
Improving the Human Factors Aspect
of Database Interactions

BEN SHNEIDERMAN

University of Maryland

The widespread dissemination of computer and information systems to nontechnically trained
individuals requires a new approach to the design and development of database interfaces. This paper
provides the motivational background for controlled psychological experimentation in exploring the
person/machine interface. Frameworks for the reductionist approach are given, research methods
discussed, research issues presented, and a small experiment is offered as an example of what can be
accomplished. Thii experiment is a comparison of natural and artificial language query facilities.
Although subjects posed approximately equal numbers of valid queries with either facility, natural
language users made significantly more invalid queries which could not be answered from the database
that was described.

Key Words and Phrases: human factors, database systems, data models, query languages, natural
language interfaces, psychology, experimentation
CR Categories: 4.33,4.6, 3.12

1. INTRODUCTION

As questions of technical feasibility and performance of database systems are
resolved, increased attention is being paid to human factors. There is widespread
recognition that future systems will be commercially viable only if the user
interface is in harmony with user skills and task requirements. Management
increasingly focuses on human factors, but technical professionals have shown
little predilection to go beyond introspection and their own experience. Unfortu-
nately, the background of a systems or language designer may be profoundly
different from the background of the intended users. Even if this were not the
case, casual introspection hardly seems an adequate basis to develop costly and
widely used computer and information systems.

The programming language community has begun to take a more psychologi-
cally oriented approach to studying programmer behavior and utilization of
language facilities [l-6]. Research in this area is leading to improved guidelines

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and ita date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was partially supported by the National Science Foundation under Grants MCS-7603142
and MCS-77-18641.
Author’s address: Department of Information Systems Management, University of Maryland, College
Park, MD 20742.
0 1978 ACM 0362~5915/78/1200-0417 $00.75

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978, Pages 417-439.

418 - B. Shneiderman

for use of currently available programming languages, suggestions for develop-
ment of future languages, techniques for evaluating program quality, and rec-
ommendations for program development methodologies. Related work is being
done on programmer aptitude, programmer ability, and team behavior. This
research is leading to fundamental theoretical models of programmer behavior
which may provide a basis for making predictions and improvements. Research
in decision support systems is germane but psychological results are only begin-
ning .to appear. Developments in specific applications areas such as library
information retrieval, hospital information systems, or airlines reservation are
also useful. Studies in database system usage may draw on these areas but the
unique issues require a fresh formulation.

This paper presents frameworks for discussing human factors research, poten-
tial research methodologies, and specific issues for evaluation.

2. FRAMEWORKS FOR DISCUSSING DATABASE USAGE

The wide variety of applications and users of database systems may produce
confusion in the designer’s mind and result in a system which is optimized for
only a limited subset of the application domain. The ensuing categories may help
organize the design process, aid in evaluation of user facilities, and suggest
directions for experimental research. These categories are not entirely independ-
ent and the sections in each category represent discrete partitions of a continuum.
An attempt has been made to be thorough, but no claim for completeness is
made.

2.1 Functions

Functions are the operations that users wish to perform on the database. An item
may be field, record, collection of records, file, or the entire database. Primary
transaction-oriented functions include:

(1) Insertion of one or more items. This operation typically includes the speci-
fication of the keys and related data.

(2) Deletion of one or more items. This operation typically requires the user to
specify a key which is then located in the database. If the record is found, it
is deleted and may trigger other changes to the database.

(3) Retrieval of information from the database. The user provides a query and
the database system returns required information, possibly storing it for
later use. A retrieval may be as complex as the copying of the entire
database.

Ancillary functions include:

(4) Locking and unlocking of items to provide for integrity during concurrent
processing.

(5) Privacy check to ensure that the user is permitted to perform the function
requested.

(6) Data definition to create a schema or subschema. This includes description
of items and relationships in the database.

(7) Utility functions include database administration operations such as an
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions - 419

initial load, physical reorganization, logical restructuring, data translation,
performance statistics collection, and data validation.

2.2 Tasks

Tasks are components in the performance of the previously mentioned functions.
To accomplish one of the functions, the user must perform one or more of these
tasks:

(1)

(2)

(3)

(4)

(5)

Learning the syntax and semantics of the function specification. A typical
goal is to reduce the time of learning for a function. Database facilities which
are easy to learn to use may be convenient for only a limited subset of the
functions. The traditional tradeoffs in programming languages of ease of
learning and power of expression apply here. For example, Basic is believed
to be relatively easy to learn but has weak control and data structure
facilities.
Composition of the syntax required to perform a function. Composition
includes writing a program or a query, formulating a natural language query,
or even responding to a menu selection frame on an interactive terminal.
We hope that facilities which are easy to learn are also easy to compose
with, but this is not always the case. An easy to learn facility may be so
limited that composing useful functions is difficult.
Comprehension of function syntax composed by someone else. It is often
necessary to read syntax composed by others for learning or other purposes.
Easily composed syntax may not be easy to comprehend. Comprehension is
often a component of other tasks.
Debugging of syntax or semantics written by oneself or others to correct
errors. Debugging requires comprehension and composition ability but in-
cludes other complex cognitive skills. Database application programs may
be debugged using traditional programming techniques, but natural lan-
guage, menu selection, and query language programs will require novel
debugging strategies. The central problem will be to provide users with
feedback to help them determine whether the semantics of the function they
invoke correspond with their intentions.
Modification of a function written by oneself or others. Existing database
queries will often be the basis of new queries. This task requires composition
and comprehension skills.

This categorization is taken directly from previous work on programming
languages, but seems to be appropriate. Learning and composition may be more
important in database applications, but the full range of tasks will be required.
New techniques for debugging database requests in query languages appear to be
an attractive area for research.

2.3 interaction Modes

Interaction modes are the facilities for accessing the database system. A wide
range of available modes are designed to accommodate the variety of users who
may require database interaction.

These modes include:

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

420 * B. Shneiderman

(1)

(2)

(3)

(4)

(5)

2.4

Host language embedding of new syntactic forms into well-established
programming languages such as Cobol, PL/I, or Fortran. The embedding
may be by the simple invocation of subprograms, which requires no altera-
tion of syntax or special translators. Alternatively, new syntax may be added,
requiring a preprocessor or modified translator. Most contemporary data-
base management systems which require application programmer interven-
tion use this method. Implementation is relatively easy and training is
reduced. Unfortunately, developing applications can be time consuming.

Self-contained language which provides all the facilities for performing the
available functions. This method allows developers to create an elegant
language of their own design without the constraints of older programming
language translators. Self-contained languages require learning of new syn-
tactic and semantic forms which are generally easy to use but not as powerful
as a traditional programming language such as Cobol.
Computer-directed function specification by menu selection, fill-in-the-
blank, or parametric requests. With minimal training, an inexperienced or
unskilled person can respond to multiple choice questions or requests for
parameters. Syntax learning and typing can be avoided, but the range of
options available may be small and this mode may be time consuming. The
relatively small range of options facilitates testing and can lead to relatively
few errors when the system is released.
Natural language interfaces which eliminate the need for syntax learning.
This attractive possibility has enticed numerous artificial intelligence re-
searchers to work on question answering systems: The February 1977 issue
of the ACM Special Interest Group on Artificial Intelligence has reports
from no less than 52 projects on natural language interaction with databases.
Disadvantages may include long clarification dialog, high CPU overhead,
and an illusion of unlimited machine intelligence which inhibits careful
thinking on the user’s part.
Human intermediary to assist users in formulating function requests. By
providing a human intermediary to help interpret requests, the user is freed
from syntactic concerns and is aided in query formulation. The extra cost,
the opportunity for misinterpretation, and the possibility that the interme-
diary acts as a barrier may be disadvantageous.

Retrieval Response Types

Since a strong emphasis is placed on the retrieval function in database systems,
a finer categorization is appropriate:

(1) Simple verification of the presence or absence of a specified item, or that
the value of a field is acceptable. This kind of operation is the basis for credit
card verification and similar systems. The response may be provided by a
simple flashing light or a brief indicator on a terminal.

(2) Single record retrieval when a key is provided. Inventory, airline reservation,
insurance policy, or similar systems operate by providing users with a
prescribed set of fields when a primary key field is presented.

(3) Record collection retrieval when a key or Boolean predicate is provided.
Typically the user is looking for the set of primary key or records which

ACM Tran~.~tion~ on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions 421

satisfy some criterion such as employees whose age is above 30 or who work
for the sales department. Library information retrieval systems operate this
way.

(4) Total report listing of all information in a file. This response type is the
more traditional batch-oriented production job, but it may be invoked from
an interactive terminal. In this case performance is a critical issue since
execution time may be measured in hours. Output formats for total reports
probably would differ from single record formats.

This crude categorization does not reveal the complexity of many transactions
which have multiple compone,nts. A banking transaction may include a simple
verification of the existence of the account, a check on the balance, an update,
and a printout of the transaction summary.

2.5 Query Features

For the same reason that retrieval response types were delineated, query features
need a finer categorization. The following is based on Reisner’s [7] list:

(1) Simple mapping returns data values when a known data value for another
field is supplied. An example would be: find the names of employees in
department 50. Comparison operations such as equal to, less than, or greater
than may be included in the specification of the simple mapping.

(2) Selection of all the data values associated with a specified key value, for
example: Give the entire record for the employee whose name is John Jones.

(3) Projection in the relational model is an entire column or domain or a
relation. In general this is the query for finding all the domain values for a
domain, for example: Print the names of all employees.

(4) Boolean queries are those which permit AND/OR/NOT connectives such
as: Find the names of employees who work for Smith and are not in
department 50.

(5) Set operation queries are those which permit intersection, union symmetric
difference, or other set operators. Boolean queries can be converted to set
operation queries.

(6) Built-in functions provide special-purpose library functions to aid in ques-
tion formulation. A common set of these include MAXIMUM, MINIMUM,
AVERAGE, COUNT, and SUM, for example: Print the average salary in
department 50.

The query types described thus far are an easy to learn subset which has been
used in our pilot studies and Reisner’s work. She found that even nonprogrammer
subjects scored better than 70 percent correct in composing these query types
using SEQUEL. Programmers scored better than 80 percent correct.

More complex query features include:

(7) Combination queries are the result of using the output of one query as the
input for another. Reisner uses the term “composition,” but this paper has
already used this term for another purpose. An example would be: Find the
names of all departments which have more than 30 employees and then
print the department managers’ names.

(8) Grouping of items with a common domain value, such as department
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

422 - B. Shneiderman

number, for example: Print the names of departments where the average
salary is greater than $15,000. The employees must be grouped by depart-
ments before the averaging can take place. SEQUEL uses the GROUP BY
statement, while Furtado and Kerschberg [8] developed an algebra of
quotient relations to facilitate these kind of queries.

(9) Universal quantification corresponding to the “for all” concept of the first-
order predicate calculus. This operation is difficult for most users to com-
prehend and work with. The ambiguous use of the word “all’ in English and
the subtlety of set equivalence and set containment contribute to the
difficulties [9]. Date’s [lo] presentation in the relational calculus and his
discussion of division in the relational algebra provide additional perspec-
tives on this feature.

The query features discussed thus far are available in most query languages
that have been designed for the binary, tree, and relational models of data.

Codd defines relational completeness of a query language as the property of
having the descriptive power of the fast-order predicate calculus [ll]. Relational
completeness has been used as a primitive measuring rod for the selective power
of a query language. Two problems come to mind with this yardstick in evaluating
the human factors aspect of a language:

(1) Many queries that can be written with a relationally complete language are
extremely difficult to compose or comprehend. Few people claim to have a
thorough understanding of first-order predicate calculus.

(2) Many common, useful, simple to understand, and potentially easy to express
queries are outside the bounds of relational completeness. For example, in
a table of distances between adjacent cities, finding the shortest path
between two remote cities is not included in relational completeness. Simi-
larly, in a table of employees and their managers, finding the names of all
the employees that a given individual manages at all levels, is not a
relationally complete query.

As an alternative to relational completeness, we need a taxonomy of queries
which orders queries from simple to complex. Reisner and others have argued for
a level structured or layered query facility which allows tisers to compose simple
queries and gradually increase their capacity for composing more complex queries.
Reisner’s feature list and her theoretical linguistic model are a beginning but
much research remains.

2.6 User Types

Diversity of user types may require a spectrum of interaction modes. It seems
unlikely that one mode will accommodate all user types satisfactorily, nor should
one interaction mode be considered optimal for all users. The users should be
further subdivided according to their problem domain knowledge. The following
categorization offers generic groupings.

(1) Nontrained intermittent users who infrequently access the database. This
is the proverbial “casual user” which Codd [121 describes as the most rapidly
expanding class of users. These people will have no syntactic knowledge and

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions - 423

may have little knowledge of the organization of the data. They may be
expected to understand the application domain such as a library index or
airline schedule, but their ability to pose reasonable questions may be
shallow. A system to allow users to get airline schedule information from a
terminal should require minimum skills: typing ability cannot be expected
and there may even be anxiety over the use of a computer terminal. The
best interaction mode is probably computer directed or the use of a human
intermediary.

(2) Skilled frequent users who make daily use of the database. These users may
be willing to learn a simple syntax for performing functions, but they are
more interested in their own work than in programming computers. The
easier the system is for them to use, the more frequent will be their use.
This category includes the skilled secretary, lawyer, engineer, or manager.

(3) Professional database users whose main role is to provide access to the
database. They will apply their long experience and accept substantial
training. Professional users will be concerned with efficiency and the quality
of their work.

3. RESEARCH METHODS

The research methods of traditional experimental psychology and human factors
will have to be adapted to the complex cognitive tasks required for interacting
with database systems. The high variance in subject performance encountered in
programming language experimentation (where students with similar educational
backgrounds or professionals at the same job level in an organization had 30 to 1
ratios in performance) will certainly be repeated. Increasing the size of the subject
population will help in combatting this problem, but we are limited by the fact
that specialized skills, which few people have and take long to acquire, may be
necessary for some experiments. Experiments with facilities for nontrained inter-
mittent users will be easier to accomplish because the subject pool is vast.
Professional users are highly paid and employers are reluctant to permit them to
participate in time-consuming experiments unless sufficient benefits can be
guaranteed. As in most psychological and human factors research, the bulk of
subjects will probably be university undergraduates who will be compelled to
participate for course requirements or additional credit. As much as possible, the
intended user population for the facility should be recruited for the research.

The three fundamental paradigms for research are introspection, field studies,
and controlled experiments. This author feels that all three are useful, but that
controlled experiments must ultimately be the basis for the most profound
theoretical and practical conclusions.

3.1 Introspection

This research method depends on an individual’s sensitivity to the cognitive skills
required while performing one or more of the five tasks: learning, composition,
comprehension, debugging, and modification. Subjects may be asked to make
subjective judgments about the ease of use of an interaction mode or a query

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

424 * B. Shneiderman

feature, or make comparisons. These judgments are highly influenced by training
and often do not correlate welI with performance metrics. Subjects may perceive
a task as being easy, but do poorly at the task.

Protocol analysis, in which subjects are asked to verbalize their procedures in
performing a task, is an intriguing and popular technique. Analyzing the protocol
can be a tedious task and it is hard to demonstrate the generality of any
conclusions because of extreme intersubject variability and because analyzing
lengthy protocols from numerous subjects is demanding. Still, intriguing insights
may be gained from working with expert users who are sensitive to their
performance.

3.2 Field Studies

Field studies or case studies are an attempt to study practitioners in a realistic
environment. The goal is to evaluate actual performance in a precise manner,
with minimal interference to standard practice. Not all the variables can be
carefully controlled, but unexpected events or insights may reward the careful
observer/experimenter.

In programming language work, researchers captured the job stream of sub-
mitted jobs on a particular day and analyzed the types and frequencies of
statement usage [13], error patterns [14,15], and performance data such as timing
or number of lines of code written. Similar strategies could be applied in database
usage to capture information about function requests, response types, or query
features. These data would be helpful in developing new facilities, improving
available languages, or revising training procedures.

Field studies are appropriate for investigating complex issues such as an entire
data management system, interaction modes, or a management strategy for team
organization. These issues are not amenable to straightforward controlled exper-
imentation but some conclusions can be drawn from a field study. Critics complain
about the lack of controls and the possible influence of external factors such as
organizational morale, individual motivation, and personality differences. Results
are not always generalizable or replicable, but important insights or suggestions
for controlled experimentation can be derived from field studies. A final criticism
is that field studies tend to measure current practice rather than the improvement
obtainable from new strategies.

3.3 Controlled Experimentation

Controlled experimentation depends on a reductionist approach which minimizes
uncontrolled bias. A small number of factors, say one to four, are chosen as
critical to the performance of a task. These factors are varied while all other
factors are kept constant, if possible. If varying a factor results in a statistically
significant difference in performance, then suggestions for practical implementa-
tion can be developed. The factors which the experimenter varies are the
independent variables and the performance measures are the dependent varia-
bles.

The advantage of controlled experimentation is that the results are generaliz-
able and replicable. Critics argue that controlled experiments too often have a
narrow focus and produce trivial results. Those favoring the reductionist strategy
claim that each result is like a small tile contributing to an emerging mosaic of

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions * 425

user behavior. A sound theoretical foundation, produced from controlled experi-
mentation on fundamental factors can lead to predictions in novel situations and
recommendations for future database management systems design.

A typical experiment might be designed to compare the ability of a range of
user types (nontrained intermittent, skilled frequent, and professional) to com-
prehend retrieval queries requiring set operations in a computer-directed or self-
contained language. The two experimental factors are the user type and the
interaction mode. The three levels in the user type and the two levels of
interaction mode make this a “3 by 2” or “3 x 2” experiment requiring six groups.
If ten subjects were selected for each group then a total of 60 subjects would be
required. A comprehension test would be administered to each group and a
statistical analysis would be performed to determine if there were statistically
significant differences among the groups. Statistical significance implies that the
results were probably not a result of chance occurrences. Typical levels of
statistical significance demanded are 5 percent or 1 percent. A difference in mean
scores is not sufficient in controlled experiments; statistical significance must be
demonstrated, in this case by the use of a technique called analysis of variance.

A major problem in the design of this hypothetical experiment is that it is
extremely difficult to ensure that the subjects using the computer-directed
technique are similar to the subjects using the self-contained language. Program-
ming language research has demonstrated an enormous variation in subject
performance, even for those subjects with the same job titles, experience, or
training. This variation often obscures any experimental factor. Questionnaires
or pretests have been insufficient to screen out these individual differences, nor
does increasing the group size seem effective. The skills being tested are complex
and difficult to measure. To deal with this problem, researchers have begun to
move to within subject designs rather than between group designs. In a within
subject design, a subject takes two tests and a comparison is made between the
two test scores: subjects compete against themselves, not against other subjects
whose background or ability may differ. For the proposed experiment each
subject would perform the comprehension task using the computer-directed and
the self-contained language interaction modes.

The problem with this method is that it may make a big difference which mode
is tested first. The obvious response to this problem is to counterbalance the
ordering of modes by presenting half the subjects with the computer-directed
mode first and the other half with the self-contained language first. A statistical
analysis should be made of the order effect to see if it is significant. The more
similar the tasks, the more pronounced the order effect. This remedy has the
advantage that fewer subjects are needed, but the disadvantage that each subject
must spend more time. This basic two factor within subjects design can be
adapted to a wide variety of issues. A simple one factor, or multiple factor designs
can be used as well. The more factors tested, the more complex the design and
administration, and the greater potential for main effects to be obscured.

For a guide to designing experiments see [16] and [17].

3.4 Measurement Techniques

Quantifying human performance in these complex cognitive tasks is a challenge.
A central problem in this area is developing adequate techniques for measuring

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

426 * B. Shneiderman

learning, composition, comprehension, debugging, and modification. Again the
experience with programming language experimentation will be a guide and will
be most appropriate when the host language embedded interactions mode is
studied.

If we define learning as the increase in the ability to perform a task, then before
and after tests seem fitting. Such pretests and posttests are the traditional tools
of educational psychologists. The contents of these tests would be items measur-
ing one of the four remaining tasks.

Composition of database functions is a complex skill which has multiple
components such as problem comprehension, program design, and program
coding. We will assume that debugging is a separable task. We are interested in
a person’s ability to compose a function specification and can simply require
subjects to perform a number of composition tasks. In database accessing, most
functions can be specified quickly when common high-level database manipula-
tion languages are used. For host language embedded systems, the composition
task may require substantially more time. Grading the work can be difficult if
partial credit is allowed and therefore duplicate grading is advised to improve
reliability. Time to completion has been used but is unreliable since the fastest
workers may not be the most accurate. If incorrect results can be returned for
reworking, then the time to correct completion can be used. The number of errors
might also be recorded. A multiple choice test in which subjects are asked to
choose proper syntax, rather than generate it, is a possible alternative, but is
subject to criticism, because it is not the normal mode of composition.

A particular problem arises when a composition task is to be tested using a
natural language interaction mode: How can we present a problem without using
the natural language formulation which would be precisely the solution? It has
been suggested that subjects be given the answers which the database would
produce and require subjects to produce the questions. This is not altogether
ludicrous, but is unrealistic because several questions might generate the same
answers and users rarely work this way. A more reasonable solution seems to be
to present subjects with a situation and a database and ask them to compose
natural language queries to respond to the situation. For example, using a
university database we required subjects to write queries which would assess the
quality of education in various departments. We expected queries like: List the
professors and their rank by department, or how many students were in each
section of a course? The queries may be rated on their appropriateness in
responding to the situation and whether the database contained sufficient data to
respond to the query.

Measuring comprehension seems to be easier than composition, but the de&
nition of comprehension is elusive. In programming language experiments, it is
possible for a subject to comprehend the high-level function of a program but not
understand the low-level details of how the program operates, and vice versa. In
database accessing the interactions tend to be smaller discrete entities which are
more amenable to testing with multiple choice or fill-in-the-blank type question.
Subjects can be presented with functions and asked to execute them against a
database. If the function is written in a self-contained language, the subject can
be asked to write a natural language interpretation. Time to correct completion
and subjective measures of difficulty can be used.

ACM Transactions on Database Syst&, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions - 427

The debugging task can be studied by providing subjects with an incorrect
function specification and requiring them to repair the errors. Since syntactic
errors will probably be caught by the system, semantic bugs are the main object
of study. A function specification in natural language can be used when interaction
modes other than natural language are being studied. For natural language
debugging the situational method described earlier can be used. Debugging
research should be particularly interesting, since the main problem in database
access debugging will be the determination that a semantic error has occurred:
syntactically correct functions will produce a reasonable event, how are users to
know that there is a bug?

Modification studies will be similar to composition experiments, except that
the original function will be provided. Since most interactions are short, modifi-
cation may be viewed as an original composition.

The high variability in subjects dictates collection of background data. Statis-
tics revealing the months of system experience, programming background, knowl-
edge of problem domain, or other significant variables should be collected for
correlational or covariance analyses.

4. RESEARCH ISSUES

This section presents a number of popular issues which would be candidates for
experimental study.

4.1 Natural Language Versus Artificial Language

Substantial effort has been put into developing systems for natural language
interactions with computers. Impressive systems such as Weizenbaum’s Eliza
[18], Winograd’s SHRDLU [19], and Woods’ Lunar Sciences System [20] were
all predecessors for the 52 projects, reported on in the ACM Special Interest
Group on Artificial Intelligence Bulletin (February 1977), whose goal was to
develop natural language interfaces for database systems. These researchers
argue that since most users are competent in using natural language, it would be
the ideal language for database interaction. Training would be eliminated and
users would have no inhibition to using the computer.

The limited number of critics (Montgomery [21], Hill [22], and Shneiderman
[23]) argue that natural language interfaces may not be preferable in every
situation. Just because users know natural language syntax does not ensure that
they know the semantics of database interaction or the semantics of the infor-
mation stored in the database. These limitations may lead to several problems;

(1) Unrealistic expectations of the computer’s power. Users might pose ques-
tions such as: How can I improve profits? or Is the defendant guilty? These
questions involve value judgments and complex ideas which computers
cannot and probably should not be relied upon to answer (Weizenbaum
[W.

(2) Attempts to request information which is not contained in the database,
thus wasting time and effort, while increasing frustration. Natural language
users may not be aware of the contents and semantics of the database. In a
corporate database it may be reasonable to inquire about departmental

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

428 . B. Shneiderman

average salaries but comparisons with industry wide salaries may be inap-
propriate.

(3) By allowing users to use natural language without training we allow the
ambiguities of English syntax to pollute the query process, driving developers
to design long and tedious clarification dialogs. This clarification dialog will
have to take place even for sophisticated users who are careful in their
selection of words. Particularly annoying are difficulties with existential and
universal quantification.

(4) Typical users may not be aware of the semantics of question asking.
Although they may know English syntax, they may not have thought of
what kind of questions could be answered by a database system. By teaching
users a concise and precise artificial language we are also teaching the
semantics of question asking. Having the tool of a well-learned query
language may enable users to compose complex queries which might not
have occurred to them otherwise.

6) Finally, the overhead of creating and maintaining a natural language inter-
face will always be larger than for a concise query language or a menu
selection process.

These criticisms do not imply that natural language inferfaces are useless, only
that their domain of application may be less broad than has been suggested.

Research experiments which compare natural language usage with artificial
languages can be performed even though the on-line systems are not available.
Paper and pencil experiments are less than optimal in this case, but they will
provide useful evidence until workable on-line facilities are developed.

4.2 Specification Versus Procedural Languages

Database query languages provide a new domain for the controversy between
specification languages, which describe the goal, and procedural languages, which
describe a process for arriving at the goal [25]. This classification is not discrete:
a language may fit in the continuum between the extremes described here.
Specification languages are usually viewed as being of higher level and having
shorter length than procedural languages. In database querying, specification
languages may be more appealing since the database functions are brief and lend
themselves to specification.

The relational algebra is seen as being more procedurally oriented than the
relational calculus [26] or calculus-based languages such as QUEL [27], SEQUEL
II [28], FORAL [29,30], and Query-by-example [31]. Commercial query languages
like those for System 2000 [32] or Model 204 [33] blend procedural and specifi-
cation concepts.

All of these languages are more specification oriented than host embedded
systems which usually require programmed logic control and record at a time
processing.

The psychological foundations of this issue are intriguing. Are there cognitive
style variables which might indicate which method is perferable for certain
subjects or tasks? Could composition be easier with procedural languages but
comprehension be easier with specification languages? Paper and pencil studies
seem appropriate here since only semantic issues are involved and syntactic or
terminal interface problems are secondary.
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions 429

4.3 Linear Keyword Versus Two-Dimensional Positional Languages

Some proposals for database query languages, such as QUEL [27] or SEQUEL II
[28] have been keyword oriented, basing their structure on traditional program-
ming language design. Other proposals have sought to include a two-dimensional
notation in which the position of items was critical: SQUARE [34], Query-by-
example [31], CUPID [35], and FORAL LP [30]. In the latter class of languages,
very few keywords are used and a graphics support system may be required.

Supporters of keyword-oriented languages argue that the keywords help in
learning and query composition, by associating query semantics with familiar
terminology. Supporters of two-dimensional positional query languages claim
that confusion can be reduced by using positional notation or special shapes to
indicate components of queries.

In Query-by-example, users are provided with a screen display of a relation
skeleton. Queries are composed by filling in columns with literals or underlined
examples. A keyboard controlled cursor makes placement of items easy. In
CUPID, lightpen touches enable users to move shapes and generate diagrams
which represent a query. In FORAL LP the user employs a lightpen to select
operations and data elements displayed as a binary network on the screen.

The fundamental psychological issue of keyword use versus abstract shape
notation is unstudied. For each of the five tasks, does English language knowledge
confuse or facilitate users? An early pilot study of ours suggests that high SAT
verbal nonprogrammers preferred the keyword-based approach of SEQUEL,
while high SAT math nonprogrammers preferred the mathlike positional notation
of Query-by-example. Users who emphasize right brain visual intuitive thinking
may have different preferences from those who prefer left brain verbal deductive
thinking.

4.4 Hardware Factors

The design of user interactive teminals may critically affect user performance
variables such as fatigue, anxiety, motivation, and satisfaction. Traditional human
factors research has concentrated on these performance variables issues, but
contemporary work is necessary with on-line transaction-oriented database ac-
cess.

The size of the display screen, brightness of the display, glare, flicker, contrast,
typefont size, typefont design, graphics or color capability, and physical placement
may all affect users. Keyboard design issues such as tactile or audio feedback,
placement of keys, angle of keys, and placement of keyboard, are also significant
variables. Ancillary equipment such as special-purpose keypads, lightpens, sonic
pens, touch sensitive screens, mouse-controlled cursors, or joysticks may facilitate
interactive usage.

An underlying issue is the response time of the system. Long delays are usually
disruptive and disturbing, but the variance of response time may be as critical as
the mean response time [36, 371. If the variance of response time is small, users
incorporate the waiting into their work patterns by preplanning future queries or
attending to other functions, but if the variance is large, users must maintain a
continued high level of awareness and become anxious if response time grows.
Performance and satisfaction may actually improve if responses are delayed so as

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

430 - B. Shneiderman

to minimize variance. Another tactic may be to inform users of the estimated
waiting time if the response is to be more than a few seconds.

4.5 Menu Selection, Fill-In, and Parametric User Interfaces

Three easy to implement, computer-directed, user interface modes that are
frequently used are:

(1) Menu selection. The terminal screen is filled with a set of numbered choices.
(2) Fill-in-the-blank. The user provides a word, number, or phrase response to

a line of text.
(3) Parametric. The user provides a formatted set of numbers, codes, or words

in response to a prepared line of text.
Menu selection requires little or no user training and has the advantage that

users may be informed about additional system features. A succession of menu
selections can be used to produce a tree search. Choosing the terms in the menus,
the number of items in each menu, and the sequencing of menus requires careful
planning so as to minimize user error. A simple exit from the menu sequence, the
opportunity to return to previous menus, and help frames should be provided.
With a high-speed communication line, menu selection does not lead to boredom
and can be an effective method. Users should be allowed to respond to a menu as
soon as it appears or as soon as their choice appears.

Fill-in-the-blank questions require users to be aware of response formats, but
lengthy displays of menus are avoided. Some training may be required but with
experience users quickly become proficient. Exit, backup, and “help” facilities
should be provided.

Parametric systems require still more training, but usage is extremely fast and
user satisfaction is increased because users feel more in control. Airline reserva-
tion systems, which require the flight number and date plus a function code, are
successful applications of this mode. Training requirements are increased, but
not severely. More complex error-handling modules are required, but help frames
which list the set of choices or commands are usually easy to prepare. When an
error occurs with a novice user, the system could default to a slower menu
selection approach.

Experimental tests need to be conducted to clarify the applications which are
most suitable for these three modes. How many choices are optimal for a single
menu? How many parameters can users be expected to master if their usage is
infrequent? What kind of frustrations are encountered in each of these three
modes? How does variation in response time affect user satisfaction? These and
other questions seem suitable topics for experimental comparison.

4.6 Schema Design

Once a data model has been selected for an application, the database designer/
analyst must create the schema. Although machine efficiency issues may inter-
vene, every effort should be made to provide the easiest to use schema.

In the relational model, since joining or linking of relations increases the
complexity of query formulation, it is preferable to have higher degree relations
which may not be in third or Boyce-Codd normal form. Unfortunately, first or
second normal form relations exhibit update anomalies [38] and may obscure the
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions 431

semantics of the data. These two constraints produce an optimization question
which can be resolved by experimental study. Groups of users could be given a
relational database in various stages of normalization and be required to perform
database access tasks.

In the tree structured model of data, many-to-many relationships can be
expressed by building two separate trees which are logically paired or by having
redundant fields in segments. No evidence has been presented about the relative
merits of these two methods in terms of user comprehension. Two separate trees
seem more confusing but redundant entries are more confusing if updates are.
required.

Another problem that arises in tree structures is depth versus breadth tradeoffs.
Although this problem involves machine performance considerations, the human
factors component is important. An organizational division may be parent to
departments which are parents to employees, or a division may be parent to
employees directly with department included as a field of the employee segment.
These and other design considerations should be experimentally studied.

Network models which require currency pointer maintenance present addi-
tional difficulties for programmers. Record types which have more than one
owner record type and cyclic schema structures are particularly confusing to
novices.

The binary relational model [39] has an elegant and simple basis, but the
complexity of schema diagrams can lead to confusion. Studies need to be per-
formed to assess ease of use of binary relations which do not have the convenience
of a grouping structure such as a record or a segment.

In the record-oriented models, redundancy of data plays an important role in
implementation efficiency and in user ease. Redundancy may facilitate query
tasks, but complicate insertion and deletion.

Since variable names are critical in conveying the semantics of the data,
experiments should be performed with the intended user population to ensure
that the proper meaning has been conveyed. Even domain values, such as job
titles or student grades (e.g., not everyone may be familiar with each of the grade
codes: A,B,C,D,F,I,W), should be tested to ensure user comprehension.

4.7 Data Model Selection

The heated debates of the past few years over the relative merits of proposed
data models, have cooled down and observers are more concerned with the
incorporation of schema-oriented database systems in realistic environments.
Supporters of each model have included features from their competitors and the
relative merits of each model are becoming somewhat clearer.

McGee’s [40] paper gives a set of criteria for evaluating data models which is
based largely on human factors considerations, including the following:

Simplicity. A model should have the smallest possible number of structure
types, composition rules, and attributes.

Elegance. A model should be as simple as possible for a given direct modeling
capability.

Picturability. Model structures should be displayable in pictorial form.
Modeling directness. A model should not provide equivalent direct modeling

techniques.
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

432 * B. Shneiderman

Overlap with coresident models. A model should mesh smoothly with other
coresident models.

Partitionability. A model should have structures which facilitate the adminis-
trative partitioning of data.

Nonconflicting terminology. A model should use terminology which does not
conflict with established terminology.

These ill-defined qualitative criteria are a useful starting point, but few guide-
lines are offered for measuring the simplicity or elegance of a data model.
Picturability appears to be a useful attribute, but how can we be sure? Other
visually based schemes such as detailed flowcharts have lately come under fire
[4]. Another problem with these criteria is that we may get conflicting impressions
from different users of the relative simplicity of two data models. In short, we
need more precise, replicable, and generalizable results which can be obtained
from controlled experiments,

Tree structured data models appear to be most successful when the data are
perceived to have a natural tree structure, but is cumbersome otherwise. The
relational model is elegant, but critics have complained that it is too “syntactic”
and that models which can represent more semantic information are preferred
[41]. Network or data-structure-set models permit sophisticated structures to be
described, but the concommitant complexity and the use of currency pointers
increases the difficulty of usage. These subjective impressions culled from the
literature and comments from colleagues need to be clarified and verified. I
suspect that no model wilI emerge as the best, but that several data models will
be necessary to accommodate the variety of users.

5. RESEARCH DIRECTIONS

Initial steps have been taken in controlled experimental research on human
factors in database systems. The relational query languages SQUARE and
SEQUEL have been studied by Reisner and her colleagues [43,7] using program-
mers and nonprogrammers. Thomas and Gould [44] have done a detailed study
of Query-by-example using nonprogrammers and Ascher and Gould studied an
IQF-like query facility [45].

Durding, Becker, and Gould [46] performed an intriguing experiment using
word organization problems to test the ability of nonprogrammers to use a variety
of data structures.

Thomas provides an excellent survey of these experiments and outlines psy-
chological issues in database management [47]. Lochovsky and Tsichritzis have
compared usage of three data models by programmers for three specific problems
[48,49]. Brosey and Shneiderman compared the hierarchic and relational models
independently of query facilities, by giving comprehension and memorization
tasks to novice programmers [50]. Recently Greenblatt and Waxman compared
three languages for the relational model: Query-by-example, SEQUEL, and a
relational algebra variant [51].

A good beginning has been made but much work remains. Successful research
can have a dramatic impact on future systems and will influence the acceptability
of information systems by the general public.
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions 433

6. NATURAL VERSUS ARTIFICIAL QUERY LANGUAGE EXPERIMENT

A small experiment was run to demonstrate the research methods described in
Section 3, and to investigate the question raised in Section 4.1 concerning the
relative advantages of natural and artificial query languages. This experiment
was not intended to be conclusive, but merely an example of the design, admin-
istration, analysis, and conclusion components of an experiment.

Recent results from Small and Weldon [52] raised further doubts about the
advantages of natural language query facilities. In that experiment, 20 subjects
were required to compose queries in natural language English and a subset of
SEQUEL. Answers were marked on sample databases with some notation to
indicate the origin of the answers and subjects were required to compose the
queries at interactive computer terminals. Experimental aides in a separate room
played the role of the natural language or subset-SEQUEL processor and provided
error messages as needed. Users of natural language had to follow the tabular
patterns, but had syntactic and naming freedom. Each subject performed in both
interaction modes and counterbalanced orderings were used in this repeated
measure design. Harmonic times to first response and to correct response both
indicated that subset-SEQUEL was superior. Those using SEQUEL in the latter
half of the experiment were the highest scoring group.

Small and Weldon conclude that:

The common assumption that ordinary, everyday English is the ideal way to communicate with
computers is not supported by the present results. Subjects were not reliably more accurate using
English than using SEQUEL. They were reliably faster using SEQUEL, suggesting that the
structured language is easier to use.

We felt that requiring subjects to provide queries in this constrained format
did not measure a subject’s capacity to formulate queries to resolve problems.
Secondly, requiring subjects to understand the patterns of table usage did not
represent true natural language usage. To resolve these two problems we decided
to offer subjects a situation problem where they had to formulate questions on
their own. Natural language users were told about a department store employee
database and were asked to pose questions to help them decide which department
to work in. Subset-SEQUEL users were given brief training, a seven item
comprehension test, and were told to pose questions in subset-SEQUEL. The
criterion of success was the number of relevant queries that each subject asked
in each mode.

6.1 Procedure

(1) Subjects. The subjects were 22 University of Maryland students enrolled in
an undergraduate Cobol programming and information systems course, some
of whom may have had previous programming experience. Subjects were
tested in the eighth week of a G-week course. A standard Experimental
Consent Agreement used by the Human Subject Committee of the Depart-
ment of Information Systems Management was circulated and signed by
each participant.

(2) Materials.
(a) SEQUEL Experiment cover sheet describing the sequence of events

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

434 ’ 0. Shneiderman

to be followed in learning SEQUEL, taking the comprehension test,
and doing the situation problem.

(b) SEQUEL Instruction booklet consisting of four double-spaced pages
with SEQUEL sample questions and answers. Single-table databases
were assumed, thus eliminating the need for the FROM clause, and
only simple mappings, AND/OR logic and live arithmetic functions
(SUM, COUNT, AVG, MAX, MIN) were shown.

(c) Comprehension questions included three SEQUEL samples which
subjects were to execute against the given database and four English
queries which had to be translated into SEQUEL.

(d) Situation Problem (SEQUEL) contained the following instructions:

You are considering taking a job in one of the departments of the example table on Page 1. You
can work in any department you wish. You can review and compare departments by querying the
database in SEQUEL. Write alI queries you might possibly ask in making your decision. DO NOT
RETURN TO PREVIOUS SECTION FOR REFERRAL. NOTE: This section will be scored on
both the number of questions you formulate and the relevance of each question. (Put the question
down even if you feel your syntax is incorrect.)

(e) Situation Problem (English) contained the following instruction:

You are considering taking a job in one of the departments of a department store. You can work
in any department you wish. In order to help you with your decision of which department to work
in, you can review and compare departments by asking questions about the department store’s
employees. You may obtain information concerning the employee’s: names, salaries, managers,
departments employees work in, years of employment, and age of employees. Write all questions
you might possibly ask in making your decision. DO NOT RETURN TO A PREVIOUS SECTION
FOR REFERRAL.

NOTE: This section will be scored on both the number of questions you formulate and the relevance
of each question.

Two forms of the test booklet were constructed from these materials: NAT-
SEQ was ordered eabcd and SEQ-NAT was ordered a&de. Half the subjects
received NAT-SEQ booklets and the other half received the SEQ-NAT booklets.
Fifteen minutes were allowed for studying the SEQUEL Instruction booklet and
for each of the situation problems. Ten minutes was allowed for the SEQUEL
Comprehension questions.

(3) Grading. SEQUEL comprehension scores were graded as being correct or
incorrect, but some freedom was given in syntactic form. In any case, these
scores were not intended for analysis, but merely to assure that the subjects
had learned some SEQUEL in the 15-minute training period. None of the
subjects scored less than a three out of seven and the average score was
3.95.

The Situation problem results were graded as invalid or valid. Valid queries
had to be answerable from the database and relevant to the task of deciding
which department to work in. If subjects repeated question templates such as:
What is the maximum salary in the TOY department? What is the maximum
salary in the SHOE department? only one point was assigned for the entire
group. Such patterns appeared in both SEQUEL and English forms since the
GROUP BY feature was not taught. Minor spelling or syntactic errors were
accepted in both forms, as long as the intent was clear.
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions - 435

6.2 Results

Tables I-III present the detailed results. T-tests showed no significant differences,
even at the 0.10 level, between valid English and valid SEQUEL queries. The
order effect was not significant, however, the number of invalid queries did differ
significantly (p<O.Ol) between the English and SEQUEL groups. The order effect
for invalid queries was also significant (~~0.01): the NAT-SEQ group had more
invalid queries than the SEQ-NAT group.

Since the invalid queries provided the significant differences, an informal
review of the kinds of invalid queries was undertaken. Those using English often
let their imagination go and came up with interesting and relevant questions
which could not be answered from the database. Typical examples include:

Are the managers lenient concerning tardiness and absences?
Do people like working in (the) department?

Table I. Mean Number of Queries Posed in Situational Problem with Standard Deviations
in Parentheses

Subset-SEQUEL Natural language Combined

Valid Invalid Valid Invalid Valid Invalid

NAT-SEQ 2.54 0.36 2.45 2.90 2.49 1.64

(1.29) (0.91) (1.21) (2.16) (1.22) (1.61)

SEQ-NAT 3.54 0.09 2.64 0.90 3.09 0.49

(2.11) (0.30) (3.41) (1.81) (2.76) (1.26)

Combined 3.04 0.23 2.54 1.91 2.79 1.07

(1.70) (0.66) (2.49) (1.94) (2.95) (2.02)

Table II. NAT-SEQ.Raw Data, Mean Scores, and Standard Deviations

NAT-SEQ

Natural language situation Comprehen- SEQUEL situation
sion ques-

Subject No. Valid Invalid tions correct Valid Invalid

1 2 2 3 3 1

2 3 0 5 2 0

3 3 1 5 5 0
4 2 6 3 3 0

5 0 5 3 3 0

6 3 0 6 3 0
7 2 4 6 0 0

a 4 3 4 1 0

9 4 3 4 3 0
10 1 2 6 3 0

11 3 6 3 3 3

Total 21 32 48 28 4
Mean 2.45 2.90 4.36 2.54 0.36

Standard deviation 1.21 2.16 1.22 1.29 0.91

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

436 - B. Shneiderman

Table III. SEQ-NAT Raw Data, Mean Scores, and Standard Deviations

SEQ-NAT

Subject No.

Natural language situation Comprehen- SEQUEL situation
sion ques-

Valid Invalid tions correct Valid Invalid

1 0 1 5 6 1
2 a 0 7 8 0
3 3 0 5 3 0
4 1 0 6 2 0
5 1 0 6 2 0
6 3 0 7 5 0
7 0 0 5 2 0
a 0 4 5 2 0
9 0 4 5 2 0

10 3 0 6 4 0
11 1 0 5 1 0

Total 29 10 62 39 1
Mean 2.64 0.90 5.64 3.54 0.09
Standard deviation 3.41 1.31 1.03 2.11 0.30

What is the starting salary for each department?
What is the personality of the managers?
What type of clientele does the department cater to?
How often are raises awarded?

6.3 Discussion

The fact that there were not significant differences in the number of valid queries
in the natural language and subset-SEQUEL groups can be used to support
advocates of natural language facilities or precise concise artificial languages.
Adherents of artificial languages might argue that with only 15 minutes of training
in SEQUEL, the performance is impressive and that with additional training,
SEQUEL users should be able to surpass natural language users. Learning
additional features of the SEQUEL language should also improve performance.

Supporters of natural language front ends might complain that the SEQUEL
training period and the comprehension test helped subjects by providing examples
to follow. They might also complain that natural language users were not given
a chance to become familiar with the application domain.

Future experiments will have to be directed to determine the importance of
familiarity with the application domain, familiarity with the data items stored in
the computer, amount of prolog needed to prepare natural language users to deal
with the computer, capacity of the system and the user to produce effective
clarification dialogs, and the importance of typing skill for communication at a
terminal.

The significant differences on the invalid query tally do support the reservations
about natural languages use made in Section 4.1 of this paper. Natural language
users were far more likely to pose unanswerable queries. Only 3 of the 22 subjects
posed invalid queries during their SEQUEL sessions while 12 of the same 22
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions * 437

subjects posed invalid queries during their natural language sessions. Nine out of
the eleven who had natural language first made invalid queries in natural
language, but only three out of eleven subjects who had natural language second
made invalid queries in natural language. These results suggest that the struc-
turing during SEQUEL use was learned and applied during the,natural language
session.

These results should not be interpreted as a condemnation of natural language
usage, but as an aid in determining which applications are suitable for natural
language front ends and what training users should be given. User knowledge of
the application domain seems to be critical: without this prerequisite, natural
language usage would be extremely difficult. Secondly, user knowledge of the
structure of the data in the computer and what each item means appears to be
vital. Finally, experience in asking questions against a specific database is prob-
ably helpful. Thus the ideal candidate for natural language usage may be the
experienced frequent users of a manual information system, but these users are
likely to appreciate the simplicity, brevity, and precision of a structured query
language. The casual user with little knowledge of the application area, under-
standing of the data structure, and experience in posing queries may find natural
language facilities more confusing. Realistic applications for natural language
would be situations where people have familiarity with the application area, data
structure and queries, but are infrequent users. Typical situations that fit this
description include library card catalogs, airline schedules, or banking transac-
tions. More research is necessary to support these hypotheses.

This simple one factor counterbalanced within subjects experiment raises more
questions than it answers, but this fits well with our goal of provoking further
experimental research. The results must be replicated under a variety of condi-
tions before any conclusions or recommendations can be made.

ACKNOWLEDGMENT

Kevin Storms carried out the experiment described in Section 6. The referees’
comments were helpful in improving the presentation. The University of Mary-
land Computer Science Cent,er provided support for computer services.

REFERENCES
1. GANNON, J.D., AND HORNING, J.J. The impact of language design on the production of reliable

software. IEEE Trans. Software Eng. SE- 1, 2 (1975).
2. GANNON, J.D. An experimental evaluation of data type conventions. Comm. ACM 20, 8 (Aug.

1977), 584-595.
3. SHNEIDERMAN, B. Exploratory experiments in programmer behavior. Znt. J. Computer and

Inform. Sci. 5,2 (June 1976), 123-143.
4. SHNEIDERMAN, B., MAYER, R., MCKAY, D., AND HELLER, P. Experimental investigations of the

utility of detailed flowcharts in programming. Comm. ACM 20,6 (June 1977), 373-381.
5. SHNEIDERMAN, B. Measuring computer program quality and comprehension. Znt. J. Man-Mu-

chine Studies 9 (1977).
6. WEISSMAN, L. A methodology for studying the psychological complexity of computer programs.

Ph.D. Th., U. of Toronto, Toronto, Ont., Canada, 1974.
7. REISNER, P. Use of psychological experimentation as an aid to development of a query language.

IEEE Trans. Software Erg. SE-3, 3 (1977), 218-229.
8. FURTADO, A.L., AND KERSCHBERG, L. An algebra of quotient relations. Proc. ACM SIGMOD Int.

Conf. Manage. of Data (1977), pp. 1-8.

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

438 - B. Shneiderman

9. THOMAS, J.C. Quantifiers and question-asking. IBM Res. Rep. RC 5866, IMB T.J. Watson Res.
Ctr., Yorktown Heights, N.Y., 1976.

10. DATE, C.J. An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 2nd ed.,
1977.

11. CODD, E.F. Relational completeness of data base sublanguages. In Data Ease Systems, R. Rustin,
Ed., Prentice-Ha& Englewood Cliffs, N.J., 1971.

12. CODD, E.F. Seven steps to rendezvous with the casual user. In Data Base Management, J. W.
KIimbie and K. L. Koffeman, Eds., North-Holland Pub. Co., Amsterdam, 1974, pp. 179-199.

13. KNUTH, D.E. An empirical study of FORTRAN programs. Software-Practice and Experience
1 (1972), 105-133.

14. LITECKY, C.R., AND DAVIS, G.D. A study of errors, error-proneness and error diagnosis in Cobol.
Comm. ACM, 19, 1 (Jan. 1976), 33-37.

15. YOUNGS, E. A. Human factors in programming. Znt. J. Man-Machine Studies 6, 3 (1974).
16. EDWARDS, A. L. Experimental Design in Psychological Research. Holt Reinhsrt and Winston,

New York, 1968.
17. CRONBACH, L.J. Essentials ofPsychological Testing. Harper and Row, New York, 3rd ed., 1970.
18. WEIZENBAUM, J. EIiza-a computer program for the study of natural language communication

between man and machine. Comm. ACM 9, 1 (Jan. 1966), 36-45.
19. WINOGRAD, T. Understanding Natural Language. Academic Press, New York, 1972.
20. WOODS, W.A., KAPLAN, R.M., AND NASH-WEBBER, B. The lunar sciences natural language

information system. Bolt Beranek and Newman, Cambridge, Mass., June 1972.
21. MONTGOMERY, CA. Is natural language an unnatural query language? Proc. ACM Nat. Conf.,

New York, 1972, pp. 1075-1078.
22. HILL, I.D. Wouldn’t it be nice if we could write computer programs in ordinary English-or would

it? Honeywell Comptr. J. 6, 2 (1972), 76-83.
23. SHNEIDERMAN, B., Ed. Database Management Systems, Inform. Tech. Ser., Vol. 1, AFIPS Press,

MO&vale, N.J., 1976, pp. 59-61.
24. WEIZENBAUM, J. Computer Power, Human Reason. W. H. Freeman, San Francisco, 1976.
25. LEAVENWORTH, B.M., AND SAMMET, J.E. An overview of nonprocedural languages, SIGPLAN

Notices (ACM) 9, (April 1974), 1-12.
26. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM 13, 6 (June

1970), 377-387.
27. HELD, G.D., STONEBRAKER, M.R., AND WONG, E. INGRES: A relational database system. Proc.

AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., pp. 409-416.
28. CHAMBERLIN, D.D., et al. SEQUEL 2: A unified approach to data definition, manipulation, and

control. IBM J. Res. and Develop. 20,6 (Nov. 1976), 560-574.
29. SENKO, M.E. The DDL in the context of a multilevel structured description: DIAM II with

FORAL. Data Base Description, Proc. IFIP-TC-2 Working Conf., Wepion, Belgium, Jan. 1975,
B.C.M. Douque and G. M. N&en, Eds., North-Holland Pub. Co., Amsterdam, 1975, pp. 239-258.

30. SENKO, M.E. DIAM II with FORAL LP: Making pointed queries with light pen. Information
Processing 77, North-Holland Pub. Co., Amsterdam, 1977, pp. 635-640. ’

31. ZLOOF, M.M. Query by example. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, NJ.,
pp. 431-437.

32. System 2000 Reference Manual. MRI Systems Corp., Austin, Tex., 1977, pp. 635-640, 1973.
33. Model 204 User Language Reference Manual. Computer Corp. of America, Cambridge, Mass.,

1977.
34. BOYCE, R.F., CHAMBERLIN, D.D., KING III, W. F., AND HAMMER, M.M. Specifying queries as

relational expressions: SQUARE. Proc. ACM SIGPLAN-SIGIR Interface Meeting, Gaithersburg,
Md., Nov. 1973.

35. MCDONALD, N., AND STONEBRAKER, M. CUPID: The friendly query language. Proc. ACM Pacific
Conf., San Francisco, April 1975.

36. MILLER, R.B. Response time in man-computer conversational transactions. Proc. AFIPS 1968
SJCC, Vol. 33, AFIPS Press, Montvale, N.J., pp. 267-277.

37. MILLER, L. A study in man-machine interaction. Proc. AFIPS 1977 NCC, Vol. 46, AFIPS Press,
MO&vale, N.J., pp. 409-421.

38. HEATH, I.J. Unacceptable file operations in a relational data base. ACM-SIGMOD Proc., 1972.
39. SENKO, M.E., ALTMAN, E.B., ASTRAHAN, M.M., AND FEHDER, P.L. Data structures and accessing

in database systems, IBM Syst. J. 12, 1 (1973), 30-93.
ACM Transactions on Database Systems, Vol. 3. No. 4, December 1978.

Improving the Human Factors Aspect of Database Interactions 439

40. MCGEE, W.C. On user c&e&for data model evaluation. ACM Trans. Database Cyst. 1,4(Dec.
1976), 370-387.

41. CHEN, P. The entity-relationship model-toward a unified view of data. ACM Trans. Database
Syst. 1, 1 (March 1976), 9-36.

42. KERSCHBERG, L., OZKARAHAN, E.A., AND PACHECO, J.E.S. A synthetic English query language
for a relational associative processor. Proc. Second Int. Conf. Software Eng., San Francisco, 1976,
pp. 505-519.

43. REISNER, P., BOYCE, R.F., AND CHAMBERLIN, D.D. Human factors evaluation of two data base
query languages: SQUARE and SEQUEL. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press,
Montvale, N.J., pp. 447-452.

44. THOMAS, J.C., AND GOULD, J.D. A psychological study of query by example. Proc. 1975 National
Computer Conference, AFIPS Press, Montvale, N.J.

45. GOULD, J.D., AND ASCHER, R.N. Use of an IQF-like query language by non-programmers. IBM
Res. Rep. RC 5279, IBM T.J. Watson Res Ctr., Yorktown Heights, N.Y., Feb. 1975.

46. DURDING, B.M., BECKER, C.A., AND GOULD, J.D. Data organization. Human Factors 19,l (1977)
1-14.

47. THOMAS, J.C. Psychological issues in database management. Proc. Third Znt. Conf Very Large
Data Buses, Tokyo, 1977.

48. LOCHOVSKY, F., AND TSICHRITZIS, D. User performance considerations in DBMS selection. Proc.
ACM-SIGMOD Int. Conf. Manage. of Data, 1977, pp. 128-134.

49. LOCHOVSKY, F. Database management system user performance Ph.D. Diss. U. of Toronto,
Toronto, Ont., Canada, 1978.

50. BROSEY, M., AND SHNEIDERMAN, B. Two experimental comparisons of relational and hierarchical
database models. Znt. J. Man-Machine Studies (to appear).

51. GREENBLATT, D., AND WAXMAN, J. A study of three database query languages. Databases:
Improving Usability and Responsiveness, B. Shneiderman, Ed., Academic Press, New York,
1978.

52. SMALL, D.W., AND WELDON, L.J. The efficiency of retrieving information from computers using
natural and structured query languages. Rep. SAI-78-655WA, Science Applications, Arlington,
Va., Sept. 1977.

Received January 1978; revised July 1978

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

