
OPPORTUNITIES FOR DATA BASE REORGANIZATION

Ben Shneiderman
Department of Computer Science

Indiana University
Bloomington, Indiana 47401

Introduction

Reorganizing the clutter on our desks is a task which each of
us would like to have someone else do for us every day, but which
we put off for as long as possible. By sorting out the old and
worthless items and neatly ordering the current and useful items
we can make it easier to locate what we need.

We face the same dilemma with our personal address and telephone
books. Old entries become useless, and the scratched out and
written over entries make it increasingly difficult to find what
we want. Eventually we purchase a new phone book, probably of
the same size, and rewrite the useful entries. The old address
book can now be disposed of or saved as backup and for historical
pu rpo s e s.

If the contents of the data base are volatile, automating the pro-
cess does not eliminate the need for reorganization. In fact,
the minor inefficiencies which could be tolerated with small files
are a costly burden in the massive data bases which are increasing-
ly common. There are numerous techniques for improving data base
performance; this paper is concerned with the process known as re-
organization. Reorganization is the rewriting of fields of data
in such a way that the logical and physical accessing algorithms
are unaffected (although the access paths may be altered) except
that they now operate more economically. Economics include saving
of storage space or execution time or both. In on-line systems
there is the additional motivation of reducing the response time.

An earlier mathematically oriented paper (i) focused on the issue
of selecting the optimum points for performing a reorganization.
The problem is that we would like to have this file in a reorganized
form continousl~ yet we wish to delay the reorganization process
for as long as possible since it is so costly. High reorganization
cost is a result of the fact that in most cases the entire file
must be read and written.

The task of recognizing the optimum reorganization point is diffi-
cult since there are a large number of interdependent factors which
influence the decision. Relevant considerations include:

* average cost per search
* number of searches per unit time
* number of additions per unit time
* number of deletions per unit time
* reorganization cost

Opportunities For Data Base Reorganization

* reduction in search cost as a result of reorganization
* length of time the data base is expected to remain in use

Since the first six items are functions of time, rather than stable
constraints, the task is even more unwieldly. A number of exogenous
factors, such as response time constraints for on-line systems,
availability of excess computing power during night or weekend
shifts and demand for backup copies at fixed time intervals, can
further complicate the problem.

By making reasonable assumptions useful analytical results can be
obtained (i) Although fixed time interval reorganizations can
be implemented, it is intuitively clear that a stochastic model
permitting variable reorganization is preferable. In episodes of
high utilization reorganization should take place more frequently
than during periods of relative inactivity. Under this model the
reorganization takes place when the cost of doing a search reaches
a specified level. If the conditions do not permit mathematical
simplifications then simulation or even experimentation are the
sole recourse.

The problem can be seen in a more familiar format. Deciding when
to reorganize is akin to deciding when to buy a new car. The old
car continues to cost more per mile (more per search) due to rising
repair costs and decreasing mile-per-gallon performance, yet the
cost of purchasing a new car (reorganizing) is so high as to pre-
vent our doing so for the longest time. The new car would hope-
fully have reduced repair bills and improved efficiency thereby
reducing the cost per mile. Factors influencing our decision in-
clude the current cost per mile, the expected improvement, the
cost of a new car, the utilization and a host of other factors.
The fact that we can make any decision at all is remarkable!

With cars we have the feedback information of the cost measured in
our daily expenditures. With a data base, the cost is hidden and
can be enormous. System designers and maintainers (dare I say
data base administrators?) have reported to me that their methods
for determining whether a reorganization was appropriate included
listening to the disk drive to hear if the arm was moving "fre-
quently" or waiting till they got annoyed at the length of terminal
response time. Others who rigidly adhere to a fixed time period
between reorganizations readily admit to a substantial variation
in system utilization.

whatever the scheme for selecting the reorganization points, the
data base maintenance functionary must first acquire the appropri-
ate performance statistics. This is non-trival since the relevant
considerations listed earlier are not readily measurable. The
average cost per search and the reorganization cost as a function
of the size of the data base or the number of overflows may be
difficult to obtain. Although a number of systems provide track

Opportunities For Data Base Reorganization

utilization information, statistics on number of records, over-
flows, etc., none relate these values to cost functions. The
best source is performance data taken while the system is
actually running. Special benchmark runs, called sampling runs
or software probes, can be used to collect these statistics. If
the burden of software monitoring is large, then hardware monitor-
ing of channels and auxiliary storage devices may suffice.

Structures Warrantinq Reorqanization

In the past, the volatility of data base systems, changing admini-
strative demands, new implementation techniques and the lack of
centralization of the data base administrative function have rele-
gated the problem of reorganization to a secondary consideration.
Now, the increasing maturity of data base systems, the growing
stability of application and administrative goals and the creation
of a central focus at the data base administrator have raised
issues of performance, measurement, efficient use of system re-
sources and reduction of costs.

While the data base administrator is responsible for efficient
maintenance, it is the responsibility of the system architect/
designer to select structures which permit reorganization. Al-
though the variety of structures which permit reorganization is
large, most of the patterns can be interpreted in one of three
ways: access path reorganization, block overflow reorganization
or linked reorganization.

Access path reorHanization: In this method the access paths are
altered, but the accessing algorithms remain unchanged. The prime
example is the reorganization of a binary search tree (2) to re-
duce the average search length for retrieval of a node (see Figure
i). In this case the average search length is reduced from 6.67
to 3.27 nodes. The symmetric order traversal of the tree remains
unchanged and the usual binary tree search algorithm still functions,
only faster. No data space is reclaimed.

A second example would be the splitting of a long list into several
shorter lists to reduce search time.

Collecting the vital statistics and converting to the values of
relevant variables can be tricky, but the payoff in higher perfor-
mance can be substantial.

Block overflow reorqanization: The simple case of block overflow
reorganization in Figure 2 depends on the volatility of the data
for its success. Deleted nodes, indicated in black, are clogging
the blocks and causing new entries to be allocated in new blocks,
causing unnecessary access to be made. By eliminating the useless
data and collecting records from overflow blocks it is possible to
reduce or eliminate overflows. This situation arises in hash coded

/

QJ

E~

~J

!

0

4J
~J
N

bO

0

43

o3

o
o

bO

4

0

N

0
©

0

0

o
0

o o

Opportunities For Data Base Reorga~.ization

implementations which employ a "bucket" or block which is shared
by all keys having the same hash value. As the blocks fill up,
overflow blocks are used, but since nodes have been deleted it is
possible to compact all of the nodes into a single block. In this
example the average number of blocks accessed for a search is re-
duced from 1.5 to 1.0.

Even if there were no deletions, it would be possible to eliminate
overflow blocks. Either the size of the blocks could be increased
with only a modest increment in the transfer cost or the number of
blocks could be increased. Increasing the numbers of blocks will,
however, probably require a rehashing of every entry in the struc-
ture.

A structure containing master and detail records is another exam-
ple of block overflow reorganization. Each record contains some
master information such as account number, and a variable number
of detail items, such as outstanding orders for this account. As
detail items are added and deleted, overflow blocks may be used.
Eventually, deletion of detail items will make it reasonable to
call for reorganization to reduce the execution time and free
storage space.

Linked list reorqanization: The abstraction of linked list reor-
ganization in Figure 3 can be interpreted and generalized in many
ways. The blocks may be thought of as disk regions on which a sim-
ple linked list (a tree in this case) has been stored. As a result
of additions and deletions the structure is now spread out over six
blocks, but uses only a fraction of the space. By reorganizing the
structure onto three blocks the average number of blocks retrieved
for a search is reduced from 2.2 to 1.6.

Another interpretation is that the blocks are pages in a virtual
memory system and the reorganization is closely related to the pro-
cess of data compaction. The usual goal of data compaction is to
eliminate fragmentation of storage and free-up large contiguous
areas of storage. Our concern is primarily the reduction of the
search cost. These methods are distinguished from garbage col-
lection, since the latter is only concerned with the recovery of
storage space.

Reorganization of a cellular multilist structure is a third exam-
ple of this type. With highly linked network or cyclic structures
the task of linked list reorganization and compaction can be ex-
tremely tricky. Determining the optimal placement of nodes on
blocks is an additional problem which warrants further study.

Indexed Sequential Access Method Reorqanization: It is hardly
possible to complete a discussion on reorganization without men-
tioning ISAM (3). Unfortunately, reorganization of this struc-
ture is difficult to analyze since it is a combination of access

/
A

\

I

0

o~
~C

0
@

°,-4

° ,

@

Opportunities For Data Base Reorganization

path and block overflow reorganization. New access paths are
created by additional index entries and the overflow records which
cause multiple accesses are removed. Although the system provides
statistics on the number of records, number of overflows, etc., it
can be difficult to estimate the cost of the relevant variables in
determining when reorganization is to take place. Well documented
experiments would be helpful in this area, since this method is
widely used.

Conc lu s ion

As data base systems attain maturity and stability the pressure to
optimize performance will compel the system designer to actively
consider every aspect of data base reorganization. The structure
which can be reorganized, efficient algorithms for reorganization
and the optimum reorganization points will all play vital roles.

Re ferences

i)

2)

3)

Shnelderman, Ben, Optimum Data Base Reorganization Points,
CACM 16, 6 (June 1973), PP.362-365.

Martin, W.A. and Ness, N.D., Optimizing Binary Trees Grown
with Sorting Algorithm, CACM 15, 2 (February 1972), pp.88-93.

IBM System/360 Operating System Data Management Services,
GC26-3746, IBM, White Plains, N.Y.

4) Wilfred J. Hansen, Personal Communication.

5)

6)

7)

Knuth, Don, The Art of Compute r Programming: Vol. I,
Fundamental Algorithms, 2nd Edition: Addison-Wesley,
(Reading, Massachusetts, 1973).

Knuth, Don, The Art of Computer Programming: Vol. III,
Sorting and Searching, Addison-Wesley, (Reading,
Massachusetts, 1973)]

Martin, James, Computer Data-Base Organization , Prentice-
Hall (Englewood Cliff{, N.J., To Be Published).

