
International Journal of Computer and Information Sciences, Vol. 3, No. 1, 1974

A Model for Optimizing
Indexed File Structures

Ben Shneiderrnan z

Received July 1972; revised November 1973

Multilevel indexes have long been used for accessing records in sorted files.
Given the access cost at each level, the total cost of retrieving a record from
the file can be substantially reduced by selecting the proper size of the index
at each level. Organizations involving a variable number of levels are covered
and binary searching is compared to sequential searching.

t . I N T R O D U C T I O N

The literature on the organizat ion o f file structures is largely qualitative,
rather than quantitative, in nature. A number o f books and survey articles
give thorough discussions o f possible indexed file organizat ion strategies
(e.g., Refs. 1-4). However , the development o f techniques for compar ing
the efficiency of two structures or search strategies for a part icular applicat ion
is poor ly covered. The goal o f this paper is to p romote a more mathemat ica l
approach to file organizat ion analysis. Hopefully, the reader will profit by
applying similar techniques to the analysis o f other strtictures.

In the past few years several at tempts have been made to develop a
theory o f data structures. The set-theoretic model o f Childs, tS} the relational
model o f Codd, <6} or the g r a m m a r product ion model o f Fleck m are con-
cerued with the logical relationship a m o n g data items and exclude discussions
o f implementat ion efficiency. Rosenberg ' s algebraic analysis o f da ta
graphs Cs-l~ is more useful but limited by his considerat ion o f only highly
uniform structures. The graph-theoret ic models o f Hsaio and Ha ra ry m}
and Earley a~} are able to describe the access paths and are also useful

Department of Computer Science, Indiana University, Bloomington, Indiana.

93
�9 1974 Plenum Publishing Corporatio.n, 227 West 17th Street, N e w York, N.Y. 10011. No part of this
publicaUon may be reproduced, stored m a ~ e v a t system, or ~ n s t m t t e d , in any form or by any means,
electroruc, mechanical, photocopying, zmcrofilmmg, recording, or otherwise, w2thout writgen permission of
the publisher.

94 Shneiderman

abstractions of implementations. Consequently, they provide useful models
for analyzing efficiency.

2. G R A P H - T H E O R E T I C M O D E L

The use of graph theory to represent the access paths enables the
designer to compare the efficiency of several possible structures. Heller and
Shneiderman Iz3.1~1 developed the formal notions for describing data
structures as directed graphs called the well-formed list structures (WFLS).
For this paper we consider only the unlabeled WFLS's, which are specified
as a triple L = (D, E, G), where D is a set of data nodes, E is a nonnull set of
entry nodes, and G is a mapping function (G: D u E --~ D) which describes
the access paths for searching the structures. The entry nodes (squares in
the figures) represent immediately accessible data items. These might
correspond to pointers that are available in the processor storage, file names.
or addresses in the processor storage. All searches must begin at the entry
nodes and data nodes may not point to entry nodes. The data nodes (circles
in the figures) contain the information that is sought and may be physically
implemented as words in the processor storage, tape blocks, or disk regions.
The graph-theoretic model is a logical view of the data structure for which
there may be several physical implementations. The data nodes must be
reachable from the entry nodes, that is, there is at least one directed path
from at least one of the entry nodes to each of the data nodes. The structure
must also be connected, in the sense that if the edges were undirected, then
there would be a path between any two nodes. The notions of reachabilitv
and connectedness are independent.

The WFLS model is a formalization of our intuitive notions of what
data structures should be if they are to be useful in a computer environment.
To evaluate a structure, the model must be enhanced by atfixing a numerical
value to each edge indicating the cost (in units of time or money) of traversing
that edge. A further enhancement, not explored in this paper, would be to
assign a probability of request for each node. We assume that the i~robability
of request is the same for each node. For a given search strategy we can
evaluate the average search cost and other measures such as the variance or
worst-case search cost.

3. I N D E X E D STRUCTURES W I T H F IXED N U M B E R
OF LEVELS

As a first example, we consider indexed sequential fries. There are one
or more indexes, at one or more levels, containing a variable number of
fields each containing the address of a lower-level index or of a record. The

A Model for Optimizing Indexed File Structures 95

,L. C

~KInpX ~,b ~m,b -T-~b b

~ -~.n ~a ~a~ -'~ Q ,~ Q' �90 "~CI/~'

FILE
N ENTRIES

Fig. 1

records are arranged in ascending order by key value. Figure 1 depicts a
one-level indexed sequential file. Entry node ez is the starting point for
searches through the index and is used to access a record with a specified
target key. Entry node e~. is for a sequential search beginning with the first
record. Figure 2 contains the graph-theoretic description of this structure,
The index is a one-way list which is searched sequentially until the proper
range of keys is found, then a search of a sublist of the records is made till the
target key is matched. The cost of searching a single field of the index is b,
while the cost of searching a single record of the file is a. The cost of accessing
the index is c and the cost of entering the file is d. In this case we assume that
the probability of request for each record in the file is equal and that the
length of each sublist of records is equal. If there are N records in the file and
if the length of the index is n, then the length of each sublist of records is N/n.
If we are searching for a record with a specified target key, we must, on the
average, access the index, search half of the index, enter the file, and search

I = (D, E, G)

D = {• = l...n} , {djl j = I..,N}

E = {e I , e2}

Ge I =Ill}

Ge 2 ~{dll

{ij+ 1 , d(j_l),(N/n)+l} J < n
Gij =

{d(j_l)*(N/n)+ I} ~ = n

{d j+ I } j < N
Gdj ",

J = N

Fig. 2

96 Shneiderman

half of a particular sublist of the file. We assume, of course, that both the
index and the records are sorted in ascending order by key values. Thus, the
average search cost ,~ is

g -~ c -? �89 - - d -k �89

The size of the file N is given, but we can control the size of the index n,
and thus the size of the sublist of records that is to be searched. The goal is
to minimize the search cost by selecting the opt imum value for n. We can
accomplish this by taking ttie derivative of S and setting it equal to zero. We
note that the conversion f rom the discrete to the continuous analysis is
appropriate since the/ 'unction is reasonably smooth:

dS/dn = �89 - - �89 = 0

Solving for n, we get

n = [(a/b)N] z/~

The noninteger result can be rounded up to the ceil(n), to account for
possible additions to the file.

I f we consider the case where the entire index and file are kept in the
high-speed storage, then we can set a = b = c - - d = 1 and we find that
opt imum index size is n ---- x/N. I f the index is kept in the high-speed storage
but the file is stored on a disk, we migh t se t a = 100b, in which case the
opt imum index size is n = 10 x/_N.

Next, consider a two-level indexed sequential file with access times, as
indicated in Fig. 3. We assume that the sublists at each level are of equal
length, that there is an equal probability of request for any of the records, and

~d2
L E V E L 2~ c ~ c ~ c c "

INDEX (.) - > (~ , , (~ - - . - - ~)
n2 ENTRIES ~ ' - " " ~ 1 .

L E V E L I \ b ~ b ~ ~ h h ~ h ~,
INDEX ()-~'C~'O. "Ci)~-(~)--~aO. "-'-"O-~'C}~'O

A' ENTRIES do ~ ~ - ~ ~ ' d o ~d~ ~/do Ido
�89 a _ a _(l'-'~_a A a A ~ a ~ a v (I (~

- - .

FILE
N ENTRIES

Fig. 3

A Model for Optimizing Indexed File Structures 97

that the records are sorted in ascending order by key value. The average
search cost is

S = d. + �89 § dl + �89 § do § �89

Taking partial derivatives with respect to n 1 and n. and setting to zero, we get

~g/?n 1 =�89 - - �89) = 0

6g/On 2 = �89 - - �89 = 0

Solving the equations, we get

nl = (N2a2/bc) I/3, n2 = (Nab~c2) 1/~

If all the access times are equal (the case when the entire index and file are in
the high-speed storage, for example), the results are

n 1 = N 2/3, n~ ~- N 1/3

We can use these results to determine the size of the index and the average
access time ~.

The technique can be generalized for a d-level indexed sequential file
where c~ is the cost of an access within level i, n~ is the number of nodes at
level i, and d~ is the cost of going from level i to level i § I. The average
search cost is

~ (1 , y _ _ L + d O

i=0

with no = N and na+ 1 = 1. We are left with a system of nonlinear equations

[Og/On~ = 0], i = 1 d

o r

1 C i 1 n i_ l c i_ 1
n i§ 2 n~ z

= 0], i = 1 d

nt = e~ c~ i N a-i+l , i = 1 , d

The foregoing analyses are general and can be modified to reflect
constraints imposed by hardware considerations, such as fixed size disk
sectors. The methodology can deal with extremely complex hierarchical file
strategies. For instance, in a three-level indexed sequential organization the

The solution of this system of equations is

98 Shneiderman

level three index might be kept in the high-speed storage, the level two
indexes on a drum, and the level one indexes on a disk or data cell with the
file of records. For a given N the values of n l , n2, and n3 could be determined
to minimize the access cost.

4. V A R I A B L E N U M B E R O F LEVELS

In these examples we have fixed the number of levels and allowed the
size of the indexes to vary. Consider the more complicated case in which
we fix the size of the indexes to be the same at each level and make the
number of levels variable (see Fig. 4). This is a reasonable model of the case
in which each index is considered as a "bucket ." The problem is to optimize
the size k (and therefore the number of levels) of the bucket based on the time
to access a bucket, a. In the first case we assume a sequential search through
each bucket and later compare this to the more complicated case where the
buckets may be searched using the binary search technique.

I f the index is to have v levels, then we have

and

N = k ~ (1)

v = (in N)/(ln k) (2)

I f the time to access a record from the lowest level index is d, then the average
search cost is

g =d+vb+�89

b

Fig. 4

A Model for Opt imiz ing Indexed File Structures

Table I. Sequential Search of Indexes a

b/a k v (N = 10 5) v (N = 10 6) v (N = 107)

99

I0 I2.9 4.5 5.4 6.3
50 37.9 3.2 3.8 4.4

100 63.5 2.8 3.3 3.9
500 226.2 2. l 2.5 2.9

1000 400.6 1.9 2.3 2.7
i

= a is the cost of a sequential search step within the same level; b is
the cost of going to the next level; k is the number of index entries
per block; and v is the number of levels required for the given value
of N.

Tak ing the der ivat ive with respect to k, we find tha t

k (l n k - - 1) = 2b/a

It is interest ing to note that the resul t is i ndependen t o f the file size N.
Brief cons ide ra t ion will reveal the val id i ty o f this s i tua t ion; for a given N the

n u m b e r o f levels necessary m a y be de te rmined f rom (2). Tab le I gives the
numerica l results in some typical s i tuat ions .

I f each o f the buckets is to be searched by a b ina ry search then our
g raph mode l is as in Fig. 5, where each node is as in Fig. 6. We assume tha t
each step o f a b inary search costs c and tha t the cost o f going to the next level
of buckets is b. F o r the analysis we assume tha t each bucke t conta ins k fields,
where k is one less than a power of two. I f v is the number of levels and N the

J

Fig. 5

100 Shneiderman

(\
+

/
b+2c b§ b+2c b b+2c b+c b+2e

Fig. 6

number of records in the file, we again have (1) and (2). The average search
time is

[b 2(b + c) 4(b + 2c) 8(b + 3c) 2~(b + re.)]
$ = d + v 'r ~ + k + k + ' " + k "

= d + ~ - U (b + i c)
i = 0

where

It can be shown that

r = log2(k+ 1)- -1

• i2 ~ = (r - - 1) 2 ~+1+2
i = 1

Applying the above formula and substituting for v, we get

S = d + b l n N c l n N [[l n (k + 1) 2) (k + 1) + 2]
Ink r kln--------ktt M 2

Taking the derivative with respect to k and setting the result equal to zero
yields

0 = - - b k - - c (1 + l n k) [(k-+ 1) In(k-+- 1) _ 2 k]
In 2

kc In k[1 + 2 In 2 + ln(k -}- 1)]
+ In 2

A Model for Opt imiz ing Indexed File Structures

Table II . Binary Search of Indexes ~

b/c k v(N = 10 3) v(N = l0 n) ~, (N = 10 7)

t01

5 3.3 9.6 11.6 13.5
10 10.2 5.0 6.0 7.0
20 99.2 2.5 3.0 3.5
30 1117.1 1.6 2.0 2.3
40 13396.0 1.2 1.4 1.7

c is the cost of a binary search step within the same level; b is the cost of
going to the next level; k is the number of index entries per block; and
v is the number of levels required for the given value of N.

This unwieldy result can be solved numerically~ Typical values are shown in

Table II. Notice tha t the cost for one step of a b inary search, c, is larger than

the cost of one step of a l inear search, a. The ratio of a to c must be kept in

mind in deciding which technique to adopt . Compar ing Tables I and II again

demonstra tes the overwhelming advantage of b inary searching.

Assuming a system based on auxiliary storage devices, the model can be
refined fur ther by taking into account the higher cost associated with a larger

bucket size. The time to go one level lower in the index is b 4- ek, where b is

the seek cost (or latency) and e is transfer rate per field. Thus, larger values of

k yield larger cost values.

For the sequential search we now get

k(ln k - - I) = 2b/(2e 4- a)

Table I I I . Sequential Search of Indexes Including Transfer
Rate Cost a

b/a k v(N= 10*) v (N = 10 6) v (N = 10 7)

10 7.0 5.9 7.1 8.3
50 17.8 4.0 4.8 5.6

100 28.4 3.4 4.1 4.8
500 94.1 2.5 3.0 3.5

1000 162.9 2.3 2.7 3.2
5000 614.8 1.8 2.2 " 2.5

" Assume a = e (single field search cost = single field transfer cost).
a is the cost of a sequential search step within the same level; b is the
cost o f going to the next level; k is the number of index entries per
block; and v is the number of levels required for the given value of N.

102

Table IV.

b/c

Shneiderman

Binary Search of Indexes Including Transfer Rate Cost <

k v(N = 10 5) v(N = l0 s) v(N = 10 7)

10 6.3 6.3 7.5 8.8
50 44.2 3.0 3.6 4.3

100 89.5 2.6 3.1 3.6
500 396.4 1.9 2.3 2.7

1000 736.0 1.7 2.1 2.4
5000 3089.8 1.4 1.7 2.0

Assume e = c/5 (single field transfer cost = I/5 single field search
cost), c is the cost of a binary search step within the same level; b is the
cost of going !o the next level; k is the number of index entries per block;
and v is the number of levels required for the given valueof N.

and for the binary search the new result is

0 = - - b k 4- e k 2 (l n k - - 1) -- c(1 4- I n k) [(k
+ 1) ln(k 4- 1)

In 2 '

k c In k[1 § 2 In 2 4- ln(k 4- 1)]
4- In 2

- 2k]

Tables I I I and [V give typical values for sequential search and binary
search when the transfer rate is considered as a factor. Reasonable values for
b, c, and e were chosen and then the optimal size k was computed.

5. C O N C L U S I O N

Although the noninteger results must be rounded to obtain integer values,
the method of analysis does produce reasonable results on which to base the
implementat ion o f an indexed file system. The costs o f performing a sequential
search or a binary search must be obtained th rough software measurement.
The cost o f performing the various accesses on differing hardware devices
must also be determined. Having obtained these fixed parameters, it is
possible to determine reasonably opt imal estimates o f the variable parameters,
such as the number o f index entries at each level or the bucket size.

Similar techniques can be adapted to study numerous indexed file
organizat ion problems, such as: the effect o f addit ions or deletions on file
access cost, the increase in efficiency obtained by batching requests in
ascending order so that not all searches start f rom an entry node but use
indexes accessed in the previous search, and the opt imizat ion o f index
structures and searches when the probabil i ty o f request is no t equal fo r all
records.

A Model for Optimizing Indexed File Structures 103

A C K N O W L E D G M E N T S

I would like to t hank Prof. Jack Hetler of the State Universi ty of

New York at Stony Brook and the reviewer for their detailed comments ,

which greatly improved this paper.

R E F E R E N C E S

1. Ivan Flores, Data Structure and Management (Prentice-Hall, Englewood Cliffs, New
Jersey, 1970).

2. David Lefkovitz, File Structures Jbr On-Line Systems (Spartan Books, New York,
1969).

3. Gerard Salton, Automatic Information Organization and Retrieval (McGraw-Hill,
New York, 1968).

4. George Dodd, "Elements of data management systems," Computing Surveys 1(2):
177-133 (1969).

5. D. L. Childs, "Feasibility of a set-theoretic data structure," in Proc. IF[P Congress
1968 (North-Holland, Amsterdam), Vol. I, pp. 420--430.

6. E. F. Codd, "A relational model of data for large shared data banks," Commun. ACM
13(6):377-387 (1970).

7. A. C. Fleck, "Towards a theory of data structures," J. Computer System Sci. 5:475--488
1971).

8. Arnold Rosenberg, "Data graphs and addressing schemes," J. Computer System Sci.
5:193-238 (1971).

9. Arnold Rosenberg, "Symmetries in data graphs," SlAM J. Computing 1:40-65 (1972).
10. Arnold Rosenberg, "'Addressable data graphs," J. ACM 19:309-340 (1972).
11. D. Hsaio and F. Harary, "'A formal system for information retrieval from files,'"

ACM 13(2):67-73 (1970).
12. Jay Earley, "Toward an understanding of data structures," ACM 14(10):617-627

(1971).
13. Jack Heller and Ben Shneiderman, "'A graph theoretic model of data structures,"

SIGIR Forum, Vol. 11l, No. 4, Winter 1972.
14. Ben Shneiderman, "Data Structures: Description, Manipulation and Evaluation,"

Ph.D. Thesis, State University of New York at Stony Brook, 1973.

Printed in Bedgium

