
SPECIAL SECTION 

Ecological Studies of 
Professional 

For over two decades, software psychology researchers 
have been developing insights to software productivity 
and quality by investigating builders and users of 
software. This research has been diverse in both its 
approach and its impacts. It has introduced systematic 
behavioral measurement into the software development 
process and into research on new software techniques 
and technologies, and has also opened up new social 
and cognitive interpretations of software processes 
15,121. 

We now see evidence of a n.ew thrust in software 
psychology coming to the fore, one in which usability 
researchers are direct participants in the definition and 
creation of new software artifacts. We call this paradigm 
Ecological Design, to emphasize (1) that realistic soft- 
ware situations are being confronted on their own 
terms, and (2) that the work is directed toward design 
results, not merely toward evaluation and description 
in the service of design goals. 

The reorientation towards studying teamwork was 
prompted in 1971 by Weinberg and followed by a few 
researchers at that time, but the movement has acceler- 
ated with the recent and intense interest in computer 
supported collaborative work. [IS]. This was apparent 
in the papers presented at the two workshops on Empir- 
ical Studies of Programmers [lo, 131. An accompanying 
shift has also occurred in the software engineering com- 
munity. The traditional waterfall model of software 
development with the precise specification of a prov- 
able topdown design is giving way to newer exploratory 
styles of program development that emphasize rapid 
prototyping and iterative refinement. The shift from 
product to process also puts greater emphasis on team 

Programmers 

Guest Editors’ Introduction: 

BEN SHNEIDERMAN, 
University of Maryland 

JOHN M. CARROLL, 
IBM Watson Research Center 

organization, group processes, management policies, 
reusability, development tools, design methods, debug- 
ging strategies, and maintenance [S]. 

The three papers in this special section exemplify 
this new paradigm. Rosson, Maass, and Kellogg and 
Curtis, Krasner, and Iscoe describe highly qualitative 
studies of professional designers that produced specific 
technical proposals for improving software tools and 
the coordination of project management, an assessment 
of major bottlenecks, and a new framework for thinking 
about software design as a learning and communication 
process. Soloway, Pinto, Letovsky, Littman, and 
Lampert describe the design and exploration of software 
documentation that grew out of similarly qualitative 
studies of program maintenance. 

We caution that this research paradigm is still in its 
infancy: setting design requirements and developing 
prototypes are not traditional activities of psychological 
researchers. These roles are still emerging, still being 
reconciled with the earlier paradigms. The particular 
projects highlighted here are only the beginning; the 
field continues to evolve, as more researchers are at- 
tracted, as more topics are explored, as more methods 

1256 Communications of the ACM November 1988 Volume .jl Number I1 



are developed. Thus, despite the shortcomings of any a hypothesis testing procedure. It is interpretive, induc- 
particular project, the trajectory of this paradigm seems tive; it seeks to discover, not merely to confirm or dis- 
clear to us: it is the development of ideas that directly confirm. It typically involves collecting information 
impact productivity and quality in software. Indeed, over a significant span of time to eliminate ephemeral 
part of our intention in presenting this special section is effects. Monitoring patterns of actual use of a software 
to encourage more and more rapid development of the environment often supplement the more direct inter- 
new paradigm. view and protocol techniques. 

WORKING OUTSIDE THE LABORATORY 
Software design takes place in software shops, not in 
psychological laboratories. To be pertinent, empirical 
work must confront design problems on their own 
terms: it must address whole problems while they are 
still technologically current and when their resolution 
can still constructively impact the direction of techno- 
logical evolution. Software psychology in the paradigm 
of ecological design takes place in software shops. 

This work stresses richer analyses of software profes- 
sionals working on realistic tasks. The main research 
setting for this work is the case study. A case study can 
begin and end anywhere in the task-artifact cycle. The 
key requirement is access to real situations. Case study 
task analysis usually consists of the collection of 
detailed, qualitative information (for example, thinking 
aloud protocols, interviews). Such data are arbitrarily 
rich: they can be returned to and analyzed from many 
different perspectives. The typical approach is to make 
videotapes to create a vivid and permanent data library. 

Inasmuch as the chief goal of task analysis in the task- 
artifact cycle is to produce requirements for subsequent 
design work, this places emphasis on identifying big 
factors-big needs, big usability problems. Thus, one 
typical output of this phase is an error taxonomy, a 
qualitative theory of what is giving the user trouble, 
how it is happening, what users are doing as a conse- 
quence, etc. The complexity and rapid evolution of 
software technology requires richer and more open- 
ended methods than the one-off hypothesis testing 
of the human factors evaluations and cognitive 
description approaches. 

There are some clear tradeoffs here. Rather than col- 
lect a few pieces of information (error rates, task times) 
about many individuals, this work seeks to collect lots 
of information from perhaps a small number of individ- 
uals. Studying unique situations at a fine grain of detail 
will generally not produce information suitable for con- 
ventional statistical analysis. Statistical approaches 
must assume a large population of comparable events. 
But the most important events in the use of software- 
the contextualized details of meaningful interaction, 
and of how meaningful interaction breaks down-are 
not always easily added up and averaged. The critical 
stuff of usability, in this view, are the semantics and 
pragmatics of singular cases. 

The papers by Curtis et al. and Rosson et al. present 
analyses of interviews with software designers. The 
authors collected voluminous transcriptions charac- 
terizing design activity that had taken place over 
substantial spans of time. They sought to describe both 
the general patterns and the significant, but more sin- 
gular experiences of particular designers and design 
teams. Curtis et al. offer an excellent example of the 
new style of analysis and deliver appealing insights 
about professional software design derived from 97 
interviews with participants in 17 large projects. They 
apply five levels of analysis (individual, team, project, 
company, and business milieu) to three issues (the thin 
spread of application knowledge, fluctuating and 
conflicting requirements, and communications mecha- 
nisms and breakdowns). Rosson et al. describe inter- 
views with 22 professional user interface designers and 
their projects. Several important issues are covered 

This richer style of task analysis does not stem from 

Special Section 

November 1988 Volume 31 Number 11 Communications of the ACM 1257 



Special Section 

including user testing and iterative design, the rising 
importance of user interface management systems and 
support tools, and the sources of ideas for designers. 
The key goal of both analyses was to develop empirical 
taxonomies of the big factors that structure software 
design activities and hence thll outcomes of design. 

PARTICIPATING IN SOFTWA.RE DESIGN 
Building and inventing artifacts is not usually 
viewed as a normal activity in psychological research 
[3, 71. Yet, what is needed in software is psychologically 
informed artifacts. Modern software technology is brim- 
ming with psychological content (consider any discus- 
sion of the rationales for structured programming or 
object-oriented programming). The challenge is to 
describe more effective ways to infuse and systematize 
this psychological content in software design. 

Carroll and Campbell [4] outline a research strategy 
that can be seen in various emerging ecological design 
projects. They introduce the notion of the “task-artifact 
cycle”: psychological analysis of the tasks people want 
to perform, coupled with the problems, insights, and 
satisfactions they experience, followed by setting the 
objectives for new software tools, constrained by tech- 
nological feasibility. New tools, in turn, alter the tasks 
for which they were designed, indeed, alter the situa- 
tions in which the tasks occur iand even the conditions 
that cause people to want to engage in the tasks. This 
creates a need for further task a.nalysis, and in time, for 
the design of further artifacts. 

While ecological design is still an emerging approach, 
one can identify projects that illustrate some of the 
major themes, that is, projects in which psychological 
rationales are driving the design of new software arti- 
facts for real situations. Key to all these projects is the 
attempt to integrate psychological task analysis of real 
work situations with the development of new software 
artifacts to improve usability, productivity, and 
sa’tisfaction. 

Soloway and colleagues, working at the NASA/Jet 
Propulsion Laboratory, have completed several cycles of 
task analysis/artifact design in the area of software doc- 
umentation; psychological analyses of the role and use 
of documentation in software maintenance were the 
driving forces behind the design of several different 
forms of documentation (see paper this issue, and 181, 
[9], [la]). For example, they found that a typical strategy 
of professional programmers for using the documenta- 
tion (the as-needed strategy) often resulted in subjects 
missing key information about the non-local interac- 
tions in the program; this observation drove the design 
of a version of the documentation that attempted to 
make that key information more readily accessible. 

Anderson and his collaborators have codified their 
analyses of how students learn to program in Lisp [I] 
into the design of tutoring systems for teaching Lisp 
[2,11]. The tutor is now in regular use in several Lisp 
curricula, and its performance compares quite favorably 

with more standard lecture methods of instruction. 
We see the emergence of a more proactive role for 

cognitive and social science in the invention of new 
software technology as critically important to the more 
traditional goals of software psychology, namely, facili- 
tating productivity and quality in software, and devel- 
oping more powerful and conceptuallv interesting 
theoretical models. We see the possibility of this role 
as deriving both from the genuine research successes 
in software psychology and from the two decades of 
practical experience that software psychologists have 
attained. Software technology is complex and frag- 
mented. To play a directive role in the development of 
these technologies, one must be intimately and broadly 
involved: ideas come from the informed confrontation 
of what is with what should be/what needs to be. It is 
our sense that the field of software psychology has 
matured to a point where it can play a leading role 
in this invention/exploration process. 

The papers presented here have been refined through 
a highly collaborative and intense reviewing process. 
We gratefully acknowledge the important role played by 
the reviewers in generating an excellent set of papers. 

1. Anderson, J. T.. Farrell. R.. and Sauers, R. Learning to program in 

2. 

3. 

4. 

5. 

6. 

7. 

6. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Lisp. Cqifizv Sri. 8, (1984) 87-129. 
Anderson, J, R.. and Skwarecki. E. The automated tutoring of intro- 
ductory computer programming. Commun. ACM 29,9 (Sept. 1986). 
842-849. 
Carroll, J. M. Evalualiorr, Description and Inoenfion: Paradrgnts for 
HuruawComyutcr Interaclion. Vol. 28. Advances in Computers. Aca- 
demic Press. New York, 1988. 
Carroll. J. M.. and Campbell. R. L. Artifacts as psychological theo- 
ries: The case of human-computer interaction. Res. Rep. RC 13454. 
IBM. Yorktown Heights, N.Y., 1988. To be published in Behav. Inj 
Tech. 
Curtis. B.. Soloway, E.. Brooks. R., Black, J., Ehrlich. K., and Ramsey, 
H. Il. Software psychology: The need for an interdisciplinary pro- 
gram. Proc. 1EEE 74, 8 (Aug. 1986), 1092-1106. 
Floyd, C. Outline of a paradigm change in software engineering. In 
Computers and Democracy A Scandinavtan Challenge, C. Bjerknes, I? 
Ehn. and M. Kyng Eds. Averbury-Grower Publishing. Brookfield, 
ver.. 1987. pp. 191-210. 
Landauer, T. K. Psychology as a mother of invention. In Proceedings 
of CHI + GI ‘87: Human Factors in Computing SyFlems and Graphics 
hfrrface (Toronto, April 5-9), ACM, New York. 1987, pp. 333-335. 
Letovsky, S., and Soloway, E. Delocalized plans and program com- 
prehension. IEEE Sofrw. 3, 3 [May 1986). 41-49. 
Littman. D., Pinto, J., Letovsky, S., and Soloway, E. Mental models 
and software maintenance. In Empirical Studies of Programmers, E. 
Solowav and S. Ivenear. Eds. Ablex. Norwood. N.I.. 1986. DD. 80-98. 
Olson. 6.. Shepp>rd:S., and Soloway. E. Empirica; Sfudies b~Progrurn- 
WIWS: Second Workshop. Ablex, Norwood, NJ.. 1987. 
Reiser. B. I., Friedman. P., Gevins, J,, Kimberg. D. Y., Ranney, M., and 
Romero, A. A graphical programming language interface for an 
intelligent Lisp tutor. CSL Rep. 15. Princeton Univ., N.J., 1988. 
Shneiderman, B. Software Psychology: Human Factors in Computer and 
information SysWns. Little Brown and Co., Boston, Mass., 1980. 
Soloway, E.. and Iyengar, S. Empirical Studies of Pro~ramvwrs. Ablex, 
Norwood, N.J., 1986. 
Soloway, E.. Pinto, J., Fertig, S., Letovsky. S.. Lampert, R., Littman. D., 
and Ewine. K. Studvine software documentation from a cognitive 
perspecti& a status report. In Proceedings of thelOth Annual~ASAi 
Goddard Softmre Engineering Workshop (November, Greenbelt, Md.), 
Greenbelt, Md., 1986. 
Weinberg. G. The Psycholqy of Computer Prqrammiq. Van Nostrand 
Reinhold, New York, 197i: 

REFERENCES 

1258 Communications of the ACM November 1988 Volume 31 Number II 


