note that 
the structures are built in terms of primitives which 
resemble the level of assembly language operations. 

The attitude taken for designing the DSDML was to 
choose and implement higher level primitives with just 
the right amount of power. ~ A host programming lan- 
guage like PL/I provides list processing facilities, allow- 
ing the addition or deletion of branches and the creation 
or destruction of nodes by the use of pointer variables 
and the ALLOCATE or FREE operations. However, these 
primitives are too powerful, since they permit pro- 
grammers to create structures which are not well 
formed. Unrestricted use of the built-in ADDR primitive 
can be made by assigning the returned value of At)DR 
to a pointer variable. Since the argument of the ADDR 
function can represent any physical address, a pointer 
can be defined to point to any object in the program. 

In choosing the primitives for the OSt)ML, we did not 
want restrictive operations which are meaningful in 
only a very limited environment, nor did we desire a set 
of primitives which are so powerful that the user can 
unwittingly destroy a structure. The development of the 
DSDML depended very much on the restriction to 
basically two types of structures: linear and tree-like, 
and combinations of these. The explicit recognition of 
these distinct classes of data structures enabled us to 
assign a unique meaning to the operations, which de- 
pends only on the class of the structure being operated 
on. The results of the operations are always the same, 
independent of the sequence of operations which might 
have proceded it and independent of the current status 
of the structure. 

Some questions were raised in the course of this 
work which we plan to investigate further. First of all a 
rigid formalism utilizing graph theory and formal 
semantics should be developed to indeed prove that any 
sequence of allowable operations in DSDML yields the 
well-formed structure that is defined in the declaration 
statement. Secondly, we plan to enlarge the category 
of structures dealt with by allowing multiple entry nodes 
and structures associated with indexes to include, for 
example, indexed sequential files. 
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Appendix. Productions for a Restricted Data Structure 
Definit ion and Manipula t ion  Fac i l i ty  

1) < d e f £ n l t l o n  s t a t e m e n t > : : - D E C L A R g < s t r u c t u r e  n a a e > < d a t a  
d e s c r l p t i o n > < l e v e l  d e s c r i p t i o n >  

2) < l e v e l  d e s c r l p t l o n > : : = L E V g L ( < k > ) < s t r u c t u r e  
d e s e r l p t l o n > < d a t a  d e s c r l p t l o n > < l e v e l d e s c r l p t l o n >  

3) I L E V g L ( < k > ) < s t r u c t u r e  d e s c r l p t l o n > < d a t a  d e s c r i p t i o n >  

6) < s t r u c t u r e  d e s c r l p t l o n > : : - L I S T ( < b r a n c h  l a b e l > ) < 1  or  2 
w a y > < r e s e t  o p t l o n > < e n d  o p t i o n >  

5) I TREE(<branch labe l>)<k>-BRANCH(<braach  
l a b e l  l l s t > ) < b a c k  o p t l o n > < r e a e t  o p t l o n >  

6) I RING(<branch l a b e l > ) < 1  or  2 w a y > < r e s e t  o p t i o n > < e n d  
o p t i o n >  

75 ] Q U E U E ( < h e a d > , < t a i l > 5 < s e s r c h a b l e  o p t i o n >  

8) ] STACg(<branch l a b e l > ) < s e a r c h a b l e  o p t i o n > < e u d  op t i on>  

9) [ D g q U g ( < h e a d > , < t a l l > ) < s e a r c h a b l e  o p t i o n >  

10) < s e a r c h a b l e  optlon>:t-SEARCHABLE<I or  2 w a y > < r e s e t  op t lon>  
]x  

Ii) <I or 2 way>::=ONEWkY(<braneh label>) 

125 [ TWOWAY(<brsnch l a b e l > , < b r a n c h  l a b e l > )  

13) <reset option>::-RESET(<braneh label>) ] I 

14) <back optlon>::-BkCK(<branch label>) [ 

15) <end o p t i o n > : : = E N D ( < b r a n c h  l a b e l > )  [ 

16) <b ranch  I a b s I > : : - I D E N T I F I E R  

17) <branch  l a b e l  l l s t > : : - < b r a n c h  l a b e l > , < b r a n c h  l a b e l  f l a t >  
I <branch  l a b e l >  

18) < s t r u c t u r e  name>::-IDENTI~IER 

19) <k>::-NUMBER 

20) <rail>::-<branch label> 

21) <head>::-<braneb label> 

22) <node location 
assignment state~nt>::=<node>=GET(<noda>,<branch Label>) 

235 I <node>=ENTER(<atructure name>) 

24) <operatlon>::=INSERT(<node>,<branch l a b e l > ,  
<structure name>) 

25) ] DELETE(<node>) 

26) [ DELgTE(<node>.<branch l a b e l > )  

27) I DETACH(<node>,<structure name>) 

28) l DETACH(<node>j<branch l a b e l > , < s t r u e t u r e  name>5 

29) < e x t e n d e d  o p e r a t l o n s > : : = C O P Y ( < n o d e > , < b r a n e h  l a b e l > ,  
< s t r u c t u r e  name>) 

30) [ INTERCHkNGE(<node>,<node>) 

31) [ INTERCHANCE(<node>,<branch l a b e l > , < n o d e > ,  
<branch  l a b e l > 5  

32) l REPLACE(<node>,<node>5 

33) l REPLACE(<node>,<branch l a b e l > , < n o d e > , < b r a n c h  l a b e l > )  

34) I I N S E R T L I S T ( < n o d e > , < s t r u c t u r e  node>) 

355 <data descriptlon>::=descrlptlon in the host language 

36) <node>::=IDENTIFIER 
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The  p roduc t i ons  are  expressed in B a c k u s - N a u r  F o r m  
( B N F )  with  the  fo l lowing cons t an t s :  

NUMBER is a integer  value 
IDENTIFIER is a cha rac te r  s t r ing 
~, is the nul l  or  e m p t y  p r o d u c t i o n  
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