
Management / H. Morgan
Data Base Systems Editor

Structured Data
Structures
Ben Shneiderman
Indiana University
and
Peter Scheuermann
State University of New York at Stony Brook

Programming systems which permit arbitrary
linked list structures enable the user to create compli-
cated structures without sufficient protection. Dele-
tions can result in unreachable data elements, and there
is no guarantee that additions will be performed prop-
erly. To remedy this situation, this paper proposes a
Data Structure Description and Manipulation Lan-
guage which provides for the creation of a restricted
class of data structures but ensures the correctness of
the program. This is accomplished by an explicit struc-
ture declaration facility, a restriction on the permis-
sible operations, and execution-time checks.

Key Words and Phrases: structured programming,
data structures, data base management system

CR Categories: 3.50, 3.51, 3.72, 3.73, 3.79, 4.20,
4.22

Copyright @ 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' addresses: Ben Shneiderman, Department of Com-
puter Science, Indiana University, 101 Lindley Hall, Bloomington
IN 47401; Peter Scheuermann, Department of Computer Science,
State University of New York at Stony Brook, Stony Brook, NY
11790.

566

1. Introduction

Much attention has been focused lately on the no-
tions of structured programming, a crucial factor when
dealing with the design of large programming systems.
Rather than viewing programming as an art and the
programmer as the perpetual artist, in structured
programming we are provided with a more systematic
(and in a way more restricted) approach which facili-
tates debugging and proving assertions about pro-
grams.

One of the ideas developed by advocates of struc-
tured programming is the top-down elaboration of
program control structures by a recursive process of
successive refinements [7, 15]. No such process has
been developed for dealing with data structures. The
main reason for this is the improper intermixing of the
semantic and the implementation concepts [3] of a
data structure. The failure to distinguish between these
concepts is a result of the conflicting factors involved
in choosing a data structure: simplicity of element ac-
cess, minimization of search time, dynamics of growth
or elimination of data, simplicity of restructuring and
extension, efficiency of storage utilization, and others.

With these in mind we propose a "structured" Data
Structure facility, which we call a Data Structure De-
scription and Manipulation Language (DSDML) to
maintain a similar terminology to other groups (see
CODASYL Report [I]). The DSDML provides data struc-
ture definitions in addition to the data definitions avail-
able in the host language (e.g. PL/I or COBOL). It will
include explicit declarations of commonly used data
structures and information about their access and
manipulation characteristics. These characteristics
include such features as reset pointers or end pointers
and search rules.

The main advantages of such a facility can be sum-
marized as follows.
1. It provides (some) control mechanism over the
behavior of data structures. Just as the "go to" is con-
sidered harmful to modular programs [2], in dealing
with data structures, we want to eliminate unrestricted
branches or edges. The permissible operations in the
DSDML are more restricted than those in the CODASYL
Report, but allow the creation of a wide variety of com-
monly used structures. The DSDML will be a useful
tool in verifying that our structures are indeed "well
formed" (i.e. enabling us to prove assertions about
data structures). Declarations of variables in a pro-
gramming language provide the compiler with the in-
formation necessary to prevent incorrect mixed mode
operations from occurring. In FORTRAN, for example,
one can declare variables to be REAL, INTEGER, LOGI-
CAL, DOUBLE PRECISION, or COMPLEX. In a similar way,
the DSDML (see Appendix) will prevent the programmer
from mistakenly converting a binary tree into a three-
way tree or from inserting a queue where a ring is ex-
pected or from obtaining undesired cycles, and so on.

Communications October 1974
of Volume 17
the ACM Number 10

The semantics will include provisions to prevent in-
valid operations. For example, if a one-way list with a
bo t tom pointer and with reset pointers (pointing back
to the first node f rom each node) is defined, it is not
possible to make insertions along the bot tom pointer
or reset pointers.
2. Top-down programming can be achieved in terms
of data structures, too. This follows f rom the fact
that the DSDML allows for definitions of multilevel data
structures in which the nodes of a given level structure
serve as headers for the structures at the next level.
Take, for example, the following application program
involving a telephone system. A number of telephones
are connected to a switchboard by lines. The switch-
board has a number of links which can connect any
two lines, but only one connection at a time can be

Fig. 1.

I. R

made to each line. Assume that initially we disregard
blocked calls; i.e. calls are lost if no links are available
(obviously, the case is that there are more lines than
links). The programmer might decide he needs a one-
way list to keep track of all the free lines and run the
program for this case. Later on, he might want to take
into account the blocked calls and associate with every
free line a waiting list of calls which could not be
serviced because no link was previously available. In
this case the desirable structure would be a one-way
list of one-way lists. As mentioned above, the DSDML
allows this kind of refinement by providing a multi-
level structure, in which a higher level node represents
the entire lower structure emanating f rom it. I f the
higher level routines have been written with sufficient
generality and have been debugged, they will work for
the refined structure. We need now only pay attention
to the lower level routines.
3. I t might be possible to obtain a more optimal

storage allocation. By providing a data structure defi-
nition, the compiler (or run-time package) may have
the ability to allocate storage in a more efficient way
than the usual "space available stack" technique em-
ployed for most dynamic storage allocation schemes.
For example, by declaring a binary tree with reset poin-
ters, some information is provided about the amount
of storage necessary for the nodes of the structure.

2. M a t h e m a t i c a l Pre l iminar ies

Before proceeding further with the DSDML, we pre-
sent our view of data structures which follows the
graph-theoretic model developed in [14]. For the reader
unfamiliar with graph theory see Harary [4].

We formally associate with every data structure a
quadruple G:

G = (E,D,L,F) where
(1) E is a set of entry nodes, which are instantly
accessible.
(2) D is a set of data nodes containing the infor-
mation
(3) L is a set of labels, indicating the different ac-
cessing branches.
(4) r is a mapping which describes the relationship
between the nodes and is defined as: 17 : (E U D) ×
L---* D.

Note that I' is a partial function that is one-one and onto
(i.e. a partial bijective function).

As an example of this notation, consider the fully
balanced binary tree in Figure 1. Here,

E = {el}
O = {dl, d 2 , . . . , d ~ } , n = 2 k - 1

for some integer k, which represents the number of
levels in the tree

L = { INTREE, L ,R }

The mapping r is given by:

F(el , I N T R E E) = dl
F(dg,L) = d2~, if i < 2 k - ~ - 1,

= ~b, i f i > 2 k-l,
F (d i , R) = d2i+1, if i < 2 k - l - 1,

= 4~, if i > 2 k-t,

¢ being the null element.
Furthermore, the restriction is made that we deal

only with well-formed structures (see [11]). G = (E,
D,L,I') is a well-formed structure if and only if:

(1) E U D is a connected set of nodes, that is, if
we consider the undirected graph which corre-
sponds to G, there is a path between every pair of
nodes; and
(2) E is a nonempty set with each node in E having
in-degree zero (searching has to start at some entry
point).

$67 Communications October 1974
of Volume 17
the ACM Number 10

Formally,

E ~ ¢ & Ve Vl (e ~ E & l ~_ L ~ F-t(e, 1) = q~).

Note that the set D can be empty. This allows us to
take into account cases like that of a queue with no
elements in it at a given moment.

(3) Any node in D is reachable from at least one
node in E. The transitive closure of £ restricted to
(E X L) yields D:

n *

U r II(ExL) = D

Fig. 2.

I

where n* is the smallest integer for which the
equality holds, t
This condition is meant to exclude structures such

as Figure 2 which contain unreachable nodes.
When dealing with "structured" data structures of

the form G = (E,D,L,£), the limitation IEl= 1 is
imposed. All such structures thus have a single entry
point which is always available for access by invoking
the name of the structure. This restriction is necessary
when defining multilevel structures, described later in
more detail.

We now define the uniform insertion of two struc-
tures. This forms the basis for the idea behind the for-
mation of multistructures.

Given two data structures G1 = (EI,D1,L~,F~)
and G2 = (E2,D2,L2,£2), the uniform insertion of
G2 in G1 denoted by: GI<I G2 is:

G = G~<I G2 = (El , {D1 U D2}, { L I U L 2 } , F)

where] E1 [= [E2 I = 1 and £ is defined as:
(i) on the set (El U D1) X L~ :
F(el , [j) = Fl(el ,]j), if el C E1 and lj C L I ,
(ii) on the set (D2 X L2):
£(d/ , lk') = re(d/ , lk'), if d / E 32 , / J E L2,
(iii)
I'(d~, 17) = I'2(e2, lj), ifd~ C D1, lj C L2,
On the "boundary" between G~ and G2, I' maps the

elements of D~ into the elements of D2. The entry
nodes of G2 get "absorbed" by each of the data nodes
of G~. The branches emanating f rom the data nodes of
Gx bear the same labels as the branch emanating f rom
the entry node of G2.

3. Overview of the Data Structure Description and
Manipulation Language

The facility described below is meant as an addi-
tion to the host language in much the same way that
the CODASYL group [1] proposes to extend currently
existing programming languages. The DSDML includes
declarations for linear structures (one-way lists, two-

l In general, r"(dl, li) = r"-l(v(di, It), lj) and r({dt, d2,
...dkl,lj) = U~-W(d,, tj).

way lists, rings, stacks, etc.) and tree, (binary, 3-ary,
etc.) together with their access and manipulat ion
characteristics (bot tom pointer, back pointer, search-
able option, etc.) and declarations for the operations
on data structures (insert, delete, etc.). Combinat ions
of these structures are also possible, such as one-way
lists of trees, a ring of stacks, etc., and this is done in a
PL/I-like mode by declaring different levels of nodes.
These combinations are called multistructures.

A fundamental concept in the system is that of an
interval, which is closely associated with the definition
of the delete operation. An interval of a node d~ con-
sists only of that node for linear structures. For trees,
the interval is given by specifying the node d~ and a
branch label l~. The subtree rooted at the successor
of d~ along 1~, i.e. I'(d~,l~), constitutes the interval
to be deleted. This is in accordance with the common
way in which additions and deletions are made. Addi-
tions or deletions f rom lists are made one node at a
time, while additions and deletions f rom trees are
made by processing subtrees. The assumption is that
by deleting an interior node in a tree, we want to delete
all its successor nodes, too. There might be a case when
after deleting an interior node in a tree the user might
want to restructure the tree, but we chose for the sake
of simplicity (and control) not to implement this
overly powerful operation.

The second fundamental concept in this system is
that in multistructures a higher level node is the owner
of the entire lower level structure emanating f rom it.
Consider the example of a one-way list with an end
pointer (level 1) each of whose nodes is a binary tree
(level 2) illustrated in Figure 3. Leaving out the defini-
tion of each node's data, we can describe the structure
a s :

DECLARE EXAMPLE
: (description of data in entry node)

LEVEL(l) LIST(START) ONEWAY(NEXT) END(LAST)
: (description of data in each node of the list)

LEVEL(2) TREE(INTREE) 2-BRANCH(L,R)
: (description of data in each node of the tree)

The deletion of a node in the tree implies the dele-

$68 Communications October 1974
of Volume 17
the ACM Number 10

Fig. 3.

LAST

START L

NEXT

~"IINTREE ~

tion of the entire subtree associated with that node.
The deletion of a node in the one-way list implies a
deletion of the entire list emanating from it and a
chaining through operation to remove the node from
the one-way list. Notice that for simplicity we no longer
name the nodes. For all the manipulations performed
on the data structure, a "working" pointer is main-
tained pointing to the current node. By specifying the
address of ' the current node and the branch label to
travel along, the successor will be unique if it exists
(since F is a partial bijective function).

The DSDML comprises four components: the Defini-
tion Statements, the Search Statements, the Manipu-
lation Statements, and the Extended Manipulation
Statements.

3.1 Definition Statements
Every structure definition begins with a DECLARE

statement (production 1 in Appendix) followed by
the name of the structure and a data description of the
information to be kept at the entry node. For example,
in the case of a file structure this information might
include the date of creation, date of last alteration, a
description of the information in the structure, or other
descriptive information. Following the DECLARE state-
ment, the system creates the structure by allocating
space for its entry node. Recall that the entry node in-
formation is made available by merely invoking the
name of the structure.

All structures must have at least one level, but could
have several. In discussing a one-way list of trees of
stacks, the one-way list is level one, the trees are at

level two, and the stacks are at level three. It is possible
to have more than one structure at each level. Consider
a one-way list in which each node has a tree and a
deque emanating from it. The one-way list is at level
one, but both the trees and the deques are at level two.
The levels must be described in ascending numerical
order beginning with LEVEL (1) without skipping
levels (productions 2 and 3). The nodes in a LEVEL (k)
structure are the header nodes for structures in LEVEL
(k q- 1). When there is more than one structure at a
level the sequence of level numbers mimics COBOL or
PL/I structure definitions, for example, I, 2, 3, 2, 3. Re-
call the definition of uniform insertion of two struc-
tures to understand why for a one-level structure the
entry point is the only header node, while for a multi-
structure, in addition to this, the nodes of a given
level k serve as headers for the structures emanating
from them.

It might be useful to distinguish here between two
classes of objects which appear in the process of using
data structures. These resemble very much the data
and program objects which are part of any program-
ming language [6]. Data objects can have a value,
which may be changed in the course of the program
(e.g. an integer variable, a pointer variable, a fixed
character string). Program objects do not have values,
but may be invoked to compute values for data objects
(e.g. a procedure, a statement, an entire program).
The dynamics of data structures presents us with two
similar classes of objects: static and dynamic [3]. Static
objects are in existence as long as the data structure is,
while dynamic objects are created at run-time and have
to be referenced through the static objects. Static nodes
are headers of data structures (or entry points, in our
terminology), and the branches emanating from them
are also static objects. Dynamic nodes in a data struc-
ture are created by the different primitives operating
on it (insert, delete, etc.) and thus may have a limited
existence. Dynamic nodes can be referenced only
through branches. To conclude, the branches emanat-
ing from dynamic nodes are also dynamic and repre-
sent the access path in the structure.

Ih particular, for the data structure definitions in the
DSDML: the entry node (static) is made available by
invoking the name of the structure; the pointer from
the entry node to the first data node has a different
label than the labels of the inner branches since it
corresponds to a static branch. The data nodes and
the pointers emanating from them are obviously dy-
namic objects.

The structure descriptions (production 4-9) provide
information about the type of organization and branch-
ing structure.

3.1.1 Lists
Lists (production 4) have a specified pointer from

the entry node to the first data node. The branch labels
for the data nodes in one-way lists or two-way lists are

569 Communications October 1974
of Volume 17
the ACM Number 10

Fig. 4.

BOTTOM HOME

Fig, 5.

~ FIRST

LA ST RECORD

\ LASmELD

T NEXT RECORD

FIELD FIELD FIELD FIELD

specified in productions l l and 12, respectively. Reset
branches which point to the first node are given labels
in production 13. Finally, the header node for a list
may contain a pointer to the last data node, the END
pointer, as specified in production 15. The branch
label names for searching, for reset, and for the end
positions are chosen by the programmer; but the sys-
tem checks for compatability.

As an example, consider the declaration of a two-
way list with an end pointer and with reset pointers (see
Figure 4) :

DECLARE DUBLCHA1N
: (data description of information at the entry node)

LEVEL(l) LIST(FIRST) TWOWAY(NEXT,LAST)
RESET(HOME) END(BOTTOM)

: (data description of information at each node)

A file structure consisting of a variable number of
records, each having a variable number of fields can
be described as a one-way list of one-way lists with end
pointers at both levels (see Figure 5):

DECLARE FILE

LEVEL(l) LIST(FIRSTi ONEWAY(NEXTRECORD)
END(LASTRECORD)

LEVEL(2) LIST(FIRSTFIELD) ONEWAY(NEXTFIELD)
END (LASTFIELD)

3.1.2 Trees
The tree description has to start with a branch label

for the pointer emanating f rom the entry node, fol-
lowed by the branching information for each node of
the tree. This includes specifying the number k of maxi-
m u m possible branches f rom every node and their cor-

570

Fig. 6.

ROOT

L L

~ C K (~ L

Communications
of
the ACM

October 1974
Volume 17
Number 10

responding unique names. The maximum number of
branches is implementation dependent. The difference
between a 1-BRANCH tree and a one-way list is in the
size of the interval for a node. In a one-way list the
interval for a node contains only that node. In 1-
BRANCH tree the interval for a node consists of all
the nodes which are its successors. The back option
permits the inclusion of labeled branches which point
to the immediate predecessor or parent of a node.
Finally, the reset pointer permits the inclusion of a
pointer f rom each node to the first data node.

The definition of a binary tree (with back option
pointers) of one-way lists would be (see Figure 6):

DECLARE BINTREE

LEVEL(l) TREE(ROOT) 2-BRANCH(LEFT,RIGHT)
BACK(BACK)

LEVEL(2) LIST(L) ONEWAY(NXT)

3.1.3 Other Linear Structures
Rings are similar to lists, differing only on one de-

tail: the last node in the list points back to the first node,
thus (willingly) creating a cycle. In this sense the ring
is not purely a linear structure.

Queues are also similar to lists, the difference being
in the permissible operations. The queue can be en-
tered by either of two pointers available f rom the entry
node. Additions and deletions to queues may be made
only at the tail or head of the queue, respectively. The
tail and head nodes of a queue and any lower level
structure emanating f rom them are available for search-
ing, but interior nodes are not automatically accessible.
I f the ability to search interior nodes is required, this
must be explicitly indicated by using the searchable
option, in which one or two directional searching may
be described. A one-way search begins at the head and
leads to the tail; for two-way searching the second
branch label indicates the tail-to-head direction.

Stacks are lists in which additions and deletions may
be made only at the top. A distinction is usually made
between stacks and pushdown lists: in the former all
nodes are searchable; in the latter only the topmost
nodes are accessible. To permit implementation of this
distinction, the searchable option is included. Although
the reset and end options are permitted, there is nor-
mally little use for them.

Deques are queue-like structures in which additions
and deletions may be made at either end.

3.2 Search Statements
Searching these structures can he described in simple

terms. Moving f rom node to node is accomplished by
setting a pointer to point at the current node looked
upon. Any number of pointers may be declared by the
user program to keep track of several nodes at once. (It
is sometimes desirable to keep a pointer to the pre-
viously searched node, too.) This process might be
visualized as adding temporary entry nodes to the

structure. Pointers may be saved, copied or compared
exactly as is now permitted in aL/L The reserved word
NULL is used as the value of the pointer variables where
there is nothing to point to, such as at the end of a one-
way list.

To begin searching a structure, the pointer assignment
statement given in production 23 has to be used. Since
searching begins at the entry node, we ENTER the given
structure name and set the current-node pointer to the
address of the entry node. To move f rom the entry node
or from any other node, the GET statement (production
22) is used providing the node location and the branch
label to indicate the direction in which we want to travel.
To search through the file structure in Figure 5, which
was discussed earlier, the structure must be entered,
searched down the records, and then searched across
the fields. The following program, written in "extended"
PL/I seeks out a particular field in the FILE structure.
MATCHRECORD and MATCHFIELD stand for blocks of
statements, or procedures, which check if the node cur-
rently retrieved is in the right record or field respectively.

DECLARE GRIPHOS

LEVEL(l) LIST(FIRST) ONEWAY(NEXT RECORD)
END(LAST RECORD)

LEVEL(2) LIST(FIRSTFIELD) ONEWAY(NEXTFIELD)
END (LASTFIELD)

CURNODE = ENTER(GRIPHOS);

CURNODE = GET(CURNODE,FIRST);
DO WHILE(CURNODE~ = NULL);
IF MATCHRECORD THEN

DO;
CURNODE = GET(CURNODE,FIRSTFIELD);

DO WHILE (CURNODE~ = NULL);

IF MATCHFIELD THEN CALL FOUND;
ELSE
CURNODE = GET(CURNODE,NEXTFIELD);
END;

END;
CURNODE = GET(CURNODE,NEXTRECORD);
END;

3.3 Manipulation Statements
The restriction to linear structures and tree-like

structures permits the use of a simple set of primitives.
A standard interpretation can be given to these primi-
tives which depends only on these two classes of data
structures. Standard interpretation refers to the prop-
erty that the primitives should always produce the same
result, independent of the sequence of operations which
have preceded it and independent of the current status
of the structure. The notions of interval and multistruc-
ture enable the realization of these primitives in the
DSDML. Recall that additions and deletions to lists are
made one node at a time, while additions and deletions
to trees a.re made by subtree manipulation. This is in
accordance with their respective interval definitions.

571 Communications October 1974
of Volume 17
the ACM Number 10

With regard to multistructures, the addition or deletion
of a node at level k will affect the whole structure from
level k down.

3.3.1 Insert Operation
The insert operation is defined in production 24. The

structure specified, is inserted along the given branch
label, emanating from the node specified. Note that the
insertion has to be uniform, meaning that the structure
to be inserted must match the structure definition of the
receiving structure; trees may be added to a one-way
list of trees; queues may be added to a one-way list of
queues; nodes may be added to lists. For trees the insert
operation can be interpreted as an "append" operation.
It is defined only on incomplete nodes. An incomplete
node is a node for which the branches defined in the
declaration statement are not all in use. Other imple-
mentations would allow for more than one result.

The run-time package would prevent the insertion of
a stack into a tree of queues or the insertion of a tree
into a one-way list. The second function of the run-time
package is to prevent the insertion of nodes along end
pointers, reset pointers, etc. These two basic checks help
prevent the creation of invalid structures. Only the
structures that have been defined can be produced.

3.3.2 Delete Operation
When dealing with the delete operation two critical

situations have to be avoided. First, care must be taken
to ensure that a portion of the structure does not become
unreachable (the so-called "hanging" structure). This
danger is avoided in DSDML by the interval organization
strategy. When a node is deleted, the entire interval is
deleted, and a rechaining operation may take place. In
one-way lists the deleted node is "chained through,"
and the pointers are reset to preserve the list properly.
In trees an entire subtree is deleted and the branch
entering the deleted subtree is set to NULL.

A second danger is that the deletion of a node will
leave certain pointers with incorrect values. By explicitly
defining the labels of every branch in the data structure,
it is possible to properly reassign the pointers associated
with the structure after such a manipulation has been
performed. For example, the deletion of the top node
in a stack must be accompanied by a resetting of the
top pointer; and the deletion of the last node of a one-
way list must be followed by the setting of a NULL
pointer in the next to last node.

Two formal delete operations are defined in produc-
tion 25 and 26. The delete operation as defined in p/'o-
duction 25 is used for linear structures. Only the node
to be deleted need be specified, and the meaning of the
operation is precisely defined. The chain is preserved,
the end pointer is reset, the reset pointer is deleted, etc.
In two-way lists, the proper branches are altered.

The delete operation as defined in production 26 is
used for trees. The node and branch label specified point
to the root node of the subtree to be deleted. After the
deletion, the branch label specified is set to NULL.

The space freed in performing a deletion may be
returned to the free space list by a garbage collection
technique. (Note that a more complicated situation ap-
pears when dealing with rings, which gives some of the
flavor of the problem encountered with cyclic struc-
tures. The chain pointers are preserved the same way as
in lists, but upon deleting the first data node (i.e. the
node pointed by the entry node) additional arguments
have to be taken into consideration for resetting the
entry pointer.)

3.3.3 Detach Operation
The detach operation defined in production 27 and

28 is similar to the detete operation except that the nodes
removed are not destroyed. They become an inde-
pendent structure whose name is that specified in the
statement. A detached structure may be inserted back
into another structure at a later time in the processing.

3.4 Extended Operations
3.4.1 Copy Operation. A structure or substructure

may be copied and assigned a new structure name by
the use of the statement defined in production 29. The
copy statement is similar to the detach statement except
that the original structure remains unchanged.

3.4.2 Interchange Operation. This operation (pro-
duction 30 for linear structures, production 31 for trees)
permits two nodes which have the same definition and
are at the same level, to be interchanged. It is equivalent
to detaching both nodes and reinserting them in the
alternate positions. Thus, two nodes in a list or a ring
could be interchanged by the issuance of one statement,
instead of four statements. Interchanging a tree and a
one-way list would not be permitted, but interchanging
two subtrees is permitted.

The statement

INTERCHANGE(nodel, left, node2, left)

is equivalent to the following sequence of statements:

DETACH(node1, left, name1)
DETACH(node2, left, name2)
INSERT(nodel, left, name2)
INSERT(node2, left, name1)

to perform the interchange of two subtrees. Notice that
nodel and node2 are not moved, only their left subtrees
are interchanged.

3.4.3 Replace Operation. The replace operation (pro-
duction 32 for linear structures, production 33 for trees)
permits a node or a subtree to replace another node or
subtree if they have the same definition and are at the
same level. It is equivalent to deleting one node, de-
taching a second node, and inserting the second node in
the position occupied by the first node. Replacing a tree
by a list would not be permitted, but replacing a sub-
tree by another subtree would be permitted. The state-
ment

REPLACE(node1, left, node2, right)

572 Communications October 1974
of Volume 17
the ACM Number 10

is equivalent to the following sequence of statements:

DELETE(nodel, left)
DETACH(node2, right, name)
INSERT(nodel, left, name)

3.4.4 Insertion of a List. It is often necessary to insert
an entire list in another list. This can be accomplished
by detaching and inserting one node at a time, but this
can be tedious and unpleasant for programmers. To
simplify the operation for the user, the INSERTLIST opera-
tion (production 34) is defined. This operation permits
the insertion of an entire list into another list if their
definitions are compatible.

Note that all these extended operations do not give
additional computational power, but are simplifying
operations which have higher conceptual meaning to
programmers.

4. Estimation of the DSDML and Comparison with
Other Systems

Most commercial systems which provide some kind
of data structure description and manipulation facility
limit themselves to one or two structure types. For ex-
ample, the Integrated Data Store [5] system mainly re-
stricts the programmer to the use of rings; and although
networks can be obtained by interconnecting different
rings, storage is not efficiently used and the underlying
structure is hidden behind the superimposed structure
supplied by the system. It appears that the problem is
created by the fact that their "world-view" is essentially
based on records with fixed format, fixed fields (a speci-
fied number of fields have to be in a record). This con-
sideration limits the access mechanisms to operate on
specialized structures.

The major design effort by the CODASYL Data Base
Task Group [1] to develop a Data Description Lan-
guage and a Data Manipulation Language for a gen-
eralized Data Base Management System was very much
concerned with selecting a useful set of data manipula-
tion primitives. They have solved some of the problems
posed by earlier systems, but the complexity of the sys-
tem makes it (sometimes) difficult to follow the effect of
the operations. The situation is that the same operations
might produce different effects depending on a detailed
set of declarations made in a complicated Data Defini-
tion Language. For example, the STOaE operation
creates a node and possibly connects it to one or more
structures, depending on how the structure has been
defined. The complexity and danger in deleting nodes
have led the designers to define no less than four DELETE
operations, each of whose functions vary depending on
which node is referenced and on how the structure is
defined. As a result, the user who implements a compli-

The DSDML could be implemented in an extensible lan-
guage, like Algol 68.

cared structure in this system would have to be extremely
careful when invoking the operations.

A different approach to describe the various struc-
tures and operations may be found in attempts to define
a generalized graph programming language [8, 9]. Each
of these systems gives the necessary primitives to manip-
ulate a graph in an arbitrary manner. Complex struc-
tures such as acyclic graphs and networks can be
created, but no guarantee is given to prevent the user
from obtaining an illegal logical structure. Note that
the structures are built in terms of primitives which
resemble the level of assembly language operations.

The attitude taken for designing the DSDML was to
choose and implement higher level primitives with just
the right amount of power. ~ A host programming lan-
guage like PL/I provides list processing facilities, allow-
ing the addition or deletion of branches and the creation
or destruction of nodes by the use of pointer variables
and the ALLOCATE or FREE operations. However, these
primitives are too powerful, since they permit pro-
grammers to create structures which are not well
formed. Unrestricted use of the built-in ADDR primitive
can be made by assigning the returned value of At)DR
to a pointer variable. Since the argument of the ADDR
function can represent any physical address, a pointer
can be defined to point to any object in the program.

In choosing the primitives for the OSt)ML, we did not
want restrictive operations which are meaningful in
only a very limited environment, nor did we desire a set
of primitives which are so powerful that the user can
unwittingly destroy a structure. The development of the
DSDML depended very much on the restriction to
basically two types of structures: linear and tree-like,
and combinations of these. The explicit recognition of
these distinct classes of data structures enabled us to
assign a unique meaning to the operations, which de-
pends only on the class of the structure being operated
on. The results of the operations are always the same,
independent of the sequence of operations which might
have proceded it and independent of the current status
of the structure.

Some questions were raised in the course of this
work which we plan to investigate further. First of all a
rigid formalism utilizing graph theory and formal
semantics should be developed to indeed prove that any
sequence of allowable operations in DSDML yields the
well-formed structure that is defined in the declaration
statement. Secondly, we plan to enlarge the category
of structures dealt with by allowing multiple entry nodes
and structures associated with indexes to include, for
example, indexed sequential files.

Acknowledgment. We would like to express our
sincere appreciation for the many useful and productive
discussions with Professor Jack Heller, State University
of New York at Stony Brook, and Dr. Arnold Rosen-
berg, mM Thomas J. Watson Research Laboratories.

573 Communications October 1974
of Volume 17
the ACM Number 10

Appendix. Productions for a Restricted Data Structure
Definit ion and Manipula t ion Fac i l i ty

1) < d e f £ n l t l o n s t a t e m e n t > : : - D E C L A R g < s t r u c t u r e n a a e > < d a t a
d e s c r l p t i o n > < l e v e l d e s c r i p t i o n >

2) < l e v e l d e s c r l p t l o n > : : = L E V g L (< k >) < s t r u c t u r e
d e s e r l p t l o n > < d a t a d e s c r l p t l o n > < l e v e l d e s c r l p t l o n >

3) I L E V g L (< k >) < s t r u c t u r e d e s c r l p t l o n > < d a t a d e s c r i p t i o n >

6) < s t r u c t u r e d e s c r l p t l o n > : : - L I S T (< b r a n c h l a b e l >) < 1 or 2
w a y > < r e s e t o p t l o n > < e n d o p t i o n >

5) I TREE(<branch labe l>)<k>-BRANCH(<braach
l a b e l l l s t >) < b a c k o p t l o n > < r e a e t o p t l o n >

6) I RING(<branch l a b e l >) < 1 or 2 w a y > < r e s e t o p t i o n > < e n d
o p t i o n >

75] Q U E U E (< h e a d > , < t a i l > 5 < s e s r c h a b l e o p t i o n >

8)] STACg(<branch l a b e l >) < s e a r c h a b l e o p t i o n > < e u d op t i on>

9) [D g q U g (< h e a d > , < t a l l >) < s e a r c h a b l e o p t i o n >

10) < s e a r c h a b l e optlon>:t-SEARCHABLE<I or 2 w a y > < r e s e t op t lon>
]x

Ii) <I or 2 way>::=ONEWkY(<braneh label>)

125 [TWOWAY(<brsnch l a b e l > , < b r a n c h l a b e l >)

13) <reset option>::-RESET(<braneh label>)] I

14) <back optlon>::-BkCK(<branch label>) [

15) <end o p t i o n > : : = E N D (< b r a n c h l a b e l >) [

16) <b ranch I a b s I > : : - I D E N T I F I E R

17) <branch l a b e l l l s t > : : - < b r a n c h l a b e l > , < b r a n c h l a b e l f l a t >
I <branch l a b e l >

18) < s t r u c t u r e name>::-IDENTI~IER

19) <k>::-NUMBER

20) <rail>::-<branch label>

21) <head>::-<braneb label>

22) <node location
assignment state~nt>::=<node>=GET(<noda>,<branch Label>)

235 I <node>=ENTER(<atructure name>)

24) <operatlon>::=INSERT(<node>,<branch l a b e l > ,
<structure name>)

25)] DELETE(<node>)

26) [DELgTE(<node>.<branch l a b e l >)

27) I DETACH(<node>,<structure name>)

28) l DETACH(<node>j<branch l a b e l > , < s t r u e t u r e name>5

29) < e x t e n d e d o p e r a t l o n s > : : = C O P Y (< n o d e > , < b r a n e h l a b e l > ,
< s t r u c t u r e name>)

30) [INTERCHkNGE(<node>,<node>)

31) [INTERCHANCE(<node>,<branch l a b e l > , < n o d e > ,
<branch l a b e l > 5

32) l REPLACE(<node>,<node>5

33) l REPLACE(<node>,<branch l a b e l > , < n o d e > , < b r a n c h l a b e l >)

34) I I N S E R T L I S T (< n o d e > , < s t r u c t u r e node>)

355 <data descriptlon>::=descrlptlon in the host language

36) <node>::=IDENTIFIER

References
1. CODASYL--Data Base Task Group Report. Available from
ACM, New York, (Apr. 1971)
2. Dijkstra, E.W. Go to statement considered harmful. Comm.
A C M 11, 3 (Mar. 1968), 147-148.
3. Earley, J. Toward an understanding of data structures.
Comm. A C M 10, 10 (Oct. 1971), 617-627.
4. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass.,
1969.
5. Integrated Data Store. Honeywell Information Systems, Inc.,
Wellesly, Mass., 1971.
6. Kieburtz, R. Steps towards verifiable programs. Tech.
Rep 12, Dep. Comput. Sci., SUNY at Stony Brook, N.Y.
7. Mills, H. Top down programming in large systems. From
Debugging Techniques in Large Systems. Gourant Computer
Science Symposium, pp. 41-53.
8. Pratt, T., and Friedman, D. A language extension for
graphs--processing and its formal semantics. Comm. A C M 14, 7
(July 1971), 460-467.
9. Crespi-Reghizzi, S., and Morpugo, R. A language for treat-
ing graphs. Comm. A C M 13, 5 (May 1970), 319-323.
10. Rosenberg, A. Data graphs and addressing schemes. J.
Comput. and Syst. Sci. 5 (1971), 193-223.
11. Rosenberg, A. Exploiting addressability in data graphs.
Rep. RC-3618 IBM, T.J. Watson Res. Cent., 1971.
12. Rosenberg, A. Symmetries in data graphs. S I A M J. Comput.
1, (1972), 40-65.
13. Senko, M.E., Altman, E.B., Astrahan, M.M., and Fehder,
P.L. Data structures and accessing in data-base systems. I B M
Syst. J. 12, 1 (1973).
14. Shneiderman, B. Data structures: Description, manipulation
and evaluation. Ph.D. Th., Dept. of Comput. Sci., SUNY at
Stony Brook, N.Y., 1973.
15. Wirth, N.K. Program development by stepwise refinement.
Comm. A C M 14, 4 (Apr. 1971), 221-227.

The p roduc t i ons are expressed in B a c k u s - N a u r F o r m
(B N F) with the fo l lowing cons t an t s :

NUMBER is a integer value
IDENTIFIER is a cha rac te r s t r ing
~, is the nul l or e m p t y p r o d u c t i o n

Received April 1973; revised January 1974

574 Communications October 1974
of Volume 17
the ACM Number 10

