
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

�Correspond
E-mail addr

ben@cs.umd.ed

h.xie@pgrad.un
Information Systems 32 (2007) 402–423

www.elsevier.com/locate/infosys
Browsing large online data tables using generalized
query previews

Egemen Tanina,b,�, Ben Shneidermanb, Hairuo Xiea

aDepartment of Computer Science and Software Engineering, University of Melbourne, Australia
bDepartment of Computer Science, Human– Computer Interaction Laboratory, Institute for Advanced Computer Studies,

University of Maryland at College Park, USA

Received 5 September 2002; received in revised form 14 December 2005; accepted 18 December 2005

Recommended by Y. Ioannidis
Abstract

Companies, government agencies, and other organizations are making their data available to the world over the

Internet. They often use large online relational tables for this purpose. Users query such tables with front-ends

that typically use menus or form fillin interfaces, but these interfaces rarely give users information about the contents

and distribution of the data. Such a situation leads users to waste time and network/server resources posing queries

that have zero- or mega-hit results. Generalized query previews enable efficient browsing of large online data tables

by supplying data distribution information to users. The data distribution information provides continuous

feedback about the size of the result set as the query is being formed. Our paper presents a new user interface

architecture and discusses three controlled experiments (with 12, 16, and 48 participants). Our prototype systems

provide flexible user interfaces for research and testing of the ideas. The user studies show that for exploratory

querying tasks, generalized query previews can speed user performance for certain user domains and can reduce network/

server load.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Information visualization; Internet; World-wide web; Online querying
1. Problem

Companies, government agencies, and other
organizations are making their data available to
the public over the Internet. The United States
Census Bureau hosts vast collections of economic,
geographic, and demographic data (one of their
e front matter r 2006 Elsevier B.V. All rights reserved

2005.12.006

ing author. Tel.: +61 3 8344 1350.

esses: egemen@cs.mu.oz.au (E. Tanin),

u (B. Shneiderman),

imelb.edu.au (H. Xie).
sample data retrieval systems is available at
ferret.bls.census.gov/cgi-bin/ferret) and the Na-
tional Aeronautics and Space Association (NASA)
has still larger collections of scientific and environ-
mental data (e.g., eos.nasa.gov/eosdis). The World
Health Organization (WHO) is an international
organization that shares medical- and population-
related information over the Internet (e.g.,
www3.who.int/whosis/menu.cfm). These are only a
few of the organizations that are making vast data
resources available over the Internet.
.

http://www3.who.int/whosis/menu.cfm
www.elsevier.com/locate/infosys


ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423 403
The user interfaces that serve as the database
front-ends mostly utilize menus or form fillin
interfaces [1]. Generally, these user interfaces are
activated within a browser. People of various ages,
genders, and backgrounds are now forming the user
domain for such databases. Many of these users
have no background on these databases. Some may
also be inexperienced in using computers. Many of
the database front-ends, instead of giving users
information about the contents of the data, require
users to fill lengthy electronic forms. The designers
of such interfaces generally assume that users are
informed about the data and that they want to
submit known-item queries rather than probing the
data. However, unguided novice users of these
data centers frequently waste their time submitting
queries that have zero- or mega-hit result sets. Users
of online databases generally do not have the time
or the willingness to learn a complex querying
mechanism or the patience to fill in a lengthy form.
Finally, users of online databases often have to
access large amounts of data using a congested
network or server.
Fig. 1. A form fillin interface from the Uni
Fig. 1 shows a form fillin interface that was
generated using the interactive United States Census
Bureau homepages. This interface is a good example
of the database front-ends that are commonly
available over the Internet. This lengthy form fillin
interface has some guidance about what values
can be selected on some of the fields, but other
information such as the data distribution are not
available. In this interface, users can easily generate
queries that will return zero- or mega-hit result sets.
Novice users of this tool/database have to probe the
data until they find what they want or get tired of
using this interface. A more effective, simple, and
easy to learn approach for defining queries is needed
for public online databases.

Section 2 describes our early work and states the
results from our first user study. Section 3 describes
the approach introduced with this paper. Sections 4
and 5 report results of our second and third user
studies and Section 6 discusses the implementation
issues. Section 7 documents the related research.
Section 8 states our conclusions and possible future
work.
ted States Census Bureau homepages.



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423404
2. Early work and the first user study

Our early work on dynamic queries [2–5] used a
direct manipulation approach to facilitate query
formulation on multi-dimensional data with a visual
representation of query components and results.
Dynamic queries allow rapid, incremental, and
reversible control of the query. Results are pre-
sented visually and continuous feedback guides
users in the query formulation process. The
application of dynamic queries to large online data
is attractive to the users of the Internet. Unfortu-
nately, high system-resource demands make dy-
namic queries less applicable to large online data
collections. Dynamic queries require immediate
access to individual data items so that continuous
feedback is given to users. Yet, large online data
cannot be immediately and continuously accessed.

Later we worked on NASA’s large online data
collections. These collections are stored in vast
distributed data archive centers and contain various
types of data (e.g., documents, images, numerical
values, etc.). The attempt to apply dynamic queries
to these collections required us to look for solutions
to make dynamic queries work with large online
data. Using overviews and previews, we made
dynamic queries applicable to large online data
and allowed users to efficiently prune irrelevant
data. This NASA project led to the first ideas on
query previews.

Query previews give an overview of the data and
a preview of the queries before the final queries are
sent through the network. Query previews work
only on a few pre-selected attributes of the data. It
divides the querying process into two steps to reduce
the resources needed to form the final query. Hence,
a smaller and more interesting portion of a larger
data set can be downloaded to the local storage of
the client computer from the network to continue
the query process. We applied the principles of this
two-phase querying strategy (i.e., previews first and
then refinements) for NASA’s Earth Observing
System Data Information System [6–8]. This strat-
egy was created as an experimental interface [9] for
the Global Change Master Directory and was the
basis for the Global Land Cover Facility interfaces,
all part of NASA. This paper creates a general and
more transparent concept from the initial query
previews idea by helping users work on any of the
data attributes for online data browsing.

Query previews show a few discriminating (i.e.,
capable of selecting a few items from a large set)
attributes of the data so that the users’ selection on
these attributes would immediately lead to a smaller
subset of the data. A few commonly used attributes
of the data are pre-selected to form a query preview
by the software designer. In order to guide users in
the query formulation process, query previews
provide aggregate information about the data.
Distribution of data over different attribute values
is shown graphically using histograms. When users
select a value on any of the attributes of the
interface, the rest of the interface is updated.
Therefore, for each action users take, feedback is
given immediately. As users see the potential size of
their query results before refining the queries, they
are less likely to submit queries that return zero or
mega hits. The system load is reduced since users do
not waste their time with zero-hit queries or
consume network and server resources in down-
loading and processing many useless results. While
dynamic queries require attribute values of every
record of the data to be downloaded, query
previews only need aggregate information about
the data. So whatever the data size, only the
distribution information of the data is needed to
form a query preview interface. This is also a
scalable approach because aggregate data size
remains fixed even as the number of records in a
database table grows. Fig. 2 shows a query preview
interface formed using the three most commonly
used attributes of the Global Change Master
Directory (topic, year, and area). The distribution
of data over these attributes is shown with bar
charts and the result set size is displayed as a
separate bar at the bottom. The preview phase is
followed by a refinement phase.

Since query previews add another phase to query
formulation, there is a possibility that user perfor-
mance deteriorates and that users are frustrated by
a two-phase approach. Moreover, query previews
focus attention on only a few selected attributes that
may not be useful in many queries. Therefore, there
was a need for a user study to verify and quantify
the benefits of query previews and measure the
subjective user preferences. We identified the task
types that would put query previews into their best
and worst light so that we could quantify their
maximum benefits and drawbacks (details available
from Tanin et al. [10]).

In this first user study, we identified the clearly
specified tasks as tasks having a straightforward and
an accurate definition, i.e., known-item searches.
For example, ‘‘List all the State of Maryland



ARTICLE IN PRESS

Fig. 2. An example query preview interface. Topic, Year, and Area are the discriminating attributes for the 8431 data items. Here, the bars

show the overview of the data distribution. When users select the attribute values (e.g., atmosphere for topics and Europe for area), the

bars are updated immediately to reflect the new distribution of the data that satisfies the query. When users are satisfied with their initial

query, the results can be retrieved, and the query can be refined with additional attributes in the second phase. In this case, atmospheric

data for Europe produces a set of 292 data items to be retrieved.

E. Tanin et al. / Information Systems 32 (2007) 402–423 405
employees from the employee database’’ is a clearly
specified task. Query previews should have no
benefits for these tasks. In this case, users want a
complete list regardless of the outcome of the query.
For such tasks, the relevance of the query preview
attributes to the query is not an influential factor as
users are best served by directly going to the
refinement phase, e.g., the form fillin interface
(tasks of this worst case scenario are called T1).

Unclearly specified tasks usually require a series
of query submissions. User’s constraints and pre-
ferences cannot be stated immediately. Information
gained from the query previews will influence the
user’s choices, so query previews could be very
useful. However, the relevance of the attributes used
in the query preview will impact the usefulness of
the interface. Suppose that a user is looking for
some software engineers from the Washington, DC
area using an employee database. If the query
preview shows the number of employees per state
and some other attribute values of the data such as
the age distribution, then the preview is only
partially relevant to the task (middle case scenario:
T2). On the other hand, if the query preview shows
the number of employees per state and their job
types, then the query preview becomes fully relevant
(best case scenario: T3).

This first study used a within subject counter-
balanced design with 12 subjects. All the subjects
were new to the data set used in the study yet they
were well trained in using computers and web search
engines. Six subjects performed a set of tasks, once



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423406
by using an interface that included a query preview
followed by a form fillin interface and once by only
using a form fillin interface. Then, another set of six
subjects worked in the reverse order.

Our hypotheses were: (1) For clearly specified
tasks (T1), adding the query preview step will lead
to slower task performance, (2) for unclearly
specified tasks (T2 and T3), the addition of a query
preview step will lead to faster performance, and (3)
users will always prefer interfaces with query
previews.

The independent variable was the user interface
type and the treatments were: (1) Form fillin
interface with a query preview, (2) form fillin
interface without a query preview. The dependent
variables were the time to complete the tasks in each
interface (excluding the setup times) and the
subjective preferences of the users.

Our findings support the hypothesis that for
unclearly specified tasks, the interface with the
query preview yields better performance times than
the interface without the query preview. For both
T2 and T3 types of the unclearly specified tasks the
improvement in performance was significant (at the
level of 0.05): 1.6 times faster for T2 tasks and 2.1
times faster for T3 tasks. For the clearly specified
tasks, T1, as expected, the form fillin only interface
performed slightly better. The interface with the
preview was only 10% slower.

Also, as expected, users of the form fillin only
interface for clearly specified tasks performed more
rapidly since they were able to find the answer by
submitting a single form fillin query. The query
preview had no advantage since its attributes were
not needed for the query and users were performing
known-item searches. However, users of the inter-
face with the query preview performed only slightly
worse. The users spent only a few seconds in the
query preview, identified that it is not relevant for
the task and continued to the refinement phase.

For unclearly specified tasks with partial rele-
vance of the query preview attributes, although not
all the attributes in the task specification could be
specified using the query preview, the insight gained
from the query preview enabled users to eliminate
some potential zero-hit queries in advance and let
them concentrate on a much smaller set of possible
queries in the refinement phase.

For unclearly specified tasks with full relevance of
the query preview attributes, the full power of the
query preview was utilized. The query preview
enabled the users to see immediately which of the
possible queries should be submitted. The users
loaded the refinement phase only for submitting the
query and viewing the results. The users performed
the refinement phase with a high confidence that
they would get the expected results. On the other
hand, in the user interface without the query
preview, the users had absolutely no clue about
which of the possible queries will give the expected
results. They had to try several possible queries,
submitting many queries until they got a satisfac-
tory answer. Although the response time for each
such query was small, the time for thinking and
filling in the right specifications of each query
caused significant differences in performance (even
more than T2’s).

The users preferred the interface with the query
preview (average of 7.1 for the interface with the
preview versus an average of 5.2 for the interface
without it on a scale of 1–9 at the significance level
of 0.05). They stated that the query preview was
helpful, enabling them to search faster, and learn
more about the data. We believe that this result
comes not only from the improvement in perfor-
mance time which is experienced by the subjects but
also from gaining better control in performing the
tasks.

3. Generalized query previews

With this paper we define a general user interface
architecture for efficient browsing of large online
data. The generalized query previews user interface
architecture has the following three components
(Fig. 3):
�
 Schema component: presents the data table and
attribute names augmented with a mechanism for
selecting a user-defined view of the data attri-
butes.

�
 Distribution information component: displays and

helps users work on the data distribution
information, i.e., in the form of histograms.

�
 Raw data component: displays and/or used for the

analysis of the retrieved records.

Generalized query previews allow users to see the
database schema with table and attribute names.
Then, they can define their view by choosing some
of the data attributes. Later, using the attached
distribution information, they can analyze the
overview of the data and define their queries.
Finally, they can fetch the mapping results, and if



ARTICLE IN PRESS

Schema Component

Distribution
Information Component

Raw Data Component

End
Start

Fig. 3. Interactions between the three generalized query previews components.

E. Tanin et al. / Information Systems 32 (2007) 402–423 407
desired, forward it to another program for further
analysis. This pattern can be repeated, if needed,
with many different attributes. Hence, we are now
not confined to the limitations of using only a few
pre-selected attributes of query previews.

To demonstrate and later to experiment with the
generalized query previews user interface architec-
ture, we implemented prototype systems. First, we
implemented a system using a data set from the
1997 United States Economic Census collections.
The collection contains information about hospitals
located in each of the United States counties. It has
about 10 attributes and approximately 3000 entries.
The data are stored in four different relations on a
networked relational database. Each relation repre-
sents a single table. All the tables share a unique
identifier, ‘report_id’, representing a unique report
from a county. Second, we implemented a system
using a sample data set that we generated from the
Internet Movie Database (www.imdb.com). These
data contain information about various films. It has
again about 10 attributes but this time it contains
10,000 entries. These film data are stored in a single
relation. In the remainder of this section, we analyze
the generalized query previews user interface archi-
tecture using a prototype that we implemented with
the Census data. We refer to this prototype as the
ExpO system, and we will go through the compo-
nents of ExpO to give the details on our generalized
query previews user interface architecture.

3.1. Schema component

Users need to visually browse all the attribute and
table names to begin understanding the data. The
schema component of the generalized query pre-
views user interface architecture serves this purpose.
For simple data sets, a simple list of attributes
would generally suffice to show the attribute names.
In more complex environments, such as large
relational databases, more scalable approaches
may be needed.

ExpO uses a hierarchical browser, the panel on
the left in Fig. 4, to present the attribute and the
table names. The root of this panel is tagged with
the name of the database, ‘hospital97’. The first
level in the hierarchy displays the table names. In
these data, ‘loc’, ‘payroll’, ‘sale’, and ‘size’ are the
tables that share a common identifier. The second
level shows the attribute names.

The schema component should be implemented
after a careful analysis of the database schema size,
user needs, and the relations between the schema
entities. For small schemata, it may be unnecessary
to implement and can become annoying to use a
complex visualization. However, large databases
may need scalable approaches. Also, in some
applications, only a few tables sharing a set of
common attributes may be of interest to users. In
others, many clusters containing such attributes
may exist.

In generalized query previews, users can select
attributes to form a view. The schema component
plays the role of a selector for this purpose. In
applications where we do not have a simple
universal relation, selections of two attributes from
two tables without any common attributes should
be prevented. Otherwise, this can cause conflicts in
implicit join operations in query processing.

ExpO users can select the attributes that they
want to define their queries on. This action triggers
the insertion of that attribute to the user-defined
view, which is presented in a separate panel and also
by a hierarchical browser (Fig. 5). The panel on the
right depicts a few selections and a user-defined view
of the data. The selected attributes are tagged with
the name of the tables that they are selected from.
For example, ‘tax’ attribute of the ‘sale’ table forms

http://www.imdb.com


ARTICLE IN PRESS

Fig. 5. ExpO with a user-defined view after four attribute

selections. The user-defined view is also a hierarchical browser.

Fig. 4. An example generalized query preview interface, ExpO, the left panel displays the table and attribute names of a relational

database as an implementation of the schema component.

E. Tanin et al. / Information Systems 32 (2007) 402–423408
the tagged name of ‘sale_tax’. Joining the relations
representing these tables is automatically done in
the background. Hence, only the tables with
common attributes can be joined to form a view.
The example shown contains only four tables, each
represented by a single relation. Tables can also be
pre-defined views from the data, and need not
directly map to the relations of the database.

3.2. Distribution information component

Distribution information plays an important role
in the generalized query previews user interface
architecture. The distribution information compo-
nent shows an overview of the data and allows users
to specify queries. User-defined views are used to
attach the distribution information. In the example
from Fig. 5, a special icon in the user-defined view
shows that one of the attributes of this view,
‘sale_tax’, can be expanded to show the distribution
of data on this attribute. The same attribute may
also be displayed with a different icon on the
hierarchical browser of the database attribute and
table names.

The attributes are expandable into buckets and
the data distribution information is attached to
these buckets. Buckets are values over which the
data can be aggregated. The data distribution
information is attached to these buckets as some
visual aids, such as the bar charts of this example.
Here, ‘taxable’ (172 hits) and ‘non_taxable’ (3080
hits) are the bucket names for the ‘sale_tax’
attribute (Figs. 6 and 7). Forming these buckets is
the duty of the system designer, who should gather
information about the details of the data and users’
needs. In some cases, e.g., gender of a person, the
formation of the buckets may be easy. Yet, in some
other cases it may be quite difficult. Certain
attributes, e.g., social-security number of a person,
may not allow an easy formation at all. Although
automatic generation of the buckets may be useful
in some applications, a domain expert should work
with the designer for many other applications, e.g.,
scientific classification of diseases, etc. In ExpO, the
buckets are created by a batch program from the
raw data and can be updated regularly if needed.



ARTICLE IN PRESS

Fig. 6. ExpO with the data distribution information attached to the user-defined view.

Fig. 7. Information attached to the buckets of three attributes in

the user-defined view.

Fig. 8. A selection is made on one of the buckets, ‘great_plains’.

E. Tanin et al. / Information Systems 32 (2007) 402–423 409
An important feature of the generalized query
previews user interface architecture is the capability
of visualizing a preview of the results. In ExpO, a
separate bar on the top of the right panel shows
the total number of distinct items mapping to a
query. This is called the result bar (showing 3252
hits in Fig. 6). Hence, users will be aware of the
consequences of their query submissions, i.e.,
whether they are submitting mega-hit or zero-hit
queries.

Queries are incrementally and visually formed by
selecting items from a set of charts attached to the
user-defined view. Users get continuous feedback on
the data distribution information as they continue
their selections (Fig. 8). As soon as the selection is
made, other charts and the preview of results are
updated to reflect the new data distribution satisfy-
ing this selection. Possible zero-hit queries immedi-
ately become visible to the users. Users also see
where the data is and how it is distributed over
different values. They can work with these inter-
active charts as long as they want to explore the
contents of the data, without running into problems
with network or server loads. At this stage, only the
number of hits but not the actual hits themselves are
relevant. We have experimented with data sets that
contain hundreds of thousand of records (i.e.,
Environmental Protection Agency, Toxic Release
Inventory with more 300,000 records) with the same
efficiency as a data set of only a few hundred
records. Clicking on the visual aids, bars at this
stage, selects or deselects the items from the
charts (Fig. 9). Selections within a chart map to a
disjunction operation. Selections between charts
map to a conjunction operation. Other implementa-
tions are also possible. Yet, our implementation



ARTICLE IN PRESS

Fig. 9. Multiple selections are made, ‘taxable’, ‘great_plains’,

‘northwest’, and ‘0 to 99’.

Fig. 10. Other visual aids, such as a pie chart, may also be

available to users.

E. Tanin et al. / Information Systems 32 (2007) 402–423410
experiences show that the current ExpO implemen-
tation is one of the most intuitive implementations.

It is possible to display the distribution informa-
tion on different types of visual aids. Fig. 10 shows
another snapshot of the ExpO system where a pie
chart version of a corresponding bar chart and a
series of bars mapping to another bar chart are
shown. Representations, such as a color-coded
stack of bars instead of a single bar, can easily be
utilized.

3.3. Raw data component

After the investigative selections, users can fetch
the desired portions of the data by sending their
final selections over the network. They make
informed queries, getting neither zero- nor mega-
hit result sets is an issue. The benefit to users is in
rapid and meaningful exploration of data, and the
benefit to system maintainers is the reduced network
and server load. For some cases, the system designer
can take drastic measures such as preventing query
submissions for zero-/mega-hit queries. Fig. 11
shows a result set displayed on the right side of
the ExpO frame as a separate panel. Users can load
this result set into a local tool for further analysis.

4. Second study: generalized query previews with

computer experts

Generalized query previews are a more mature
idea than the query previews concept. Although
they are general, they also introduce some over-
heads such as defining a user-defined view and
possibly confusing expansions and contractions of
charts. Hence, there is a possibility that user
performance and preferences could be disturbed,
and users may get confused and annoyed by the
generalizations. Therefore, there was a need for new
user studies to verify and quantify the benefits of
generalized query previews and measure subjective
user preferences. This section focuses on our study
with computer experts on generalized query pre-
views. This study uses our ExpO system with Census
data and focuses on a setting where people with
strong computer science background, i.e., a degree
in computer science, performing as our subjects.
The third and final study focuses on a very
commonly used data set, the Internet Movie
Database, with specific interest on only novice
computer users, i.e., users who are not well-versed
on topics such as databases and networking.

4.1. Hypothesis

In this second study, we identified the task types
that would put generalized query previews into their
best and worst situations. Clearly specified tasks
and unclearly specified tasks were again used.
However, for generalized query previews, only the
full relevance of query attributes was an issue.
Hence, there were only two task types. These two
task types varied in terms of the clarity of the
specifications they had.

Our hypotheses were: (1) For clearly specified
tasks (T10) generalized query previews will lead to
slower task performance, but with the same number
of query submissions, (2) for unclearly specified
tasks (T20), generalized query previews will lead to
faster performance and fewer query submissions,



ARTICLE IN PRESS

Fig. 11. ExpO with results to a query displayed in a panel on the right, 273 hits are listed.

E. Tanin et al. / Information Systems 32 (2007) 402–423 411
and (3) users will always prefer generalized query
previews.
4.2. Independent and dependent variables

The independent variable is the user interface
type and the treatments are: (1) A form fillin
interface (using the same (re)naming convention
with the new task types, abbreviated as FFN0) and
(2) a generalized query preview interface (ExpO).
The dependent variables are the time to complete
the tasks in each interface (excluding the setup
times), the number of query submissions by the
users, and the subjective preferences of the users.
4.3. Subjects and materials

Sixteen computer science graduate students vo-
lunteered as subjects. All of them use computers
every day and have at least 5 years of experience
with computers. Eight subjects performed a set of
tasks, once by using a generalized query preview
interface (i.e., ExpO) and once by using a form fillin
interface (Fig. 12). Another set of eight subjects
worked in reverse order.

The materials include a form fillin interface for
querying a United States Census Bureau data set
(including information on approximately 3000
counties), a generalized query preview interface
(i.e., ExpO) for the same data, a set of tasks to be
performed by the subjects, a subject background
survey, and a subjective preference questionnaire.

The form fillin interface in Fig. 12 was used to
perform queries on a United States Census Bureau
data set where attributes in this sample data set were
shown with a simple hierarchical browser. Attri-
butes were selected by marking the toggles near
them. This action also triggers the display of
editable fields attached to these attributes. The final
output is a list of records matching the query.

The survey included six questions that determined
the experience level of the subjects with computers.
We also prepared a subjective preference question-
naire. This questionnaire included six questions to
find out which of the two interfaces the subjects
preferred.
4.4. Tasks and structure

The tasks given to the subjects were to find a list
of the counties in the database satisfying certain
constraints. In detail, the following two types of
tasks were used:
�
 T10: Clearly specified tasks, e.g., ‘‘Please get a list
of all the counties that are in the northwest



ARTICLE IN PRESS

Fig. 12. The form fillin interface (FFN0) used in the study. The rectangle on the right is used for displaying the results to a query (four hits

for this query).

E. Tanin et al. / Information Systems 32 (2007) 402–423412
region and have less than 100 employees working
in taxable hospitals’’ (a known-item search). For
this type of task, users can typically find the
answer by submitting a single form fillin query.
The ExpO user should have no specific advan-
tage.

�
 T20: Vaguer query definitions were used, e.g.,

‘‘Please get a list of all the counties from the
region that has the smallest number of counties
with less than 100 employees working in taxable
hospitals’’.
The second study used a within subject counter-
balanced design with 16 subjects. Each subject was
tested on both of the interfaces, but the order of the
interfaces was reversed for half of the users. A
parallel set of tasks (similar but not the same set of
tasks) was used on the second interface to reduce
the chance of performance improvement. Each set
of tasks included the two types of tasks (T10, T20),
with two sample tasks for each of these types. The
order of the task types within a task set, the order of
the tasks within each task type, and the task set
orders were all reversed, leading to 16 different
combinations. Subjects received only introductory
level training (not to exceed 10min in total). They
performed only two training tasks on each of the
user interfaces.

4.5. Results

Fig. 13 summarizes the times for completing each
of the task types for our subjects (clearly specified:
T10, unclearly specified: T20) for each of the user
interfaces. As hypothesized, for T10 tasks, the ExpO
system yielded slower performance than the form
fillin interface (tð31Þ ¼ 2:17, po0:05). For T20, the
ExpO system yielded faster performance than
the form fillin interface (tð31Þ ¼ 9:46, po0:05).
The statistical analysis used two-tailed paired two-
sample t-test for means. Each task was considered
separately leading to a degrees of freedom of 31.
The subjects answered six questions about their
preferences on a 1–9 scale (with higher numbers
indicating stronger preferences). The first question
addressed the general preference of subjects for
using either of the interfaces (Fig. 14). The results
show a statistically significant preference (tð15Þ ¼
6:37, po0:05) for the ExpO system over the form
fillin interface, FFN0.

The rest of the questions asked what the subjects
thought about the user interfaces. The results
(average scores, standard deviations, minimums,



ARTICLE IN PRESS

User
Preference

9

1

7.6 4.5

Expo FFN'

Fig. 14. User preference for 16 users (higher numbers indicate

higher satisfaction).

100

75

50

25

0
Expo ExpoFFN' FFN'

Task Completion Times

T
im

es
 (

se
c.

)
19.3 16.9 26.3

47.5
T1' T2'

Fig. 13. FFN0 stands for the form fillin interface. Bars indicate the average values, rectangles indicate the standard deviations, and lines

indicate the range from the minimums to the maximums.

E. Tanin et al. / Information Systems 32 (2007) 402–423 413
and maximums) appear in detail in Fig. 15. The
scores for all of the questions were statistically
significantly above the mid-point scale value of five
(tð15Þ ¼ 16:43; 5:84; 5:33; 13:49; and 9:30, respec-
tively, po0:05). An important piece of data that
was collected with this study was the number of
queries submitted for each task (Fig. 16). The results
show a statistically significant difference (tð31Þ ¼
22:39, po0:05) for the ExpO system with the T20

tasks. For T10, the difference was not significant.

4.6. Discussion of the results of the second study

Our findings support the hypothesis that for
unclearly specified tasks, the generalized query
previews yield better performance times and counts
than the form fillin interface. For the unclearly
specified tasks the improvement in performance was
significant (at the level of 0.05): 1.8 times faster. The
number of queries, a measure of network load, was
more than 7 times lower. For the clearly specified
tasks (T10), as expected, the form fillin interface
performed slightly better in performance time. But
no statistically significant difference was observed
for the submission counts.
As expected, users of the form fillin interface for
clearly specified tasks performed more rapidly since
they were able to find the answer by submitting a
single form fillin query. The generalized query
previews had no advantage as users were perform-
ing known-item searches and they did not require an
overview of the data. Again as expected, users of the
ExpO system performed only slightly worse (14%
slower). In addition, the number of queries sub-
mitted did not change.

For unclearly specified tasks, the generalized
query previews enabled users to see which of the
possible queries should be used. On the other hand,
in the form fillin interface, users had no clue about
which of the possible queries will give the expected
results. They had to try several possible queries,
submitting many queries (on average greater than 7
times more) until they got a satisfactory answer.
Although the response time for each such query was
relatively immediate, the time for thinking and
filling in the specifications of each query caused
significant differences in performance. In many
working systems, network and database delays
could substantially increase the advantage of the
generalized query previews.

Users (statistically significantly) preferred the
generalized query previews to the form fillin inter-
face. They stated that the generalized query pre-
views were very helpful, enabling them to search
faster and learn more about the data (scores for
these questions were statistically significantly above
the mid-point value). We believe that this subjective
satisfaction comes not only from the improvement
in performance time which is experienced by the
subjects but also from gaining better understanding
and control in performing the tasks. Yet, many
users experienced some problems understanding
the concept of a view and adopting to the bar
expansions and contractions when they first started



ARTICLE IN PRESS

9

1
Helpful? Faster? Enlighten? Enjoyable? Use it again?

8.0
7.1 7.2

7.8

7.8

Results of the Questionnaire

Fig. 15. Subject questionnaire results (number of users is 16). Higher numbers indicate higher satisfaction for using the ExpO system.

12

8

4

0
Expo FFN' Expo FFN'

1.1 1.2 1.0

7.3
T1' T2'

Submission Counts

Fig. 16. Number of queries submitted with the form fillin (FFN0) increases to 7.3 for T20 tasks (unclearly specified) while remaining small

with the ExpO system.

E. Tanin et al. / Information Systems 32 (2007) 402–423414
using the ExpO system. These problems seem to
diminish quickly with user experience.

This second study supports the claim that benefits
of generalized query previews exceed the overhead
of the generalizations. The benefits can grow
substantially in real-life situations where congested
networks and servers are used. However, an over-
head due to the generalizations still exists. The
previous study showed up to 2.1 times performance
improvement while this study showed 1.8 times
improvement for similar tasks. This suggests that
there may be some degradation in the user
performance in the second user study due to the
generalizations. This issue will be clearer with our
third study in the following section.

5. Third study: generalized query previews with

novice computer users

This section focuses on our third user study with
generalized query previews. This study uses a new
version of the ExpO system where we can browse
approximately 10,000 films that were obtained from
the Internet Movie Database. We also implemented
another system that is very similar to the ExpO
system but without the bars to help users. This
interface can be viewed as an intermediate interface
between the form fillin approach and the general-
ized query previews. After the second study, our aim
was also to see whether the benefits of generalized
query previews were due to the existence of the
distribution information or just due to the fact
that users can easily focus on a few attributes with
the help of the schema component. More impor-
tantly, we need to see whether novice computer
users can adapt to the generalizations as well as the
experts. In both of these studies, it is important to
note that the users were inexperienced with the
particular database that was being used for
that study. We continue to use the sample prototype
system name ExpO and also name the altered
version, i.e., without bars, as ExpO–WoB. The
form fillin interface (FFN0) for films was again
available but slightly adapted to the new domain of
movies.

5.1. Hypothesis

Clearly specified tasks and unclearly specified
tasks were again used. The hypothesis is also similar
to the second study: For clearly specified tasks (T10),
generalized query previews will lead to slower task
performance than other interfaces; the number of
queries submitted to the server will be the same in
all three interfaces. For unclearly specified tasks
(T20), the generalized query previews will lead to
faster performance than others; the number of
queries submitted will also be lower than others.
Users will prefer generalized query previews to
others in general.



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423 415
5.2. Independent and dependent variables

The independent variable is again the user inter-
face type and the treatments are: (1) A form fillin
interface (FFN0), (2) a generalized query preview
interface (ExpO) and (3) a generalized query
preview interface but without the bars (ExpO–
WoB). The dependent variables are the time to
complete the tasks in each interface (excluding the
setup times), the number of query submissions by
the users, and the subjective preferences of the users.

5.3. Subjects and materials

Forty-eight subjects were involved in this study.
None of them were experts on computers, i.e.,
databases, networking, etc. All of them had basic
knowledge on how to use a computer and browse
the web.

The materials include the FFN0 interface for
querying our movie database, the ExpO–WoB
interface, and the ExpO interface for the same
database. We prepared several tasks (training and
real tasks) to be performed by the subjects, a subject
background survey, and a subjective preference
questionnaire (all similar to the second user study).
Fig. 17. The new version of the ExpO interface used in the third study

maps to the schema component, the rectangle labeled with number 2 m

labeled with number 3 maps to the raw data component).
The survey includes questions that will ascertain
the experience level of the subjects with computers
and with search engines and the web. The subjective
preference questionnaire includes questions that aim
to find out which of the interfaces the subjects
preferred.

The new ExpO system with the movie database is
shown in Fig. 17 and was utilized in this study. The
ExpO–WoB system is very similar to this interface
but it does not have the bars. The new fillin
interface, retains the abbreviated name of FFN0, is
similar to the one in the second user study (with
minor changes to the way attributes are displayed,
i.e., to fit into the desired look and feel of the
movie database domain). It basically contains an
exhaustive list of all attributes with a similar
design to the distribution information component
of the new ExpO interface and also does not have
the bars. For this study, as we had an immediate
real-life implementation of the form fillin interface
available over the Internet (i.e., www.imdb.com,
advanced search), we collected information on
average query processing/network-transfer time.
This value (5 s to return the results) was used in
all the interfaces in the third study to simulate
the result-set downloads and users were not
that uses a movie database (the rectangle labeled with number 1

aps to the distribution information component, and the rectangle

http://www.imdb.com


ARTICLE IN PRESS

240

200

160

120

80

40

0
FFN' FFN'ExpO-WoB ExpO-WoBExpO ExpO

T
im

es
 (

se
c.

)

17.69
21.33 25.79

114.50
111.07 106.40

T1' T2'

Task Completion Times

Fig. 18. Task completion times in seconds for the task types T10 and T20.

9

1
FFN' ExpO-WoB ExpO

5.40 6.35 6.58

User Preference

Fig. 19. User preferences for 48 users.

E. Tanin et al. / Information Systems 32 (2007) 402–423416
informed that this was a simulation. Although this
value is much less than the ones we observed
with very large data collections that are currently
available from the US Census Bureau, it still
brings more realism to the third study (the query
processing time of the first two studies was in
average 2 s).

5.4. Tasks and structure

The third study uses a within subject counter-
balanced design with 48 subjects. Each subject was
tested on all three interfaces, but the order of the
interfaces was different for each subject. Three
parallel but different sets of tasks were used
with each of the three interfaces to reduce the
chance of performance improvement. The applica-
tion order of the parallel sets of tasks were different
for each subject (in average two were randomly
chosen out of six possible orders). Each set of tasks
includes the two tasks types (T10, T20), with two
sample tasks for each of these types. The order of
the task types within a task set was reversed. The
order of the tasks within each task type was also
reversed. So, we had a total of (6� 2� 2� 2) 48
subjects. The statistical analysis use two-tailed
paired two-sample t-test for means. Each task is
considered separately leading to a degrees of free-
dom of 95.

The tasks given to the subjects were similar to the
ones with the second and first studies and they ask
subjects to find a single or a list of film(s) from the
movie database satisfying certain constraints and
preferences.
5.5. Results

Fig. 18 summarizes the times for completing each of
the task types for our subjects for each of the user
interfaces. As hypothesized, for T10 tasks, the ExpO
system yielded slower performance than the form fillin
interface, FFN0, and the ExpO–WoB system (tð95Þ ¼
11:24 and tð95Þ ¼ 6:06, respectively for po0:05). For
T20, the ExpO system yielded slightly faster perfor-
mance than the form fillin interface (tð95Þ ¼ 2:21,
po0:05) but we could not detect a significant
difference between the ExpO and ExpO–WoB systems.
The subjects again answered six questions about their
preferences on a 1–9 scale. The first question addressed
the general preference of subjects for using either of the
interfaces (Fig. 19). The results show a preference
(tð47Þ ¼ 2:42, po0:05) for the ExpO system over the
FFN0 but we could not detect a significant difference
between the ExpO and ExpO–WoB interfaces.

The rest of the questions asked what the subjects
thought about the user interfaces. The results



ARTICLE IN PRESS

9

1
Helpful? Faster? Enlighten? Enjoyable? Use it again?

7.15 6.75 6.71 6.58 6.98

Results of the Questionaire

Fig. 20. Questionnaire results. Higher numbers indicate higher satisfaction with the ExpO.

12

10

8

6

4

2

0
FFN' FFN'ExpO-WoB ExpO-WoBExpO ExpO

1.00 1.03 1.02

7.71 7.52

1.32

T2'T1'

Submission Counts

Fig. 21. Number of queries submitted with the form fillin (FFN0) increases to 7.71 for T20 tasks (unclearly specified) while remaining small

with the ExpO system.

E. Tanin et al. / Information Systems 32 (2007) 402–423 417
(average scores, standard deviations, minimums,
and maximums) appear in detail in Fig. 20. The
scores for all of the questions were statistically
significantly above the mid-point scale value of
five (tð47Þ ¼ 8:81; 5:38; 7:01; 5:74; and 6:87, respec-
tively, po0:05). An important piece of data
collected in this study was the number of queries
submitted for each task (Fig. 21). The results show a
statistically significant difference (tð95Þ ¼ 37:20,
tð95Þ ¼ 34:68, for FFN0 and ExpO–WoB at
po0:05, respectively) for the ExpO system with
the T20 tasks. For T10, the difference was not
significant.

5.6. Discussion of results of the third study

Our findings confirmed some of our previous
results, however, there was an important change
with the novice users. For unclearly specified tasks
(T20), the generalized query previews yield faster
performance times than the form fillin interface but
only slightly faster in comparison to the second study.
Yet, the number of queries, a measure of network and
server load, was still dramatically lower (Fig. 21).
This is a compelling advantage, not only for reduced
network and server loads, but because it demon-
strates that users understood the query process and
got to results with just a few steps (approximately 1/6
of the number of queries). The ExpO–WoB had a
high query submission rate; in general, it did not
behave much differently than the FFN0.

For the clearly specified tasks (T10), as expected,
the generalized query previews produced slightly
slower performance times, but no statistically
significant difference was observed for the submis-
sion counts.

Users still prefer generalized query previews but
this preference seems to be weaker in comparison to



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423418
the expert users. These results can be explained after
also looking at the user comments and our
observations of the novice users. Many users stated
that the generalized query previews are efficient but
they had a hard time adapting and understanding
the bars and the possible uses of distribution
information. Understandably, some novice users
could not adapt to the bars as quickly as the
computer experts did. Hence, these novice users
spent more time performing the queries. This
reduced their performance with the ExpO system
and decreased their preferences towards using it. On
the other hand, the informed query formulation and
submission process led to a significant reduction in
query submissions.

This study continued to support our claim that
benefits of generalized query previews can still
exceed the overhead of the generalizations. The
novice users spend more time on analyzing the
distribution information, but as a result they make
more informed choices during the query process,
resulting in a drastic decrease in number of queries
submitted to the system. They appreciate the
benefits of the additional information in the bars
and maintain their positive attitude towards gen-
eralized query previews.

However, this study also confirms our beliefs that
the implementers of generalized query previews
should be cautious about their application and user
domain. Although the number of query submissions
is significantly lower, the time to analyze a set of
bars should be considered carefully before imple-
menting an application. Generalized query previews
can therefore be recommended for situations where
users have to explore data and try to understand
relationships, i.e., when the task is unclearly
Fig. 22. The architecture for transferring data in genera
specified. Experience of users with computers
should be taken into account. The bars that show
the result set sizes are useful and facilitate efficient
querying, even though it presents novice users a
challenge for absorbing the distribution informa-
tion. It is also important to note that, the general-
ized query previews approach was not meant to
attack the issues that may appear in known-item
searches, efficient formulation of general SQL
queries, or improve the performance of the data
experts who can query the data without any
exploration.

6. Implementation issues

The generalized query previews user interface
architecture utilizes a client–server approach for
storing, computing, and transferring data (Fig. 22).
It works with three different types of data. The first
type, the database schema, is a hierarchy of
database table and attribute names. It is requested
from the server as soon as the program starts on the
client. It loads rapidly because it rarely exceeds a
few kilobytes of text information. The second type,
the distribution information, is requested from the
server only when needed, i.e., during the chart
expansions, and used during users’ selection. It can
be created as a series of data structures for a set of
attribute combinations or as a single large data
structure that is manipulated at runtime to obtain
the desired subsets of distribution information
mapping to users’ needs (i.e., for attributes that
are being manipulated). The third type is the raw
data that is fetched at the time of a user query
submission, as it is the case in most other
architectures.
lized query previews, shown on the ExpO system.



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423 419
The most critical piece of data that is transferred
is the data distribution information, usually stored
in multi-dimensional arrays. Although the size of
the data structures to keep the distribution informa-
tion does not increase with the number of records,
other features of the data may alter the size. First,
for each attribute combination that can be manipu-
lated by the user, if we keep a single separate array
on the server, pre-calculation of these arrays may
get cumbersome with the increasing number of
attributes and their combinations. This situation
can lead to reduced freshness of the distribution
information. If we want to keep only one multi-
dimensional array for all of the attributes of the
data, addition of an attribute will increase the
dimension of this large array. Hence, in time,
dynamically updating the distribution information
may again become difficult. Second, with the
addition of a bucket to an n-dimensional array for
an attribute, we will be adding a new n� 1
dimensional slice to the array. Hence, the number
of buckets for an attribute should be selected
carefully. Third, for combinations of attributes, it
may be difficult to gather the distribution informa-
tion rapidly at runtime if a single large array for all
the attributes of the data is used. Finding a small
subset of this single large array can be difficult. If
disjoint arrays in combinations of four to five
attributes are kept, then this may need a large
storage capacity from the server for all combina-
tions. In both of these cases, a hash table to allocate
the right subset could be needed. Keeping these
efficient access paths up to date may gain impor-
tance, but may also be difficult. Many of these issues
have been investigated by the database researchers
in the realm of data warehouses and online
analytical processing (OLAP) [11,12]. Finally, as a
well-known issue in databases, joining multiple
tables at runtime for answering a query with raw
data gets difficult with the increasing number of
tables, attributes, and selections.

Formally, lets assume k denotes the total number
of attributes of the universal relation of a database, l

denotes the maximum number of attributes that can
be manipulated simultaneously by the user, m denotes
the maximum number of buckets for any attribute.
Then, in the worst case, the size of a single multi-
dimensional array that holds all the distribution
information will be mk. If a separate array for each
combination of possible attribute selections is kept,
then the size of a single array, in the worst case, will
be mi where i ¼ 1; . . . ; l denoting the number of
current attributes manipulated by the user. There
will be a Combinationðk; lÞ þ Combinationðk; l � 1Þ þ
� � � þ Combinationðk; 1Þ number of these arrays
where the combination operation is calculated as
Combinationðk; lÞ ¼ ðkðk � 1Þ � � � 1Þ=ððl ðl � 1Þ � � � 1Þ
ððk � lÞðk � l � 1Þ � � � 1ÞÞ.

There are two more challenges of the client–server
architecture that require a detailed analysis:
�
 Manipulation challenges.

�
 Representation challenges.
The manipulation challenges are observed when
users want to make selections on more than a few

attributes of the database at the same time.
Tracking the updates on multiple charts, and also
maintaining and transferring the distribution in-
formation for these charts becomes difficult.

Experience shows that, users are not comfortable
in tracking the updates on four or more charts.
Hence, users need to collapse some of the charts to
continue querying on other attributes. In addition,
arrays of four or more dimensions can easily
become cumbersome to transfer over the network.
This problem can be bypassed by downloading the
raw data itself after the first few selections. This
brings a solution to the number of dimensions
manipulated simultaneously without downloading
large amounts of raw data and also without
contradicting our initial design paradigm of not
downloading/querying large irrelevant parts of the
raw data. The initial selections should be selective
enough to prune the data down to a manageable
size. This size depends on the client computer main
memory capacity as well as the network download
speed. This approach should be implemented as a
transparent operation to the user.

The representation challenges are more difficult
to handle. The multi-dimensional arrays represent-
ing the distribution information are effective for
some data types. On the other hand, there are
certain data types that cannot be handled easily
with multi-dimensional arrays. The multi-valued
data types have the most generalized version of
these challenges. Temporal data forms a good
example. A record covering a range of dates in a
temporal database is a record that contains a multi-
valued attribute. This may result in the duplication
of the same record in a multi-dimensional array. It
is counted once for each date it spans. The
distribution information represented with the array
is no longer the same information represented with
the data set itself.



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423420
Similar situations are observed with the NASA
prototypes for the query previews idea, where a
satellite picture maps onto multiple regions of the
earth and not to a single longitude and latitude pair
(i.e., a geographical point). The situation is more
dramatic when large and multiple ranges of values
are used in a database. This may result in more
erroneous representations of the data with high
levels of duplication for the histograms. Therefore,
to accommodate multi-valued data types and hence
attack the representation challenges, the multi-
dimensional arrays must be enhanced. We intro-
duced some approaches to address these challenges
by creating various new data structures during our
previous work [13]. Extensions to this work can also
be found in [14,15].

7. Related work

Visual data mining and information visualization
researchers have been working on effective visual
methods for browsing and manipulating abstract
information spaces [16–19]. Most of these methods
rely on bar charts, scatter plots, and other means of
similar visual explanations [20–23]. Examples of
abstract information spaces are stock market
performance data, bibliographic databases, organi-
zational budgets, patient records from a medical
database, web logs, etc.

Users continue to demand more powerful meth-
ods to visually mine and manipulate their data.
Searching and browsing methods are becoming
more challenging to develop and understand with
the increasing data set sizes and diversity of access
methods. Generalized query previews address many
of these new features and challenges of contempor-
ary data sets and support exploration of large online
data tables stored in relational databases.

Heppe et al. [24] created one of the first menu-
driven information retrieval systems. They used
volume previews and progressive query formulation
to help users. Spence continued this line of work
with his Attribute and Influence Explorers [25,26]
that used interactive histograms. The tools give an
overview of the contents of the data and reduce the
visual complexity by summarizing the distributions
in a compact way. The selections on a histogram
immediately update the other histograms. RABBIT
is one of the first systems where progressive
querying was used [27] for helping users understand
the complex querying process. In RABBIT, users
form queries incrementally by showing the system
what needs to be changed in the original query.
These systems focused on making users understand
and organize their sessions looking at the results of
their previous actions and queries. More recently,
the idea of parallel bargrams has become popular in
online e-commerce applications (i.e., product selec-
tion) [28]. The idea behind a bargram is to convert a
histogram representation of an attribute into a stack
of bars that looks like a compound single bar. A
recent approach that is closely related to our
previous work, query previews, is RB++ [29].
They use histograms in a similar fashion to our
previous work to see an overview of the contents of
a website. Flamenco is another recent system where
users can smoothly move in a large information
space over the web using faceted metadata [30]. Our
work parallels many of these approaches in use of
the distribution information to present the overview
of the data. We extend the work to previewing data
in large online relational databases.

Table Lens [31] is a multi-dimensional data
visualization tool that uses a focus+context tech-
nique on tabular data. It is based on a fisheye view
of a spreadsheet. In this technique a group of rows
and columns are in focus and the rest of the
spreadsheet is used to give an overview of a
potentially very large table. These portions of the
spreadsheet give an overview of the data with the
help of histograms and color-coding. More recently,
InfoZoom [32] is a tool that also provides an
overview of tabular data sets. Any part of the data
can be selected, filtered out, or zoomed in using
highly interactive controls. Queries can be captured
and replayed. Results can be stored as charts or as
various interactive objects. Multiple columns with
similar values can be collapsed to make room for
and obtain an overview of a larger portion of the
data. Inselberg and Dimsdale [33] took a different
approach to visualizing multi-dimensional tabular
data. Instead of viewing data using commonly used
perpendicular multiple coordinate axes, they used a
series of parallel axes to display the data attributes.
Rows from a data table became lines crossing over
these axes. In contrast to our approach, these
techniques rely more on individual data rows,
columns, and individual items of tabular data,
making them less applicable to large online data.

A comprehensive approach, SDM [34], gives a set
of interactive techniques for 2D and 3D visualiza-
tions. Visualizations in SDM are linked. Real-time
interactive animation techniques are used. In SDM,
it is possible to use multi-dimensional visualizations



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423 421
to see a data set on and navigate over a landscape of
color-coded bars. These bars can be linked together
and indicate a certain relationship. Visage [35] aims
to coordinate the exploration of information across
different types of visual aids. For example, users can
drag and drop the spreadsheet view of some
geographical data onto a map to display its
distribution over the map. These systems focused
on having more interchangeable, comprehensive,
and interactive techniques than many others. Yet,
their focus is less on overviews, previews, and
pruning data.

Visualizing large amounts of abstract data has
always been a challenging area of research. DEVise
is an exploration system where users can visualize
large data sets [36]. Views are linked to each other
and updates occur simultaneously. VisDB [37] used
a single pixel of the screen to represent a single
record from a database. It colors and organizes the
database records with respect to the query result
relevancies. Organizational features, i.e., spirals,
also help VisDB show million record data sets.
Volume rendering is a common method for
displaying large scientific data (e.g., computer-aided
tomography images of a human brain). Becker
applied this method to abstract information spaces
[38]. He rendered volumetric abstract data stored in
a relational database. This let him show large
abstract data sets on 3D spaces interactively, mostly
in the form of 3D density clouds on large data sets.
Goldstein and Roth [39] used aggregation with
dynamic query definition methods to help users with
large data sets. They used a mechanism called the
Aggregate Manipulator and combined it with
various dynamic query definition capabilities. The
distribution of data is also visible to the users in this
system. These systems share our vision of making
more data available to users in a more compact
fashion. They also did not extend to large online
databases due to their close links to individual data
items.

Another source of related work is from the
research area of databases. For example, DataS-
plash [40] (formerly Tioga-2) is a database visuali-
zation environment that provides users with a
variety of display objects to be used on canvases
to explore the underlying complex database. It
provides various browsing capabilities, but no
compact way to see previews. SeeData, a system
for displaying the relational schema of a database
[41], uses 2D bar charts to show relationships
between thousands of relations. Polaris [42] is a
visualization system for relational databases that
extends the concept of pivot tables. Visual querying
is possible, and these visual specifications can be
rapidly and incrementally developed. Hellerstein et
al. [43] focuses on iterative methods like progressive
sampling and targets the problem of visualizing
large data tables. Marmotta, a querying system for
networked databases [44], uses progressive query-
ing. The main idea behind Marmotta is the
formulation of queries with simple icons that
represent actions and items. Users manipulate these
graphical items instead of typing complex queries
using a difficult querying language, but there is no
notion of summarizing database distributions.
Distribution data are available in HIBROWSE, a
user interface that helps users interact with a
database through a view-based searching mechan-
ism, but it is not tied to the query process [45].
More recent applications such as the Eureka
database exploration system helps users continu-
ously browse an Internet-based database [46]. It
integrates querying with result browsing. It allows
users to make explorations based on example
records and has dynamic query definition capabil-
ities. E-commerce sites form a good application area
for this system.

8. Conclusions

Generalized query previews form a new user
interface architecture for browsing large online
databases. Using metadata (e.g., the distribution
of data) for browsing and pruning raw data is
an intriguing idea. Especially, when the data are
stored in a node of a slow network, accessing only
the metadata can be very efficient. Metadata
remains at a constant size even as the raw data
grows. Showing the result set size before accessing
the results is another beneficial idea. Users can
immediately see the result sizes for their query
submissions. The simple hierarchical display and
creation of a user-defined view are the two strategies
introduced for defining (and confining) queries.
With this work, we saw that using overviews and
previews can enable efficient and intuitive browsing
of large online data and can be a faster alternative
to traditional approaches for accessing such types
of data.

Our controlled experiments analyzed the applica-
tion and user domains for generalized query pre-
views, which proved the approach to be especially
useful when users need to probe the data. We



ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423422
observed that there are significant advantages of our
work for expert computer users while novice users
may find it challenging to immediately absorb the
distribution information. It would be interesting for
future studies to analyze novice user behavior over
time. Another interesting topic for future study is to
compare metadata data preparation costs to the
gains we observed on query submission counts.

For practitioners, implications of user experience
with computers should be considered before deploy-
ment, especially when designing generalized query
preview systems with many relations and attributes.
Our work continues to disseminate academically as
well as commercially (e.g., www.endeca.com). Data
about these deployments would further clarify the
application and user domains, i.e., when/where
previewing-based systems can be successful.

We also list other interesting future directions for
improving generalized query previews. We envision
using multiple views rather than a single user-
defined view. In many cases, users may want to
form two separate queries simultaneously. They
may want to compare two different combinations of
selections. Second, we also envision users exploring
a hierarchy of charts rather than a single level of
charts. This may help users to drill-down into the
data (e.g., from years to months, months to weeks,
etc.). Third, using more varied approaches for
displaying the metadata may be worth exploring.
For example, scatter plots may be more useful for
some types of data in comparison to other visual
aids such as the bar charts. Shneiderman [47]
mentions the need for a scatter plot widget for
certain types of applications. Hence, utilizing a
variety of visualizations may be helpful in under-
standing and querying different types of data.
Fourth, working with user-defined buckets rather
than the pre-defined ones may form a promising
idea. Users may want to set the border values for
the buckets rather than using the pre-defined ones.
Unfortunately, some types of attributes, like the
gender of a person, may not be suitable for this idea.
Plus, creation of such buckets online can take time.
Fifth, a wide avenue of ideas can be investigated for
creating methods to efficiently manage some of the
server functions (e.g., distribution information
creation and design, efficient online updates with
dynamic data, etc.). Sixth, creating a history
keeping mechanism for generalized query previews
is a useful idea. Users may want to look at their
previous queries and results (not only within a
session, but also between sessions). They may want
to compare them to the current ones since this may
show them some insight about the trends in data.

Finally, applications for web-page searches can
also be considered as a separate research direction.
The web, with its large collection of pages, forms an
unstructured large online database. Using the
distribution information about date of creation,
language, or country in tandem with the classical
keyword search mechanism can be useful for the
users of the web search engines.
Acknowledgments

This work is supported in part by the United
States Census Bureau, NSF, and NASA. We thank
Dr. Catherine Plaisant for her contributions
throughout this project.
References

[1] B. Shneiderman, D. Byrd, W.B. Croft, Clarifying search: a

user-interface framework for text searches, D-Lib Magazine,

http://www.dlib.org/dlib/january97/retrieval, 1997.

[2] C. Williamson, B. Shneiderman, The dynamic home finder:

evaluating dynamic queries in a real-estate information

exploration system, Proceedings of the ACM SIGIR’92

Conference, 1992, pp. 338–346.

[3] C. Ahlberg, B. Shneiderman, Visual information seeking:

tight coupling of dynamic query filters with starfield

displays, Proceedings of the ACM CHI’94 Conference,

1994, pp. 313–317.

[4] C. Ahlberg, E. Wistrand, IVEE: an information visualiza-

tion and exploration environment, Proceedings of the IEEE

Information Visualization Symposium, 1995, pp. 66–73.

[5] C. Ahlberg, C. Williamson, B. Shneiderman, Dynamic

queries for information exploration: an implementation

and evaluation, Proceedings of the ACM CHI’92 Con-

ference, 1992, pp. 619–626.

[6] K. Doan, C. Plaisant, B. Shneiderman, Query previews in

networked information systems, Proceedings of the Forum

on Advances in Digital Libraries, IEEE Society Press, Silver

Spring, MD, 1996, pp. 120–129.

[7] K. Doan, C. Plaisant, B. Shneiderman, T. Bruns, Query

previews in networked information systems: a case study

with NASA environmental data, ACM SIGMODRecord 26

(1) (1997) 75–81.

[8] C. Plaisant, T. Bruns, K. Doan, B. Shneiderman, Interface

and data architecture for query previews in networked

information systems, ACM Trans. Inform. Systems 17 (3)

(1999) 320–341.

[9] S. Greene, E. Tanin, C. Plaisant, B. Shneiderman, L. Olsen,

G. Major, S. Johns, The end of zero-hit queries: query

previews for NASA’s global change master directory, Int. J.

Digital Libraries 2 (2) (1999) 79–90.

[10] E. Tanin, A. Lotem, I. Haddadin, B. Shneiderman, C.

Plaisant, L. Slaughter, Facilitating data exploration with

http://www.endeca.com
http://www.dlib.org/dlib/january97/retrieval


ARTICLE IN PRESS
E. Tanin et al. / Information Systems 32 (2007) 402–423 423
query previews: a study of user performance and preference,

Behav. Inform. Technol. 19 (6) (2000) 393–403.

[11] S. Chaudhuri, U. Dayal, An overview of data warehousing and

OLAP technology, ACM SIGMOD Record 26 (1) (1997).

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.

Reichart, M. Venkatrao, F. Pellow, H. Pirahesh, Data cube:

a relational aggregation operator generalizing group-by,

cross-tab, and sub totals, J. Data Mining Knowledge

Discovery 1 (1) (1997) 29–53.

[13] R. Beigel, E. Tanin, The geometry of browsing, Proceedings

of the Third Latin American Conference on Theoretical

Informatics, 1998, pp. 331–340.

[14] X. Lin, Q. Liu, Y. Yuan, X. Zhou, Multiscale histograms:

summarizing topological relations in large spatial datasets,

Proceedings of the 29th International Conference on Very

Large Data Bases, 2003, pp. 814–825.

[15] C. Sun, D. Agrawal, A. El Abbadi, Exploring spatial

datasets with histograms, Proceedings of the International

Conference on Data Engineering, 2002, pp. 93–102.

[16] S. Card, J.D. Mackinlay, B. Shneiderman, Readings in

Information Visualization Using Vision to Think, Morgan

Kaufmann, San Francisco, CA, 1999.

[17] N. Gershon, S.G. Eick, Information visualization, IEEE

Comput. Graphics Appl. 1997.

[18] M. Hearst, User interfaces and visualization, in: B.-Y.

Ricardo, R.-N. Berthier (Eds.), Modern Information Re-

trieval, ACM Press, New York, 1999, pp. 257–323.

[19] B. Shneiderman, C. Plaisant, Designing the User Interface:

Strategies for Effective Human–Computer Interaction,

Fourth ed, Addison Wesley, Reading, MA, 2004.

[20] J. Bertin, Semiology of Graphics, University of Wisconsin

Press, Madison, Wisconsin, 1983.

[21] E. Tufte, The Visual Display of Quantitative Information,

Graphics Press, Cheshire, Connecticut, 1983.

[22] E. Tufte, Envisioning Information, Graphics Press, Che-

shire, Connecticut, 1990.

[23] E. Tufte, Visual Explanations: Images and Quantities,

Evidence and Narrative, Graphics Press, Cheshire, Con-

necticut, 1997.

[24] D. Heppe, W.S. Edmondson, R. Spence, Helping both the

novice and advanced user in menu-driven information

retrieval systems, in: Proceedings of the HCI ‘85 Conference,

British Computer Society Press, 1985, pp. 92–101.

[25] L. Tweedie, R. Spence, D. Williams, R. Bhogal, The

attribute explorer, Video Proceedings of ACM CHI’94

Conference, 1994, pp. 435–436.

[26] L. Tweedie, R. Spence, H. Dawkes, H. Su, Externalising

abstract mathematical models, Proceedings of the ACM

CHI’96 Conference, 1996, pp. 406–412.

[27] M.D. Williams, What makes RABBIT run?, Int. J. Man

Machine Stud. 21 (1984) 333–335.

[28] K. Wittenburg, T. Lanning, M. Heinrichs, M. Stanton,

Parallel bargrams for consumer-based information explora-

tion and choice, Proceedings of the ACM Symposium on

User Interface Systems and Technology, 2001.

[29] G. Marchionini, B. Brunk, Towards a general relation

browser: a GUI for information architects, J. Digital

Inform. 4(1) (2004) http://jodi.ecs.soton.ac.uk/Articles/v04/

i01/Marchionini/

[30] M. Hearst, J. English, R. Sinha, K. Swearingen, P. Yee,

Finding the flow in web site search, Commun. ACM 45 (9)

(2002) 42–49.
[31] R. Rao, S. Card, The table lens: merging graphical and

symbolic representations in an interactive focus+context

visualization for tabular information, Proceedings of the

ACM CHI’94 Conference, 1994, pp. 318–322.

[32] C. Beilken, M. Spenke, Visual, interactive data mining with

infozoom—the medical data set, in: Proceedings of the

Workshop on Discovery Challenge in Third European

Conference on Principles and Practice of Knowledge

Discovery in Databases, Prague, 1999, pp. 49–54.

[33] A. Inselberg, B. Dimsdale, Visualizing multi-variate rela-

tions with parallel coordinates, Proceedings of the Third

International Conference on Human–Computer Interaction,

1989, pp. 460–467.

[34] M.C. Chuah, S.F. Roth, J. Mattis, J. Kolojejchick, SDM:

selective dynamic manipulation of visualizations,

Proceedings of the ACM UIST’95 Conference, 1995,

pp. 61–70.

[35] S.F. Roth, P. Lucas, J.A. Senn, C.C. Gomberg, M.B. Burks,

P.J. Stroffolino, J.A. Kolojejchick, C. Dunmire, Visage: a

user interface environment for exploring information,

Proceedings of the IEEE Information Visualization Sympo-

sium, 1996, pp. 3–12.

[36] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D.

Donjerkovic, S. Lawande, J. Myllymaki, K. Wenger,

DEVise: integrated querying and visual exploration of large

datasets, Proceedings of the ACM SIGMOD’97, 1997.

[37] D.A. Keim, H.P. Kriegel, VisDB: database explorations

using multidimensional visualization, IEEE Computer Gra-

phics Appl. 1994, pp. 40–49.

[38] B.G. Becker, Volume rendering for relational data, Proceed-

ings of the IEEE Information Visualization Symposium,

1997, pp. 87–90.

[39] J. Goldstein, S.F. Roth, Using aggregation and dynamic

queries for exploring large data sets, Proceedings of the

ACM CHI’94 Conference, 1994, pp. 23–29.

[40] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac,

M. Lin, M. Spalding, M. Stonebraker, DataSplash: a direct

manipulation environment for programming semantic zoom

visualizations of tabular data, J. Visual Languages Comput.

12 (5) (2001) 551–571.

[41] J. Antis, S.G. Eick, J. Pyrce, Visualizing the structure of

relational databases, IEEE Software 13 (1) (1996) 72–79.

[42] C. Stolte, P. Hanrahan, Polaris: a system for query, analysis,

and visualization of multi-dimensional relational databases,

Proceedings of the IEEE Information Visualization Sympo-

sium, 2000.

[43] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston,

V. Raman, T. Roth, Interactive data analysis: the control

project, IEEE Comput. 32 (8) (1999) 51–59.

[44] F. Capobianco, M. Mosconi, L. Pagnin, Progressive HTTP-

based querying of remote databases within the Marmotta

Iconic VQS, Proceedings of the IEEE Information Visuali-

zation Symposium, 1995, pp. 122–125.

[45] S. Pollitt, Interactive information retrieval based on faceted

classification using views, in: Proceedings of the Sixth

International Study Conference on Classification, University

College, London, 1997.

[46] J. Shafer, R. Agrawal, Continuous querying in database-

centric web applications, in: Proceedings of the 9th Interna-

tional World Wide Web Conference, Amsterdam, May 2000.

[47] B. Shneiderman, Dynamic queries for visual information

seeking, IEEE Software 11 (6) (1994) 70–77.

http://jodi.ecs.soton.ac.uk/Articles/v04/i01/Marchionini/
http://jodi.ecs.soton.ac.uk/Articles/v04/i01/Marchionini/

	Browsing large online data tables using generalized �query previews
	Problem
	Early work and the first user study
	Generalized query previews
	Schema component
	Distribution information component
	Raw data component

	Second study: generalized query previews with computer experts
	Hypothesis
	Independent and dependent variables
	Subjects and materials
	Tasks and structure
	Results
	Discussion of the results of the second study

	Third study: generalized query previews with novice computer users
	Hypothesis
	Independent and dependent variables
	Subjects and materials
	Tasks and structure
	Results
	Discussion of results of the third study

	Implementation issues
	Related work
	Conclusions
	Acknowledgments
	References


