
Snap-Together Visualization:
A User Interface for Coordinating Visualizations via

Relational Schemata
Chris North and Ben Shneiderman

Human-Computer Interaction Lab &
Department of Computer Science

University of Maryland, College Park, MD 20742 U S A
http://www.cs.umd.edu/hcil

north @ cs.umd.edu, ben @ cs.umd.edu

ABSTRACT
Multiple coordinated visualizations enable users to rapidly
explore complex information. However, users often need
unforeseen combinations of coordinated visualizations that are
appropriate for their data. Snap-Together Visualization enables
data users to rapidly and dynamically mix and match
visualizations and coordinations to construct custom exploration
interfaces without programming. Snap's conceptual model is
based on the relational database model. Users load relations into
visualizations then coordinate them based on the relational joins
between them. Users can create different types of coordinations
such as: brushing, drill down, overview and detail view, and
synchronized scrolling. Visualization developers can make their
independent visualizations snap-able with a simple API.

Evaluation of Snap revealed benefits, cognitive issues, and
usability concerns. Data savvy users were very capable and
thrilled to rapidly construct powerful coordinated visualizations.
A snapped overview and detail-view coordination improved user
performance by 30-80%, depending on task.

Keywords
User interface, information visualization, multiple views,
coordination, tight coupling, relational, database, user study.

1. INTRODUCTION
In exploring information, two or more coordinated visualizations
are often required to adequately display and browse the data
[BWK00]. For example, Microsoft's Windows Explorer employs
3 visualizations to browse hierarchical file systems: an outliner
view of the folders, a tabular view of the files in the selected
folder, and a quick view of details of the selected file. In Spotfire
[AW95], a commercial scatterplot visualization tool, selecting a
record in the plot displays its attribute values in a web browser.

While these combinations of coordinated views are very helpful
for some tasks, what about other combinations? What if, in
Windows Explorer, users want to view their folders as a

Permission to make digital or hand copie of all or part of this
work for personal or classroom use is granted without fee provi-
ded that copies are not made or distributed for profit or commer-
cial advantage, and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
AVl 2000, Palermo, Italy.

© 2000 ACM 1-58113-252-2/00/00C5..$5.00

scatterplot instead of an outliner? Then they could quickly spot
large old folders, and select them to see contents in the tabular
view. If browsing a census database, why can't users click on a
state in a Spotfire visualization to display its counties in a
Treemap [Shn92] visualization? (See Figure 1)

These alternate combinations typically require custom
development. In our lab, researchers stumble over this problem
often, and must constantly re-implement coordinations between
new unforeseen combinations of views. Unfortunately, this is a
poor solution to the problem. Even with good component-based
design, these hard-coded combinations are inflexible and difficult
to construct.

A lightweight mechanism is needed to allow end-users to easily
"snap" individual visualizations together into custom
combinations. These combinations can exploit simple
relationships in the data to support browsing. This must not be a
toolkit that requires programming, but a user interface.

Specifically, users should be able to choose and coordinate
visualizations so that: selecting or navigating to a data item in one
view causes another view to select or navigate to CO~Tesponding
items or load and display data related to that item. The "load"
capability is particularly potent. For example, users can drill
down through hierarchical levels in a database using different
visualizations at each level, as in the states and counties example.

1.1 Related Work
Systems for information visualization via multiple .coordinated
views can be classified by their level of flexibility in data, views,
and coordinations:
1. Data: users can load their own different data sets into the

visualizations.
2. Views: users can choose different sets of visualizations as

appropriate for the data.
3. Coordinations: users can choose different types of

coordinations between pairs of views as needed for exploring
or navigating relationships in the data.

Level 0 systems are not intended for flexibility. For example,
Windows Explorer always displays the same data set (the hard
drive file structure), with the same views and coordinations.

Most visualization tools are level l, flexible for data bat not views
or coordinations. For example, the Treemap tool can load and
display any hierarchical data set of users' choosing, but remains
constant in its pair of views (the treemap view and the details
pane) and the coordination between them (selecting a node in the
treemap displays associated data in the details pane).

128

Level 2 systems include flexibility in choice of views. For
example, systems such as Datadesk [Ve188], SAS JMP, EDV/
Advizor [EW95], and Spotfire, can display a single data table in
many different types of views of users' choosing such as scatter
plots or bar charts. All the views are coordinated for brushing-
and-linking [BC87], allowing users to relate data points across
views. When users paint points in one view, the system auto-
maticalty paints the corresponding points in the other views in the
same manner. This approach is useful for statistical data analysis.

In databases, Visage [RLS96] extends the brushing coordination
to multiple tables by brushing across relational joins. However,
users cannot establish a different type of coordination between
two views with these systems.

Level 3 systems include flexibility in the coordinations between
views. The Apple Dylan programming environment [DP95] lets
users choose which pairs of views to coordinate. Users browse
hierarchical object-oriented programs by splitting and linking
frames so that selecting a folder in one frame displays its contents
in the other frame (e.g. generalized Windows Explorer).
Spreadsheet Visualization [CBR97] arranges many small 3D
views as cells in a 2D grid. Then, users can select a whole row or
column of views to synchronize their 3D navigation.

Devise [LRB97] allows users to select some different types of

coordinations between views. Users can synchronize panning and
zooming of plots with common axes, and establish set operations
between views so that data in one view can be combined with data
in another.

In scientific visualization, data-flow systems such as ConMan
[Hae88], AVS, and IBM Data Explorer, also employ a form of
dynamic linking, but for a different purpose. Users link a variety
of modules to create custom data processing and viewing
pipelines, much like pipes on the Unix command line. Linkwinds
[JBO94] extends the data-flow model for data filtering. Upstream
widgets can filter the data that is displayed downstream.

Multiple coordinated visualization approaches have become an
important and diverse topic. For a comprehensive review of many
systems, see [Nor00].

2. SNAP TOGETHER VISUALIZATION
Snap-Together Visualization enables data users to rapidly and
dynamically mix and match visualizations and coordinations to
construct custom exploration interfaces without programming.
Snap is flexible in data, views and coordinations. Snap focuses
on (a) interconnecting the visualization tools created by
researchers and developers in the field to (b) construct
coordinated browsers for rapid exploration and navigation of data
and relationships.

United States
:~ I~ East Nodh Central
,~ £3 E~.st South Central
:~ ~ MiddleAltantic

~ Mounl~n

£3 New England
~ Pacific : c,.:~l,
~ . South Atlantic
• [~ DELAWARE J ~ , ~ :
i ffl DISTRICTOFCOLU ::~f£~}l
:.. I~ FLORIDA - - ~
i .~1 GEORGIA ~ l ~=I=~F

: ~ NORTH CAAOUNA
• 4~1 SOUTH CAROLINA
~. ~ VIRGINIA
; .~1 WESTVIRGINIA

£3 West Noah Central
~3 West South Cenl~ol

States

0

0

@

Load

Un i ted States o f A m e r i c a

BeJtimore MD 715360 ~ 692134 655615 280280

c a ! o j ! n ~ , . N o ? 9 0 Z ~ ~.7_q?s. ~?~ . ,~?_ . . 9983

C~ro8, MO 140203 123372 96358 42248
Ce~[. MD 78174 71347 ! 60430 24725
Ch~les. MD 111633 ~ 101154 72751 32950
Dorchester, MD 30170 i 30236 30623 12117

Gorrelt MD 29461 28138 26490 10110
H~ord. .. MD 205367 :182i'327 :145930 63]§3Z-

Kent MD 18736 17842 16695 6702

, - - ~ ~ - = - - ' . - - - I
Prince George's. MD 767413 728553 885071 258011
QueenAnne's. MD ~ 25508 12489
Somerset MD [- - I" 19188 7977~

Counties
File ~ O ~ HeO

Figure 1" A coordinated visualization environment for exploring Census data of U.S. states and counties, dynamically constructed using
Snap-Together Visualization. Users can explore states from nominal, geographic, and numeric perspectives using the outliner, map, and
scatter plot. Selecting a state displays detailed county and industry information for that state in the table and Treemap on the right.
Selecting Maryland on the map reveals a fairly high ranking in Per Capita Income in the plot, and immediately reveals in the Treemap that
the Services industry in Montgomery County is responsible for a major portion of that income.

129

2.1 M o d e l
Snap's conceptual model is based on the relational database
model. To explore a database, users can construct interfaces
composed of coordinated visualizations based on the database
schema. Users load relations into visualizations then coordinate
the visualizations based on the join relationships between their
relations. There is a direct correspondence between relational
concepts and Snap concepts: (see also Figure 2)

Relational Concept. Snap Concept
Relation = Visualization
Tuple = Item in a visualization
Primary key = Item ID
Join = Coordination

Hence, a graph of coordinations between visualizations
corresponds to the graph of joins between the relations in the
database schema diagram. This was inspired in part by RMM
[ISB95], a system for constructing web site navigational structure
from underlying relational databases. In RMM, database
relationships correspond to hyperlinks, whereas, in Snap they
correspond to coordinations.

2.2 R e l a t i o n s i n t o V i s u a l i z a t i o n s
When using Snap, users first load relations into visualizations. In
Snap, a visualization displays a single relation. Generally, each
tuple is depicted as an individual item in the visualization. For
example, a scatter plot displays each tuple as a dot using 2 of its
attributes as the coordinates. A table displays each tuple as a row.

Visualizations typically allow users to select a tuple, navigate to a
tuple, or somehow indicate interest in a tuple. We will call these
primary-key actions, because the tuples can be identified by their
primary-key values. Users initiate the action via input, and the
visualization responds with visual feedback. For example, users
might select a tuple in a scatter plot by clicking on or mousing
over the dot, and the system might respond by highlighting the dot
in yellow. We extend this slightly to enable primary-key actions
to be invoked programmatically. For example, the Snap system
can also select a tuple in the scatter plot to cause the same yellow-
highlight visual feedback as if the user had clicked on the dot.
Hence, we can model primary-key actions as unary functions that
take a tuple's primary-key value as argument: e.g.
Viz.Select(<id>). Each visualization publishes the set of actions it
supports to Snap.

Visualizations also have a foreign-key action that is managed by
Snap: the Load action queries the visualization's original relation
for tuples that are joined (by a foreign key) to the tuple given as
the argument (primary key) and loads them into the visualization.

In the Snap user interface, users load relations into visualizations
using the Snap Main Menu (Figure 3). It displays a menu of the
tables and queries in the database and a menu of the available
visualization tools.

2.3 C o o r d i n a t i n g V i s u a l i z a t i o n s
After loading relations into visualizations, users can then
coordinate the visualizations ('snap them together'). When
coordinating a pair of visualizations, users choose the actions in
each view to coordinate. A Snap coordination tightly couples the
actions between the two visualizations on tuples related by the
join between the relations. Users coordinate the visualizations
based on the join relationships between their relations. There are
4 cases:

I~:~: State
~! Division Count

Population iindust
i!~ Average Age year
~i Average Commute Time emplo!
~i!~; Per Capita Income ~nnua
~ti Median Household I n c o m e i establ
~i medi,~ ~e,',t &+i '+: ~

: ' Select
~: OOi$ion ; " • oac

t ~°~°~e i!
i~Per Capita Income

County
ndustry

~Ioyees
annual payroll ($ i000)
~t+~+.~~

. : :.

1~ooo~, " i l
"i] indu'try 1

~;,l~p~:~(~ ot oo) ~, '

Figure 2: Top: A schema diagram for a database of Census
information for U.S. states and counties (using Microsoft
Access). Bottom: The data tables are loaded into visualizations
and coordinated according to the join relationship between them.
This example models a drill-down interface for States to
Counties.

1. One-to-One: This is a primary-key to primary-key
relationship. Users coordinate a primary-key action in one view
to a primary-key action in the other. Then, when user,; invoke the
former action on a tuple in the former view, the system
automatically invokes the latter action on the corresponding tuple
in the latter view, and vice versa.

This is often used to relate different perspectives on a single
relation. For example, in Figure 1 different projections of the
States table are displayed in a scatter plot and a map.
Coordinating the select action in the plot to the select action in the
map creates a brushing-and-linking coordination. When users
click on Maryland in either view, it will also be highlighted in the
other view.

2. One-to-Many: This is a primary-key to foreign-key
relationship. Therefore, users can coordinate a primly-key action
in the view on the One side of the relationship with a foreign-key
action on the Many side. (See Figure 2)

This relationship indicates a hierarchical relationship between the
relations. For example, in Figure 1 the States are displayed in a
scatter plot and Counties in a Treemap, Coordinatir~g the select

Figure 3: Snap's Main Menu (left) and Snap Specification
dialog (right).

130

action in the plot to the Load action in the Treemap creates a drill-
down coordination. Clicking on Maryland in the plot loads and
displays only Maryland's counties in the Treemap.

3. Many-to-Many: This relationship is generally composed of 2
one-to-many relationships. Therefore, users employ the one-to-
many case in the desired direction.

4. No relationship: If the schema has no relationship between the
relations, then there is no coordination between the views.
However, if users desire coordination based on more complex or
indirect relationships, then it is probably possible to modify the
schema with queries to specify the desired relationships with
standard joins. Hence, with Snap, advanced coordination is
simply a data-relationship representation problem rather than a
custom user-interface programming problem.

Snap coordinations are bi-directional, so that either action triggers
the other. Users can also chain coordinations end-to-end. For
example, users can establish brushing across three views.

In the Snap user interface, users coordinate a pair of visualizations
by dragging the Snap button from one to the other (similar to
[JBO94] and [DP95]). This displays the Snap Specification
dialog (Figure 3). Users select the primary-key or foreign-key
actions for each visualization to coordinate. After construction,
users can save a set of coordinated views as a group for later re-
use or sharing.

2.4 Common Coordinations with Snap
With Snap, users can quickly construct common coordinations,
such as:

• Brushing-and-l inking: (Figure 1: outliner, plot, map)
Join relationship: one-to-one
Coordinated actions: select in Vizl and select in Viz2
Usage: Selecting an item in one view highlights the
corresponding item in another view. Typically used to identify
like items when a set of items is displayed in different views for
different contexts.

• Overview and detai l view: (Figure 4)
Join relationship: one-to-one
Coordinated actions: select in Vizl and scroll in Viz2
Usage: Selecting an item in the overview scrolls (or more
generally navigates) the detail view to the details of that item.
Items are represented visually smaller in the overview than in the
detail view. Allows direct access to details, and provides context
for details.

• Dri l l -down: (Figure 1, plot and table)
Join relationship: one-to-many
Coordinated actions: select in Vizl and load in Viz2
Usage: Selecting an item in one view loads related items into
another view. This enables exploring very large-scale data, by
displaying aggregates in one view and the contents of a selected

aggregate in another view [FNP99]. For example, 1 million
'stars' may be too much for single plot. Instead, break it down
into 1000 'galaxies', each with 1000 stars. Then display one plot
of galaxies and one of stars with a drill-down coordination
between them.

• Synchronized scrolling:
Join relationship: one-to-one
Coordinated actions: scroll in Vizl and scroll in Viz2
Usage: Scrolling through a list of tuples in one view also scrolls
to corresponding items in another view.

• Detai l s on demand:
Join relationship: one-to-one
Coordinated actions: select in Vizl and load in Viz2
Usage: Selecting a tuple in a graphical view loads and displays
additional details of that tuple in an adjacent textual view. This
uses load as a primary-key action.

2.5 Snap API
Snap's model of a visualization is intentionally simple. Snap is
designed to be open and easy for researchers and developers to
make their independent visualizations snap-able. Therefore, Snap
minimizes impact on visualization implementation. Snap uses a
simple API (application programming interface) to communicate
with visualizations. This is analogous to API's in modem
window-management systems for utilities such as cut-and-paste or
drag-and-drop. We propose the Snap API as a similar standard,
that can be easily added to a visualization tool by its developers,
enabling users to immediately snap it with many other
visualizations. This greatly increases the value and usefulness of
the tool for little cost.

To be snap-able, a visualization must support this API:
• Load method. When users load a relation into the

visualization, Snap must be able to send the data to the
visualization via file, memory, or ODBC, which ever is
convenient for the tool. A translation routine may be needed
to translate the relational structures to those used by the tool.

• Methods and events for each primary-key action: When
users invoke actions, the visualization must fire an event to
Snap. Likewise, Snap must be able to invoke actions in the
visualization. The primary key value of the tuple acted on is
passed. The visualization developer determines what actions
it supports. Select is recommended as a minimum.

A b b ~
ALuk~
At i~na
Arka~as
C d , f ~
Colorado

D e l a ~ e
Florida
C~orgta
Eawv~i
Idaho

Ia~ma
Iowa
K ~ s
Kemucky
L~tn.~t~

I'X~ s a¢l~s~

Mer~
N~br~alu
Ne,ada
No" t{aap,
N ~ 1~ey

N ~ York
North C~o~
Noah D~ko
0~o
Oklah~

Rhode Ishm,
Souda C~ot
$ou~h D~kol
Telme*~ee
T~a~
Utah
Vermont
Vki~ia

Wea v=~

Figure 4: A textual
about the U.S. states.
the scrolling report.

! State: Mm'yl~ad
Pop~ti~ 4781468
F~t.lies: 1256327

; Eouscholds: 1749342
i ~ %: 485%

Fmudc %: 51 5%
Urb~a %: 8 1 3 %
A ~ e Age: 33 1

D i p l ~ % 784%
Co ~.8e D ~ ¢ e %: 31 7 %
En#nh Speakk~%: 84 3*/*
A ~ ¢ Commute T ~ : 33
O~pool Commute % 15 2%
public Tr ,~poaation %: 8.1%
Fer C~odl Im~e 17730
Me d~a Fla~ily I ~ c ~ : 45034
~6.,=dlia Hcus~hold hacora~: 39386
Noisome Ho~eho]dseA 15 3%
A~lq~a ~'~l~s p er ~:immly 381
Avm~e Workers p~ Fam~y 1.88
I~xlh~UKl~s' 189~917
V ~ y %: 8.2%
A~l%ge Be&ooms: 273
Avec~e P ~ I ¢ ~ per U*~: 2 7 3
Me dlaQ Vnklo: 115500
~ Mol~ag~: 919
14~dim Ra~. 548
Z~m % Ho~ehold/*¢ome: 254
i~ De~r;pa~,~ ~ iM*,Thmd ~ eontalns ~
crest of the C~i~ea ~d Cro, d~d fan.e, I ~ was fo~ded

a~ Ke&i~h eolo~ ~a 1634 by Ce~ C~nn~ ~ ~econd Lord
Bldfimo~=, The blad~ md Gold de r@al b©l¢~ to th~ Cal~ f ~ .

ted m~ ~ d~s~n bdor~s to the Crosxhtad

Sutte" M ~ b a ~ e t ~
p o ~ 6016425
Frolics: 1525198
Kouschddl: 2244406
~Tale %: 480%
F~de %: 52 0%
~ b ~ a %: 84.2%

D~oma%: 80.0%
Coge~ De~r~e %: 34.5%
~lsh Spe akit~ ~4~ 7909& ' :
Av~N~ Cormm*~c T ~ : 2~

interface for browsing Census information
Using Snap, an overview is easily added to

131

Other than these few hooks, visualizations remain independent
software programs, maintaining their own data structures, etc. For
example, Spotfire, a commercial software package, was integrated
using its existing API and a 10-line VB wrapper to translate the
communication calls.

Snap is currently implemented in the Windows platform. It uses
COM for communication in the API and ODBC for database
access. We have used Snap with MS Access and Oracle databases.

2.6 Scenarios
Snap is useful for rapidly constructing visualization interfaces for
many different types of information. As the following examples
illustrate, Snap makes information visualization capabilities
immediately accessible and applicable for users.

2.6.1 Web-Si te Logs
Recently, we have been interested in visualizing data from web
logs [HS99], a database containing information about users' visits
to a web site. In this scenario, we are interested in discovering
what internet pages are referring many users, via hyperlinks, to
specific pages on our lab's web site. A user interface to explore

this database can be quickly constructed with Snap (see Figure 5).

First, a user interface to explore specific pages on our site is
needed. Opening a table of the pages and their URLs into an
outliner displays a hierarchical view of the site. A web-browser
visualization (MS Internet Explorer) can be used with URL data
values to display the actual web pages. Snapping the outliner to a
web-browser, by coordinating the outliner's select action to the
browser's load action, creates a rapid site browser. Clicking on a
page in the hierarchy displays the page in the browser (top of
Figure 5).

Now, visualizations to discover referring pages are added. A table
of hits to our site is aggregated by the referring and referenced
pages and loaded into a scatter plot. There is a one-to-many
relationship between the pages table and the hits table. The
outliner is coordinated to the plot with select and load actions
respectively. The plot displays the referrers as a histogram, with
referrer name on the X-axis and number of hits referred on the Y-
axis. Similar to the outliner, the plot is also coordinated to a web
browser to view the actual referring pages (bottom of Figure 5).

Now, selecting our home page in the outliner displays that page in

.. r ~ highlights.h~'nl
: ,..[~ howtoworkwithus,html
i+. iihcs-copy

.I~ ijhcs.htrnl
~ - ~ ijhcs-copy
~-~ .~3 ijhos-copy
: . . [~ index.htrn

i I~ index~btoc.html
: .-[~ lnvita6onToSubmit.html
:..- ~ lab.descriplion.html

~3 lifelines
~-. ~ new-princ-mem.html
~.~3 newsf
!..1~ none,htrnl
,~ ..£3 oh

C3 oh97
! I ~ pad*+

~. ~ chigB
C3 documentotion
C3 download

i [~ download.html
: .. I~ faq.h~l
i .,fi'l index_html
- ~ javapod html

! . ~ license.him]

Research About HCIL
=> Stanmarie s Events

Visualization HCIL Organmation
E._~cation Related Or~anga~om
D~ml Libraries Pictures

Design Process In The Press
Phvsic~ Devices

M e m b e r s
Publ icat ions Facult~ / S~aff/A~'t~n
Online Tcch Repoft~ Students
"~deo Reports CoUaborators

112 i L"

96 • ~ / ~ ; ~ , ~

I
i :

. + ... i t , ~ t ~ . c ~ u ~ . ~ v a ~ . , ~ t ~ .

r f ~ : ~ + ~ : a : ~ v o ~ w ~ o c z ~ ~....~z,~aB .=
i • " ' i ! ia :

ht~:~2651 I~. 4 :2 t /O S N a ~ ,] ~ l ~ c] , r / I t ' l ~ g ~ 2 ~ k ? b . ~ I I
L ! : " m i

h~ / / n - , htt~:I/W..- httP:I/~,,' ~tp:I/~... httl~l/W. •

I htt0:/h~aw.hur~nl~-'t o+ :. earghom~d~a~.asp
!~L~J~_ .. ~ ~

Human Factors J ~
I f i r e f i l e t | 0 ~ 1 1 We make Ior twara osable 8 0 0 - 2 4 2 - 4 4 8 0

. = . pag~ Human Factors International -
O.r eocus the L e a d e r in Sof tware Usabi l i ty Solutions

• WebJ~Commerce
I~tran~ttF.X~ranst
OUIA~p~cat]ans

MISSiOn CdlJCal Projects ..,
Comorate Etfods " ~ q : ~
orje-TLma Projects : Satisfaction

Figure 5: This visualization environment for exploring web-site log data was quickly constructed using Snap. The outliner, Treemap, and
web browser at the top form a site browser for the HCIL web site. The scatter plot and browser at the bottom display pages that refer
readers to the site. This example reveals that Human Factors International referred 110 readers to the HCIL home page that month.

132

t h e browser and the distribution of referrers to it in the plot.
Selecting a high-ranking referrer in the plot reveals the Human
Factors International page in the other browser. Exploring reveals
other pages that send many users to our home page, including Ben
Shneiderman's page, the Department page, and Yahoo's HCI
institutes page. Selecting our Visible Human project page in the
outliner shows nearly 1000 hits from the National Library of
Medicine page. Selecting to open this page indeed reveals a
prominent link to our page. Naturally, lab members explored to
discover referrer patterns to their personal pages.

2.6.2 Photo Libraries
For a research project on user interfaces tbr browsing personal
photo libraries, we have been using Snap to explore many
interface variations. Our lab has accumulated a database of
scanned photos of lab members and activities spanning 10 years.
It includes annotations such as members' names, dates, locations,
and other information.

In Figure 6, a thumbnail browser shows a collection of a few
hundred photos. The scatter plot displays a time line of the
photos, with date on the X-axis and members' names on the Y.
Vertical stripes of dots represent group events, pictures of many
members on the same date. The large stripe in the middle is many

photos from the 1992 Open House. Selecting a photo from winter
'89 displays the full-size photo from a ski trip, a list of names of
members in the photo, and details of photo attributes.

Other interface variations include locating photos by members'
names or locations, selecting a person in a photo to find other
pictures of that person, etc.

3. EMPIRICAL EVALUATION
To determine if Snap's model and user interface are usable and
beneficial, it is important to empirically evaluate the two phases of
using Snap:
1. Construction: First, can users successfully construct

coordinated exploration interfaces by snapping visualizations
together?

2. Operation: Second, can users then operate the coordinated
interfaces constructed with Snap to explore information
beneficially?

This section presents a summary of these two studies. For more
details, see [Nor00]. Little work has been done to evaluate
systems for coordination. [CS94] and [SSS86] indicate
performance advantages at operation level for the drill-down type
of coordination (e.g. level 1 systems). We are not aware of
studies on coordination construction (level 3 systems).

I~"-".,= +, ! ~ .>.=,,])1<,=, :.,~i<,J,,,. ~!~, ~l~Ixli

~,;~,,i.i YiS3- e ® - -

i.:.. 8 " , . £ °

i ~ , = : = , ~ . i ': : ()

i z : , ~ ~ > ~ . , p , , " v

Figure 6: Exploring a photo library with Snap. The user has displayed a collection of photos in a thumbnail browser to quickly overview
many photos and in a scatter plot to see trends on a time line. These are coordinated to a web browser to display the full-resolution picture
of a photo when selected. Additional text views display names of people in the picture and other details.

133

3.1 Usability of Coordination Construction
The goal of the first study is to determine how difficult it is for
relatively novice users to learn Snap and construct coordinated
interfaces, in terms of success rate and time to completion. This
study reveals cognitive trouble spots in the construction process
and identifies potential Snap user interface improvements.

3.1.1 Procedure
We worked with 6 subjects on a one-on-one basis. Three of the
subjects were data analysts or statisticians at the U.S. Bureau of
the Census. The other three were programmers.

Subjects were first trained on using Snap-Together Visualization.
At the time of this study, the Snap user interface did not have
capability for users to easily create projections, join queries, etc.
Hence, subjects were also trained on using Microsoft Access to
manipulate the database, schema and queries.

Testing consisted of 3 exercises. Subjects were asked to construct
coordinated exploration interfaces according to three provided
specifications: two were printed screenshots (a simple one
identical to Figure 4, and a more difficult one similar to Figure 1),
and one a description of the task that the constructed interface
should support. The database consisted of census data of the U.S.
states and counties.

3.1.2 Results
Overall, subjects easily grasped the concept of coordinating
views. All the subjects completed the training in 30-45 minutes,
and were able to complete all three exercises. They accomplished
each exercise in 2-15 minutes, depending on the difficulty. Much
of this time was absorbed by window management (see [KS97]
for a review of potential solutions) and Access. Subjects had very
little previous experience with Access and database concepts.

As to subjects' general reaction to Snap-Together Visualization,
we were impressed by their level of excitement. The subjects
were quick to learn the concepts and usage, and were very capable
to construct their own coordinated interfaces. Several stated that
they had a gratifying sense of satisfaction and power in being able
to both (a) so quickly snap powerful exploration environments
together, and (b) with just a single click effect exploration across
several visualizations and see the many parts operate as a whole.
They commented that it made exploration seem effortless,
especially in comparison to standard tools.

To our surprise, the data analysts performed better than the
programmers did. During the training, they were already trying
variations of snaps, exploring the data, and pointing out various
anomalies in the data. After finishing the exercises, these subjects
each stayed for an additional hour to play. All the Census subjects
expressed desire to use Snap-Together tools in their work. In fact,
a collaborative effort is underway.

An important result was the creativity and variation evident in the
subjects' solutions to the 3 ra exercise. Subjects designed
interfaces that made sense to their perspective on the data. They
used a mixture of visualizations and coordinations. For example,
while one subject used scatterplots, another subject augmented
this design with lists for state and county names. The subject
stated that this would help to see which state and county was
currently selected in the scatterplots, and allow for accessing
states by name. Another subject who preferred to see the
numerical values used tabular visualizations with sorting.

3.1.3 User Interface
Understanding the basic underlying model of Snap was critical.
However, the Snap user interface apparently did not reflect this
model well due to disparity between the schema management
(Access), the Snap main menu, and the Snap Specification dialog.
For example, to add a projection of a table as an overview
visualization to an interface, users had to generate the query in
Access, load it into a visualization using the Snap main menu, and
coordinate it to other views using the Snap Specification dialog.
In addition, users sometimes forgot which visualizations were
currently coordinated. A 'debug' mode to show how coordination
propagates between visualizations would have been helpful.

These problems might be solved by redesigning the Snap interface
around a single direct-manipulation visual overview that merged
the schema diagram with a visualization-coordination graph
diagram. This diagram could be used for schema management,
simple querying and loading into visualizations, and coordination
specification and 'debugging'. In addition, the need to create
queries by hand could be eliminated for common simple
situations. For example, for projections users could simply select
the desired attributes and drag them directly to a visualization.
Snap could also generate queries for foreign-key loads
automatically. These enhancements would likely reduce users'
training and construction time significantly. We axe already
working on this.

3.2 Usability of Coordination Operation
The goal of the second study is to measure the magnitude of the
benefit of using views coordinated with Snap over alternatives:
independent views or a single view. Benefit is measured in terms
of user task times and subjective satisfaction for browsing large
information spaces. This study reveals whether the visual
feedback across views is distracting or disorienting for users.

While there are many possibilities, this study exaunines an
overview-and-detail-view coordination constructed with Snap. If
there is a benefit over the single view, then what is the important
factor causing improved performance? Is it (a) the information
displayed in the overview, or (b) the coordination between the
overview and detail view?

3.2.1 Procedure
18 subjects used 3 different interfaces for browsing Census state
population statistics. They performed 9 different browsing tasks,
ranging from easy to difficult. The 3 interfaces were: (similar to
Figure 4)
1. Detail-Only: Scrolling view of all the states' data.
2. Independent-Views: Adds the overview not coordinated, to see

if overview or coordination is more important.
3. Snapped-Views: Adds coordination using Snap. This is the

same user interface from the 1 st study, |st exercise.

3.2.2 Results
On average, Snapped-Views achieves an 80% speedup over
Detail-Only for easy tasks and 30-50% for difficult i:asks, both
significant. The Independent-Views interface results :in a nearly
binary pattern. For easy tasks, where only information in the
overview is needed to accomplish the task, Independent-Views
performs on par with Snapped-Views. Whereas, in difficult tasks,
where subjects needed to access the details, Independent-Views is
asbad as Detail-Only. Hence, when access to details is important,
coordination is critical.

134

In fact, Snapped-View's performance times for lookup tasks are in
the same extremely fast range as overview-only tasks. Whereas,
Independent-View's times drop to Detail-Only level performance.
When looking up details, perhaps the most common "task,
coordination especially excels.

In subjective satisfaction, Snapped-Views gains rankings twice as
high (significant) as Detail-Only and Independent-Views.
Independent-Views average 20% higher than Detail-Only. Users
reported they were not distracted by the coordination, but in fact
expected that functionality. We believe these results indicate that
the Snap capability is indeed beneficial, wanted, and sorely
needed.

3.3 Combined Analysis
Together, these studies indicate the breakpoint at which time
savings during data exploration surpass interface construction
time. The 2 l~a study used the same interface constructed in the 1 st
study. The time cost of constructing the interface was 2-5
minutes, while it saved 0.5-1.5 minutes over the Detail-Only
interface for more difficult tasks. Hence, after a few tasks, users
are already reaping savings with snapping their own interface. Of
course, it is difficult to factor in learning time and effects of
sharing snapped interfaces. Nevertheless, this simple analysis is
revealing. Customized information visualization is within the
grasp of novice users.

4. CONCLUSIONS and FUTURE WORK
Snap-Together Visualization introduces four novel contributions:

(a) Conceptual model: a relational model for visualization
coordination, based on coupling actions across joins.

(b) User interface: a user interface that enables end users to
construct custom coordinated visualization environments,
based on the conceptual model, allowing flexibility in data,
views, and coordinations.

(c) Architecture: an open architecture based on a simple API
that enables visualization developers to easily snap-enable
their visualizations.

(d) Evaluation: data savvy users were very capable at
constructing coordinated visualization environments of their
own using the model and interface. Users of a constructed
interface obtained 30-80% performance speedup for many
browsing tasks.

Snap has already proven useful in a variety of applications,
including: West Group case law, Census Bureau and GIS data
analysis, Maryland State Highway Administration accident data,
research projects on personal photo libraries, web logs, mailing
lists and technical-report databases.

Continued research is needed to explore alternate user interfaces
for coordination overviews, strategies for aggregation and history
keeping, multi-way coordination, window management,
coordination guidelines, and more.

5. ACKNOWLEDGMENTS
This research was partially supported by funding from West
Group and the U.S. Bureau of the Census.

6. REFERENCES
[AW95] Ahlberg, C., Wistrand, E., "IVEE: An Information

Visualization and Exploration Environment", Proc. IEEE
Information Visualization '95, pp. 66-73, (1995).

[BWK00] Baldonado, M., Woodruff, A., Kuchinsky, A., "Guide-
lines for using multiple views in information visualization",
Proc. ACM Advanced Visual Interfaces '00, (May 2000).

[BC87] Becker, R., Cleveland, W., "Brushing scatterplots",
Technometrics, 29(2), pp. 127-142, (1987).

[CBR97] Chi, E. H., Barry, P., Riedl, J., Konstan, J., "A
spreadsheet approach to information visualization", Proc.
IEEE Information Visualization '97, pp. 17-24, (1997).

[CS94] Chimera, R., Shneiderman B., "An exploratory
evaluation of three interfaces for browsing large hierarchical
tables of contents", ACM Transactions on Information
Systems, 12(4), pp. 383-406, (Oct. 94).

[DP95] Dumas, J., Parsons, P., "Discovering the way
programmers think about new programming environments",
Communications of the ACM, 38(6), pp. 45-56, (June 1995).

[EW95] Eick, S., Wills, G., "High Interaction Graphics", Euro.
Journal of Operations Research, #81, pp. 445-459, (1995).

[FNP99] Fredrikson, A., North, C., Plaisant, C., Shneiderman,
B., "Temporal, geographical and categorical aggregations
viewed through coordinated displays", Proc. ACM CIKM '99
Workshop on New Paradigms in Info Vis and Manip., (1999).

[Hae88] Haebefli, P., "ConMan: a visual programming
language for interactive graphics", Proc. ACM SigGraph "88,
pp. 103-111, (1988).

[HS99] Hochheiser, H., Shneiderman, B., "Understanding
patterns of user visits to web sites: interactive starfield
visualizations of WWW log data", Proceedings ASIS 99
Annual Conference, (1999).

[ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P., "RMM:
a methodology for structured hypermedia design", Communi-
cations of the ACM, 38(8), pp. 34-44, (August 1995).

[JBO94] Jacobson, A., Berkin, A., Orton, M., "LinkWinds:
interactive scientific data analysis and visualization",
Communications of the ACM, 37(4), pp. 43-52, (April 1994).

[KS97] Kandogan, E., Shneiderman, B., "Elastic Windows:
evaluation of multi-window operations", Proc. ACM CHI'97,
pp. 250-257, (March 1997).

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G.,
Donjerkovic, D., Lawande, S., Myllymaki, J., Wenger, K.,
"DEVise: integrated querying and visual exploration of large
datasets", Proc. ACMSIGMOD'97, pp. 301-312, (1997).

[Nor00] North, C., "Snap-Together Visualization", University
of Maryland, Computer Science Dept. Doctoral Dissertation,
(Spring 2000, forthcoming).

[RLS96] Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks, M.,
Stroffolino, P., Kolojejchick, J., Dunmire, C., "Visage: a user
interface environment for exploring information", Proc.
Information Visualization, IEEE, pp. 3-12, (October 1996).

[Shn92] Shneiderman, B. "Tree visualization with treemaps: a
2-d space-filling approach", ACM Transactions on Graphics,
11(1), pp. 92-99, (Jan. 1992).

[SSS86] Shneiderman, B., Shafer, P., Simon, R., Weldon, L.,
"Display strategies for program browsing: concepts and an
experiment", IEEE Software, 3(3), pp. 7-15, (March 1986).

[Ve188] Velleman, P., The Datadesk Handbook, Odesta Corp.,
(1988).

135

