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ABSTRACT
In our burgeoning world of ubiquitous sensors and afford-
able data storage, records of timestamped events are being
produced across nearly every domain of personal and profes-
sional computing. This data ranges from government-funded
medical databases, to the meticulously tabulated comings and
goings of obsessive self-trackers. Across all domains, how-
ever, is the need to search these records for meaningful pat-
terns of events. This paper reports on a two-part user study,
as well as a series of early tests and interviews with clinical
researchers, that informed the development of two temporal
query interfaces: a basic, menu-based interface and an ad-
vanced, graphic-based interface. While the scope of temporal
query is very broad, this work focuses on two particularly
complex and critical facets of temporal event sequences: in-
tervals (events with both a start time and an end time), and
the absence of an event. We describe how uses encounter a
common set of difficulties when expressing such queries, and
propose solutions to help overcome them. Finally, we report
on 2 case studies with epidemiologists at the US Army Phar-
macovigilance Center, illustrating how both query interfaces
were used to study patterns of drug use.
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INTRODUCTION
In 1992, a small class of second graders (including one of the
authors of this paper) was given a simple writing assignment:
describe how to make a peanut butter and jelly sandwich. Af-
ter a short period of fervent scribbling, papers were handed
in to a teacher, who sat at the front of the room, surrounded
by every tool and ingredient that one might need to construct
the aforementioned confection. Then, one by one, the teacher
acted out each set of instructions with the strictest adherence,
and with total disregard for disaster or absurdity. Amidst the
cackling laughter of the delighted students, peanut butter was
spread onto walls, jelly onto desks, and bread was pressed
into the carpet. The lesson: complexity can mask itself within
a seemingly simple concept.

Nearly 20 years later, we found ourselves in the same position
as we watched users construct temporal queries: they would
begin with an idea that was so simple and purposeful, and end
up with metaphorical peanut butter smeared onto metaphori-
cal walls.

The difficulty with questions involving temporal event se-
quences is not necessarily understanding the underlying com-
plexity, but articulating it into meaningful queries. Users
assume that the simplicity with which they perceive these
events, will translate just as easily to the underlying search
application. For queries involving patterns of point events
(events that occur at a single point in time), this assump-
tion typically holds true. However, such simple events do
not adequately cover the complete range of both medical and
real world phenomena. Our main partners, epidemiologists at
the US Army Pharmacovigilance Center (PVC), are primar-
ily responsible for conducting drug related studies involving
prescription administration and medication interaction. Their
data and their inquiries, are inherently interval-based. For ex-
ample, they might need to know when two medications are
being taken at the same time. Additionally, they frequently
explore questions in which the absence of an event is the crit-
ical point of interest. For example, they might be looking for
patients who did not experience a symptom after receiving a
medication.

When these types of questions arise, user strategies for speci-
fying queries tend to remain tethered to the simplistic logic of
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point events, despite the increase in the underlying complex-
ity. The result is queries that fail to match the users’ intention.
This problem occurs across a wide range of both clinical and
non-clinical domains.

In this paper, we present a two-part user study, designed to
determine the central difficulties of temporal query specifi-
cation, and alleviate these difficulties through graphical in-
teraction. We report on the design of a basic, menu-based
interface and an advanced, graphic-based interface, both of
which are integrated into the LifeFlow visualization tool [26].
We then assess the performance of these query interfaces in
assisting the PVC epidemiologists answer their evolving re-
search questions. Our contributions are as follows:

1. An assessment of the primary user difficulties in specifying
queries involving intervals and absences.

2. A discussion of the differences between interval event ab-
sences and point event absences.

3. Two novel temporal query interfaces, designed to offer in-
tuitive access to a wide range of temporal relationships.

This paper is organized as follows: we begin by relating tem-
poral search to the standard search model and discussing the
critical factors of each stage. We then survey previous work
in temporal query according to these critical factors. Next,
we describe four common stumbling blocks that users en-
counter when specifying queries involving intervals and ab-
sences, and then introduce two query interfaces and discuss
the design decisions behind them. We evaluate these inter-
faces in two case studies with PVC researchers, and finally,
discuss future work and conclude.

THE STANDARD SEARCH MODEL
As a basis by which to discuss and compare related work,
our first step was to frame temporal query in the context of a
standard search model. Hearst [11] breaks the search process
down into three stages: Specification, Presentation of Results,
and Reformulation. For each of these stages, we propose de-
sign goals, devised to facilitate the successful execution of
temporal queries:

Specification
In the Specification stage, users construct and submit their
initial query to the search application. Perhaps most impor-
tant in this stage, is that a diverse array of potential users be
able to complete the specification process. Users must be able
to specify their query using a language that is both accessible
and intuitive. Furthermore, the interface should provide users
with as much information as possible about how the applica-
tion is going to interpret their query. Errors should only arise
though user misinterpretation of the dataset, not through user
misinterpretation of the query interface.

Presentation of Results
In the Presentation stage, the application returns a set of re-
sults, based on the query. The critical component of this stage
is a presentation that gives users enough information to refine
their query if necessary. Clinical researchers typically group
retrieval errors into two categories: false positives and false
negatives. An ideal interface should provide insight into both

of these types of errors. Users should be able to look at the
result set and quickly determine whether their query needs to
be refined and if so, how.

Reformulation
In the final stage of the search process, users reformulate and
resubmit their query based on the information obtained in the
Presentation stage. Here, it is important that the interface al-
lows users to focus solely on the refinement. Users should
not have to respecify their entire query; they should be able
to modify only the components that need to be either added
or removed. This allows users to effectively bookmark their
thought process and continually move closer to their final re-
sult set.

RELATED WORK
Our work towards creating an intuitive temporal query system
was rooted in three major spheres of prior work: temporal
logic, temporal search, and visual query languages. They are
discussed here in the context of Hearst’s search model.

Temporal Logic
We draw first on methods to logically represent intervals,
most notably the work of Allen et al. [1]. Allen identified
13 unique relationships between two intervals and developed
a logic capable of representing each of them. This work has
been substantially reinforced by work in the data mining com-
munity [16, 28, 20].

While Allen’s 13 relationships encompass the full spectrum
of possible interval relationships, our work addresses only a
subset of them. Temporal event datasets, specifically from
medical data sources, are typically not precise enough to dis-
tinguish relationships in which interval end points are ex-
pected to occur concurrently, such as when the end of one
interval exactly meets the beginning of another. Thus, we
would consider only that the two intervals occur disjointly,
and that one interval precedes the other. By narrowing this
focus, we are able to preserve the simplicity of the resulting
query interface without compromising critical functionality.
Furthermore, Allen’s work does not address the relationships
created by point and interval events, or the absence of an
event, both of which our users have expressed to be critical
components of their work.

Temporal Search
Querying temporal data has been increasingly important due
to the rapid growth of time-related data from different do-
mains such as electronic health care, web logging, and finan-
cial analysis. Database researchers have produced numerous
works on designing temporal algebras and languages to sup-
port access to temporal relationships. Snodgrass [23], Jensen
et al. [14], and Das et al. [6] have all proposed extensions to
the well-known database querying language, SQL, to encom-
pass temporal relationships, including constructs for speci-
fying both intervals and the absence of an event [7]. How-
ever, this work all centers around command-based query lan-
guages, which have a notoriously steep learning curve (see
Figure 13). For most users, this renders the Specification
stage of the search process infeasible. Researchers outside
of the database community cannot be expected to learn, and
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thus utilize these complex languages. Thus, command-based
query is not a tenable solution for widespread use.

Visual Query Languages
Just as the graphical user interface revolutionized the way
that people interact with computers, visual query languages
reduce complexity by conveying information with meaning-
ful graphical representations [19, 5, 18]. Our focus, not sur-
prisingly, was in surveying previous work in temporal visual
query languages. There have been numerous efforts on this
front [24, 8, 4, 3, 12, 25, 13, 10, 27], all of which employ
different graphical schemes to convey various temporal rela-
tionships. However, none of these languages supported the
specification of both intervals and absences. Because of this,
we turned to visual query languages in the geo-spatial do-
main, where analogous concepts such as “overlap” and “not-
overlap” are principal tenets, and user behavior in specifying
these relationships is better documented [9, 21].

We extracted three guiding lessons. The first is that the Spec-
ification stage is greatly facilitated when the graphical ele-
ments used in the query language closely resemble those that
comprise the actual artifacts. For example, Jin and Szekely
[15] allow users to drag elements directly from the display of
patient records into the query interface. Second, users should
be able to directly manipulate query elements in the display,
exemplified nicely by the QueryLines system [22]. Many vi-
sual query languages use only form-based tools to modify the
elements in the query display, which forces users to substan-
tially backtrack when only minor changes are necessary. Fi-
nally, while visual query languages can make the Specifica-
tion stage of the search process more accessible, they cannot
single-handedly improve the Presentation or Reformulation
stages. These languages must be accompanied by thoughtful
strategies for result analysis.

THE CHALLENGES OF ABSENCES AND INTERVALS
Reasoning about intervals and absences is central to clinical
research as well as many other domains of temporal search.
As such, our first goal was to better understand the types
of questions that users ask of their data, and the difficulties
they encounter when trying to formulate those questions into
meaningful queries.

Our understanding of temporal query construction was ini-
tially shaped by a series of tests and interviews with users of
an early version of the LifeFlow visualization tool. We con-
ducted both individual and group user sessions with seven
researchers at the PVC, for a total of eight hours. In addi-
tion, we conducted similar one-hour sessions with many other
clinical researchers, including researchers at Washington DC
Children’s Hospital, Yale Medical School, and Harvard Med-
ical School.

From these sessions, we began to see common difficulties
emerging across users from multiple clinical domains. To
bring these difficulties into clearer focus, we conducted a gen-
erative design study - the first phase of our two-part user study
- in which 20 computer science graduate students were asked
to draw out (with colored markers on paper) a series of tempo-
ral queries. The participants, all of whom self-rated as expert

computer users, but with limited experience with databases,
command-based query formulation, and temporal event data,
were first introduced to the basic event representation in Life-
Flow (see the Timeline panel in Figure 14). They were then
given a blank timeline and asked to draw out the following
event sequences:

1. The patient is Admitted, then begins taking Drug A. The
patient has a Stroke while taking Drug A.

2. The patient takes Drug A for at least 3 days.
3. The patient has a Stroke, then starts taking Drugs A within

5-10 days after having the Stroke.
4. The patient has a Stroke, then is Admitted.
5. The patient has a Stroke, then is Admitted, WITHOUT be-

ing Diagnosed in between.
6. The patient is Admitted, then has a Stroke. The patient is

NOT taking Drug A when the stroke occurs.
7. The patient is not taking Drug A at some point before hav-

ing a Stroke.

These queries were explicitly devised to target the problem
areas that we encountered during our initial tests and inter-
views, in order to determine why they were occurring. Addi-
tionally, the freehand graphics generated by the participants,
were used to inform the visual query language used in the ad-
vanced query interface (discussed in detail in the Advanced
Search section). Participants were also asked to explain their
design choices during a subsequent debriefing.

We identified four primary difficulties that users encounter
when specifying queries involving interval events and ab-
sences. Eliminating these stumbling blocks became our focus
in designing unambiguous querying mechanisms.

(The graphics used in Figures 1 through 12, while rooted in
those used in the advanced query interface, are adapted here
to illustrate the difficulties being described.)

Point Event

Absence of Point Event

Compacted Interval Event

Expanded Interval Event

Absence of Interval Event

Table 1: Event graphics, for reference throughout this section.

Difficulty 1: Specifying Intervals as Point Events
As mentioned previously, most users are able to easily under-
stand temporal relationships involving point events, and spec-
ify successful queries to access them. What we frequently
saw then, was that users would attempt to apply these same
querying strategies to questions involving intervals. That is,
they would specify a query for an interval event as if it were
two separate point events (one representing the interval’s start
and one representing the interval’s end). Thus, they would try
to specify the following event sequence, where a Stroke oc-
curs while the patient is taking Drug A (Figure 1).
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Figure 1: Intended query: Stroke occurs during Drug A.

Unfortunately, they would construct the query as three dis-
joint event points - paraphrased as:

Find patients for whom Drug A was started, who then had a
Stroke, and who then stopped taking Drug A.

This query is analogous to the query in Figure 2:

Figure 2: User specified query for a Stroke occurring during Drug A.

The problem is that users view the beginning of the Drug A
prescription as a context change: the patient is now taking
Drug A. They assume that this context remains in place un-
til the end of Drug A is specified. They also assume that the
underlying application will interpret this context in the same
way, however this is not necessarily the case. Many databases
and data structures store interval events as two separate point
events, linked by a unique identifier. Thus, this query returns
cases like Figure 3, where a Stroke occurs between two sepa-
rate prescriptions.

Figure 3: False positive for “during” query.

The lesson here is that the fundamental temporal relationship
created by intervals, that of “during,” cannot be adequately
specified using the same “before” and “after” strategies used
to specify point event relationships. Interestingly, this issue
only arose (but arose very frequently) during our initial tests
with clinicians, who primarily use command-based querying
tools. The graphical representation of intervals that was used
throughout our design study completely eliminated this prob-
lem. This shows that a successful query tool can guide users
away from these errors by explicitly allowing them to express
temporal context in the query specification.

Difficulty 2: Specifying Absence as Non-Presence
Throughout our interviews, users often assumed that by not
specifying the presence of an event, they were, by implica-
tion, specifying its absence. For example, a researcher look-
ing for potential causal relationships may need to find all pa-
tients who were prescribed Drug A, and then had a Stroke
after the prescription ended. The resulting query would fre-
quently look something like Figure 4:

Figure 4: User assumes an implied absence of a Stroke during Drug A.

The assumption here, is that the absence of a Stroke while tak-
ing Drug A is implied by the fact that the presence of a Stroke
was only specified after the Drug A interval. The problem
with this assumption, is that it also necessarily implies that
no other type of event occurred while taking Drug A. It also
then, implies that no events occurred before Drug A, or be-
tween Drug A and the Stroke, or after the Stroke. Essentially,
if not specifying the presence of an event implies it’s absence,
then the querying system can only return exact matches. In
this case, it can only return records that consist of a Drug A
prescription, followed by a Stroke.

Suffice to say, this is what users typically report as their inten-
tion, nor is an exact match query system a particularly useful
tool for searching real world datasets. Because of this, it is
critical that the absence of an event be explicitly specified.
The query interface must make this readily apparent either
when users are specifying their query, or reviewing their re-
sults, or ideally, both.

Difficulty 3: Accessing “Does Not Occur” Relationships
Once users understood the need to explicitly specify an ab-
sence, they typically had very little difficulty integrating sim-
ple absence scenarios into meaningful queries. However, they
frequently overlooked the fact that specifying the absence of
individual events does not encompass the full range of possi-
ble “does not occur” queries. Consider a dataset of hospital
transfers where the typical pattern of events is that the patient
is admitted into the emergency room, then transferred to a
specialty ward like neurology, then discharged (Figure 5).

Figure 5: Typical patient transfer sequence.

A researcher might be interested in patients who deviated
from this pattern. Users would frequently attempt to answer
this type of question using multiple queries involving differ-
ent permutations of events or the absence of one or more of
the individual events, such as in Figures 6 and 7.

Figure 6: Different permutation of typical sequence.
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Figure 7: Event absent from typical sequence.

However, what they are really interested in is patient records
in which the original sequence does not occur. Thus, the sim-
pler approach is to search for the original sequence, and then
select all the records that do not match that search. We found
that users have difficulty transitioning to the mindset of us-
ing non-matches to their advantage. The query interface can
play an integral role in whether this thought process shift is
successful.

Difficulty 4: Understanding the Logic of Absences
From the onset, specifying the absence of an event cannot
help but feel counterintuitive. This is because the absence of a
point event functions much like an interval, while the absence
of an interval event can function much like a point. Consider
first, the absence of a point event. It might be important for a
researcher to find all patients who did not have a Stroke after
taking Drug A. A Stroke is a point event: it occurs at a single
point in time. However, it does not make sense to search for
the absence of a Stroke at any single point in time. There
will, of course, be many points in time when the patient is not
having a Stroke. The implication of this query is that a Stroke
does not occur during the entire interval of time following
the Drug A prescription. That is, the absence of a Stroke
implicitly starts when the patient stops taking Drug A, and
extends to the end of the patient record (Figure 8).

Figure 8: The implied end-points of a point event absence.

Counterintuitive? Yes, but users correctly report that this is
how they expect the absence of a point event to behave, be-
cause this is the only way that the absence of a point event can
behave. A point event absence is a duration of time, implicitly
framed by the events specified on either side of it. Regardless
of this, most users expressed this absence without a duration
(Figure 9).

Figure 9: User specification of point event absence.

The problem with this specification is that, unlike the absence
of a point event, the absence of an interval can be specified
at a single point in time. For example, a researcher might be
interested in patients who stopped taking their medication at
any point after having a stroke. In this case, there need only
be a single point in time when the interval is not taking place,
such as in Figure 10.

Figure 10: The absence of an interval, occurring at a single point.

The absence of an interval can also occur over a duration of
time with implicit end points, just like a point event absence.
For example, a researcher might be looking for patients who
had a Stroke and then never took Drug A (Figure 11).

Figure 11: Interval absences can also have implied end-points.

Finally, the absence of an interval may only be relevant in the
context of another event. For example, a researcher might be
interested in patients who had a stroke when they were not
taking Drug A (Figure 12).

Figure 12: The absence of an interval occurs only during a specific event.

Thus, in order to distinguish the type of interval absence that
is being specified, the interface must clearly represent the du-
ration, or lack thereof, of all absence specifications. It is not
sufficient to represent the absence of a point event as simply a
slashed icon, as this representation is used for the absence of
an interval that occurs at a single point. Users frequently re-
ported that they had not considered, or were unaware of these
different incarnations of an absence. The interface then, is
responsible for helping them generate a query that conveys
the absence that they intend to capture. No previous work in
either temporal logic or temporal querying has explicitly ad-
dressed this logical inconsistency that arises with absences,
or the effect that it has on query construction.

BASIC SEARCH (MENU-BASED)
Our development process began with an interface for basic
temporal search. The primary goal of this interface was to
give users quick and easy access to three of the most fun-
damental temporal relationships: before, after, and during.
The basic search is also designed to serve as an introduction
to more complex temporal relationships. Use of this inter-
face allows users to explore both interval events and absences
without the complexity of additional temporal constraints. As
such, this interface was integrated into the main control panel
of the LifeFlow application. It is described here, in the con-
text of the standard search model:

Specification
The basic search interface consists of two separate modules:
the subsequence module and the overlap module. Both mod-
ules consist of a simple list of drop-down menus which allow
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users to specify a series of event types (Figure 14). In each
menu, users can select either the presence (denoted by a either
a triangle or square icon for point and interval events respec-
tively) or the absence (denoted by a slashed icon) of any event
type. For interval events, the menus only allow users to spec-
ify complete intervals. That is, users cannot specify only the
start or the end of an interval. This prevents users from trying
to access “during” relationships using a sequential strategy
(Difficulty #1).

Additionally, since the absence option appears next to its cor-
responding presence option in each menu, users are intro-
duced to the concept of explicitly specifying absences by sim-
ply opening the menus (Difficulty #2). To remain consistent
across both point and interval absences, all absences are han-
dled uniformly, using implicit end points, since that is the
default for point absences (Difficulty #4). The other interval
absence options can be accessed in both the overlap query
module and the advanced query interface.

s e l e c t d i s t i n c t t 1 . p a t i d ,
t 1 . drug ,
t 1 . d i s p e n s e d a t e ,
t 1 . n e x t d r u g ,
t 1 . n e x t d i s p e n s e d a t e

from ( s e l e c t d i s t i n c t p a t i d ,
d i s p e n s e d a t e ,
l e a d ( d i s p e n s e d a t e , 1 ) ove r ( o r d e r by

p a t i d , d i s p e n s e d a t e , d rug )
n e x t d i s p e n s e d a t e ,

drug ,
l e a d ( drug , 1 ) ove r ( o r d e r by p a t i d ,

d i s p e n s e d a t e , d rug ) n e x t d r u g
from DRUG TBL
where drug i n ( ’DRUG A’ , ’DRUG B ’ ) ) t1 ,

EVENT t 2
where t 1 . p a t i d = t 2 . p a t i d and

t 2 . ICD9 = ’STROKE ’ and
( ( t 1 . d rug = ’DRUG A’ and t 1 . n e x t d r u g = ’

DRUG B ’ ) and
( t 1 . d i s p e n s e d a t e = t 1 .

n e x t d i s p e n s e d a t e ) and
( t 1 . n e x t d i s p e n s e d a t e < t 2 .

e v e n t s t a r t o r t 1 .
d i s p e n s e d a t e > t 2 . e v e n t e n d ) ) ;

Figure 13: SQL specification for patients that did not have a Stroke while
taking Drug A and Drug B (the same query being executed on the right side
of Figure 14).

The subsequence module targets before and after relation-
ships in temporal event data. That is, it searches for disjoint,
sequential events. For example, a researcher might be look-
ing for records in which the patient took Drug A, followed by
Drug B, and did not have a Stroke between these two drugs.
This query, specified using the subsequence module is shown
on the left side of Figure 14.

By contrast, the overlap module targets “during” relation-
ships, or events that are happening concurrently. The right
side of Figure 14 depicts an overlap search for records in
which the patient does not have a Stroke while taking both
Drug A and Drug B. As opposed to the subsequence mod-
ule, which can match events spanning across a patient’s entire
record, the overlap module searches only for a single point

in that record when the specified events are occurring con-
currently. Again, by having two separate modules with spe-
cialized functionality, users must mentally shift their search
strategies, based on the event relationships they are access-
ing.

To illustrate the complexity of this seemingly simple overlap
query, our partners at Oracle constructed the same query us-
ing SQL (Figure 13). The overlap query module distills this
entire block of code into three simple menu specifications.

Presentation of Results
As mentioned previously, the basic search interface is inte-
grated into the LifeFlow visualization tool, which consists of
two different panels for visualizing a set of temporal event
records. One panel depicts a listing of each individual record
in the dataset, laid out across its own timeline. A second
panel depicts an aggregated view of the entire dataset, where
records with the same event sequences are grouped together
in a summarizing display. A full description of the LifeFlow
application and display can be found in [26]. For the purposes
of this paper, we only depict the individual record panel.

When queries are specified using either the subsequence or
overlap query module, matching records are selected and
moved to the top of the individual display panel (Figure 14).
This allows users to quickly see not only the records that were
matched to their query, but also the records that did not match.
A count of the number of selected records is displayed at the
top of the control panel. While there is no explicit direction
towards leveraging non-matches into effective queries, this
strategy of keeping both the matches and non-matches visi-
ble at least prevents them from being forgotten altogether. If
users identify the non-matches as the primary point of inter-
est, they can invert the selected records (thus selecting all the
non-matches) in a single click (Difficulty #3).

Reformulation
In the basic search interface, queries are reformulated by sim-
ply reconfiguring the selected items in the drop-down menus
of the appropriate module. The configuration from the initial
query remains in place unless the module is explicitly reset.
Users can quickly return to their original query in order to
make the necessary adjustments. Users also have the option
of removing either matches or non-matches from the display
before they specify a new search. Thus, their view of the
dataset can be narrowed down as their exploration progresses.

ADVANCED SEARCH (GRAPHIC-BASED)
While the basic search interface gives users easy access to ei-
ther before and after relationships (Subsequence module) or
during relationships (Overlap module), the advanced search
allows them to specify these relationships in tandem, as well
as access more complex temporal features such as absolute
time constraints and the full range of absence scenarios. The
advanced search interface revolves around a visual query lan-
guage that is used to draw the desired sequence of event rela-
tionships. Wongsuphasawat et al. [27] found that users prefer
this graphical method over the menu-based interface for spec-
ifying complex temporal relationships.
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Figure 14: Basic Search: The Subsequence module (left) targets before and after relationships. The Overlap module (right) targets during relationships. Query
results, with matching records highlighted at the top of the list, are displayed in the Timeline panel on the righthand side of both figures.

We began with an interface closely modeled after the search
interface used in Similan [27], which we augmented to in-
clude an initial implementation of both absences and inter-
vals. The interface was then updated incrementally with im-
provements gleaned from both the hand-drawn, generative
phase of the user study and a second, usability phase in which
our 20 participants were asked to construct the same set of
seven queries using the advanced query interface. In this
usability phase of our study, we observed both the users’
understanding of the graphics and their interactions with
the interface, loosely following the Production-Preference-
Performace program for developing graphical representations
of abstract concepts [17]. Our findings are discussed through-
out the remainder of this section.

Specification
Queries are specified by adding query elements to a desig-
nated canvas. Users click on the canvas to bring up the Ele-
ment Editor Panel (Figure 15), where they can specify the el-
ement type, whether or not it occurs (Difficulty #2), and any
additional time constraints. The hand-drawing phase of our
user study greatly informed the graphics used in the advanced
query interface. We initially displayed absences as individ-
ual gray boxes, interspersed between the presence events.
However, multiple participants designated a separate section
of the canvas for displaying absences, a technique that was
very effective for keeping the display simple. This idea was
quickly integrated into the evolving design. Additionally, in-
terval events were initially displayed as double-sided arrows.
However, many users felt that the pointed ends expressed the
continuation of the interval, rather than its end-points. The
interval graphic was thus changed to be a connected pair of
bars. Similar to the concept behind the basic query interface,
when users add intervals to their query, a fully-formed inter-
val is added to the canvas. That is, users cannot add only

an interval start-point or an interval end-point to their query
(Difficulty #1).

Participants had no difficulty using the advanced query inter-
face to specify sequences of presence events, including more
complex temporal constraints such as interval durations and
gaps between events. Our initial implementation of absence
specification, however, involved a series of options that al-
lowed users to specify whether the absence should have im-
plicit end-points, occur at a single point in time, or apply only
to a specified presence event. Users had difficulty understand-
ing these options, regardless of the language used in the de-
scription. To mitigate this issue, we narrowed the absence
specification form down to a single checkbox which controls
whether the duration of the absence automatically spans out
to the nearest events on either side. For interval absences,
users can uncheck this box in order to have manual control of
where the absence’s end-points are placed (Difficulty #4).

Presentation of Results
Similar to the basic search result presentation, matching
records are moved to the top of the record display. How-
ever, the advanced search explicitly separates matches and
non-matches into two separate lists, and ranks records in
each list by how closely they match the query (Difficulty
#3). Matches are ranked by the number of extra events in
the record (events that were not matched to an element in
the query). Non-matches are ranked by how many query ele-
ments were matched within the record. A full display of the
advanced query interface can be found in Figure 16.

These separate, ranked lists allow users to quickly find the
most likely false positives (which will be towards the bottom
of the matched list) and false negatives (which will be towards
the top of the non-matched list). None of the participants in
our study had any difficulty evaluating whether or not their

7



Figure 15: Specifying a query: Users add query elements by clicking the
desired spot on the canvas (a), and adjusting its features using a pop-up
form (b). The element is then added to the canvas, where it can be dragged,
deleted, or modified (c). Event details can be seen on hover.

query had returned correct results, indicating that the result
presentation conveys enough information to accurately iden-
tify errors.

Reformulation
The advanced search interface makes it extremely easy for
users to modify their queries. Elements on the query canvas
can be dragged into new positions or deleted. Users can also
click on any element to bring up its Element Editor, or hover
over the element to view the event details. The only difficulty
that participants encountered in the Reformulation stage was
that, if they missed the element they were trying to click on
and clicked on the background instead, the form to add a new
query element would appear. This confused users, who were
expecting to see the form to modify an existing element. This
problem was solved by making the icons slightly larger and
adding a more visible hover effect.

CASE STUDIES
Once the development of the basic and advanced search inter-
faces was complete, we spent one-on-one time with two dif-
ferent epidemiologists at the PVC, using LifeFlow and both
temporal query interfaces to explore the evolving questions
of their on-going research studies.

Opioid Use
The first epidemiologist was investigating patterns of opi-
oid use. Opioids are typically prescribed to treat pain, and
range in strength from low, over-the-counter doses, to high,
potentially-habit-forming prescriptions. Additionally, these
medications can be prescribed as short-term, “acute” treat-
ments, or long-term, “chronic” treatments. The epidemiol-
ogist was interested in the relationships between the dosage
strength and the treatment duration. For example, are low
doses of opioids being prescribed for acute treatments?

Her dataset was organized into two layers. The first layer con-
sisted of each patient’s individual opioid prescriptions, cate-
gorized as either a “high,” “medium,” or “low” dose. In the
second layer, individual prescriptions in close proximity to
one another were combined into “eras,” and categorized as
either an acute or chronic treatment, based on the duration.
Thus, each prescription was represented twice, once as an
individual dosage, and once as a component of a treatment.
Hospital visits were also included in the dataset as potential
catalysts for treatment changes. Overall, the dataset consisted
of 500 patients and 2171 events.

The patients that the epidemiologist was initially interested in
were those who received a high opioid dosage as part of an
acute treatment. To isolate these patients, she used the overlap
search module to select patients with concurrent “high” and
“acute” intervals. From there, she was interested in whether
this combination was closely preceded by a hospital visit. To
answer this question, she used the advanced search to find
patients with a hospital visit within two months of the high
dosage. She remarked that she was surprised by how few pa-
tients matched this search, and expressed the need to expand
her dataset to further confirm this result. Overall, the epi-
demiologist was very excited about the simplicity and ease of
use of both query interfaces. She began our session with eight
overarching research questions, and LifeFlow allowed her to
target all of them within her dataset.

Asthma Medication Prescribing Practices
The second epidemiologist was working to understand the
prescribing practices of asthma medications. Much like opi-
oids, asthma medications range broadly in the strength of
the prescription. One of the strongest classes of asthma
medications, the Long-Acted Beta Agonist (LABA), should
only be prescribed when other, weaker asthma medications
have proven ineffective. Furthermore, when a LABA is pre-
scribed, it should be followed by multiple prescriptions of
successively weaker asthma medications, known as the “step-
down.”

One of the queries that the epidemiologist constructed to ex-
plore these prescribing practices was to use the advanced
search to look for patients who were prescribed a weaker

8



asthma medication within 3 months of both the start and end
date of the LABA prescription. However, since the dataset
spanned a significant portion of the patients’ histories, this
query also returned patients who had either began or ended
their treatment with LABAs. To eliminate these results, the
query was modified to include the specification that there
were no LABA prescriptions before the initial, weaker pre-
scription, or after the final prescription. The final query, and
the results it produced, can be seen in Figure 16.

Figure 16: The Advanced Query Interface, including the query canvas (top),
matching records (middle), and non-matching records (bottom). In this
query, the researcher was looking for patients who received a weaker asthma
medication (in blue) within 3 months of both the start and end date of a
stronger asthma medication (in red). They also wanted to ensure that this
sequence was neither preceded nor followed by the strong medication.

In both of these case studies, the epidemiologists remarked
that LifeFlow, and both the basic and the advanced query in-
terface were much easier to learn and use than the command-

based, statistical software that they had been using previously.
In many cases, it took more time to extract and format their
data (which is still done using command-based languages)
than it did to specify the intended queries in LifeFlow. Fur-
thermore, these command-based languages offered no option
of seeing the query results in a meaningful way, a feature that
is central to the standard search model as well as both of our
query interfaces. At the prompting of these epidemiologists,
we are currently working to install LifeFlow on the Pentagon
servers to facilitate their use of the software. While this en-
thusiasm is encouraging, particularly from such experienced
researchers, more careful testing and long-term assessments
are needed to understand when our querying interfaces are
helpful compared to other tools, and what additional features
are needed.

CONCLUSION
In this paper, we introduced two novel interfaces for con-
structing and executing temporal queries involving intervals
and the absence of an event. These interfaces facilitate tem-
poral search in four primary ways that set them apart from
standard, command-based querying techniques:

1. Easy to learn and use.
2. Guide users away from common difficulties.
3. Offer access to a wide range of temporal relationships.
4. Address all three stages of the standard search model.

We illustrated the use of both interfaces in two case stud-
ies with epidemiologists at the US Army Pharmacovigilance
Center, who used the query interfaces, as well as the en-
capsulating LifeFlow visualization tool, to answer questions
involving prescribing practices and medication interactions.
In these sessions, the epidemiologists were able to answer
their evolving research questions using both the basic and ad-
vanced query interfaces. They described the entire query pro-
cess as a dramatically simpler alternative to the command-
based approach to which they had been previously limited.
Though we only reported on these two case studies, multi-
ple other studies are underway with researchers across a wide
range of both clinical and non-clinical domains.

Moving forward, we plan next to integrate more flexibility
into the advanced query interface, allowing users to construct
queries where certain events can appear in permuted order-
ings. We are also testing different, more granular ways of
classifying the search results, much like the work done by
Chen and Dumais [2]. As we continue our collaboration with
all of our case study partners, our hope is that their datasets
and research questions will guide the development of future
feature sets.
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