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Abstract

Many real world applications such as sensor networks and other monitoring applications
naturally generate probabilistic streams that are highly correlated in both time and space.
Query processing over such streaming data must be cognizant of these correlations, since they
significantly alter the final query results. Several prior works have suggested approaches to
handling correlations in probabilistic databases. However those approaches are either unable
to represent the types of correlations that probabilistic streams exhibit, or can not be applied
directly because of their complexity. In this paper, we develop a system for managing and
querying such streams by exploiting the fact that most real-world probabilistic streams exhibit
highly structured Markovian correlations. Our approach is based on the previously proposed
framework of viewing probabilistic query evaluation as inference over graphical models; we show
how to efficiently construct graphical models for the common stream processing operators, and
how to efficiently perform inference over them in an incremental fashion. We also present an
algorithm for operator ordering that judiciously rearranges the query operators to make the
query evaluation tractable, if possible for the query (under certain assumptions on the data).
Our extensive experimental evaluation illustrates the advantages of exploiting the structured
nature of correlations in probabilistic streams.

1 Introduction

Probabilistic streams are increasingly being generated by a variety of data sources such as sensor
networks [1] and other monitoring applications [2] that produce enormous amounts of uncertain
data owing to low cost measurement infrastructures. Increasing use of machine learning techniques
to process large amounts of real-world data also generates streams annotated with probabilities
and confidence values, e.g. stock prediction models [3], habitat monitoring [4], activity recognition
[5] and information extraction [6] applications. The above applications need to be able process
these streams in real time for extracting vital information from them. It is therefore imperative to
develop systems that can efficiently perform query processing over such streams.

We motivate our system using a habitat monitoring application that uses sensor networks to
monitor the nesting environment of birds [4, 7]. In this application, cameras and other sensors
capture large amounts of images, video and other valuable data which is used for studying the
characteristics of birds (Figure 1). Due to the enormity of the data collected, automated computer
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Figure 1: Probabilistic streams are generated from noisy sensor data using a combination of sta-
tistical modeling and probabilistic inferencing methods. Our system allows users to perform query
processing over such streams.

vision tools are used for identifying the lists of birds from the video and image data. However,
the state-of-art approaches in computer vision are not accurate enough [8] to correctly detect and
identify the birds; hence most of those tools would output only a likelihood of having made an
observation. This would generate a probabilistic stream containing birds that were observed at each
location, which would then be subject to query processing and analysis by ornithologists. Query
processing over such probabilistic streams, however, is challenging for several reasons.

First, the probabilistic streams generated are highly correlated both temporally (across time)
and spatially (across streams from adjacent sensors). These correlations must be taken into account
during query evaluation, since they can significantly alter the final query answers. For instance,
consider the following query that studies the territorial characteristics of birds. Suppose we want to
know the likelihood that sensor location A has more birds than another sensor location B over the
last seven days. Imagine that both the locations are equally likely to have more number of birds
on any given day. If we ignore the temporal correlations between the daily bird count values and
assume independence between different days, then the answer for this query would be computed
by multiplying the probabilities that the condition holds for every single day, with the result being
(0.5)7 ≈ 0. However, the bird counts are highly positively correlated in a week’s time (perhaps due
to availability of food or the presence of predators), hence the true answer should be closer to the
value 0.5.

Second, we need to be able to handle high-rate data streams efficiently, and produce accurate
answers to continuous queries in real-time. Although there has been much work on data stream
processing in recent years, the probabilistic nature of the streams makes this a much harder problem,
since query evaluation on probabilistic data may become #P-hard even for simple queries [9].

Third, query semantics become ambiguous since we are dealing with sequences of tuples and
not sets of tuples [10]. For instance, if a SELECT * query is posed on sensor A’s data stream, we
could either return (a) for each time instant, the bird that has the highest probability of being
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spotted (set semantics) or (b) the sequence of birds that have the highest overall probability of
being spotted (called Viterbi decoding [11]); both of these are valid interpretations for different
applications.

In recent years, several approaches have been developed for managing uncertain data and for
answering queries over it (see e.g., [9, 12, 13, 14, 15, 16]). Although some of these works have also
proposed techniques for capturing and reasoning about the correlations, the types of correlations
that can be captured is usually limited. Sen et al. [16] propose a general approach that can capture
arbitrary correlations, using concepts from the graphical models literature. However that approach,
or the other general-purpose approaches to handling correlations [17], cannot be directly applied
to probabilistic streams because of their complexity; further these algorithms are not designed to
be incremental, and hence cannot handle continuous queries over probabilistic streams.

In this paper, we address the problem of efficient query evaluation over probabilistic streams.
We observe that although probabilistic streams tend to be strongly correlated in space and time,
the correlations are usually quite structured, with the same set of dependences and independences
repeated across time. Furthermore, most real-world probabilistic streams are Markovian in nature,
with the state at time “t+1” being independent of the states at previous times given the state at
time “t” (in some cases, the state at time “t+1” may depend on a fixed number of states in the
recent past [18]). Usually this is a result of the underlying physical process itself being Markovian
in nature. For instance, if we know that a bird was present at a sensor location at time “t”,
then knowing that it was also present at time “t-1” doesn’t give any additional information about
its presence at time “t+1”. In most applications, this is already encoded in the mechanism that
generates the probabilistic streams; in our habitat monitoring example, the probabilistic stream
would typically be generated by the application of dynamic Bayesian networks [19, 20] to sensor
data, which by their nature generate Markovian and structured correlations.

We show how to exploit the knowledge of such structured correlations to efficiently evaluate
queries over probabilistic streams. Our high-level approach follows the previously proposed frame-
work of viewing probabilistic databases as graphical models, and probabilistic query evaluation
as inference over graphical models [21, 22]. However, our main objective is to build a system for
supporting continuous evaluation of queries against high-rate probabilistic streams, and we heavily
exploit the structured, Markovian nature of the correlations for this purpose. We show how to
compactly encode the correlations by decoupling the correlation structure (the set of dependencies)
from the probability values. We develop techniques for incrementally building graphical models as
the data arrives for a variety of query operators; our operators are designed to adhere to the iter-
ator (get next()) interface. By judiciously ordering operators, we develop polynomial time query
plans for queries whenever possible for the query (under our assumptions). We also identify the
queries that result in the worst-case behavior (exponential complexity), and provide polynomial
time approximation strategies. Our primary research contributions can be summarized as follows:

1. We present an algebra for operating on probabilistic sequences (using the possible worlds
semantics) and introduce the notion of Markov sequences.

2. We develop efficient data structures for representing Markov sequences and develop query
processing techniques that exploit the repeated correlation structure.

3. We develop incremental algorithms for the query processing operators based on the get next()
framework to efficiently support streaming data.
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Figure 2: Query processing over probabilistic databases using graphical models: (a) a graphical
model over 4 attributes; (b) an example set of CPDs for the graphical model (bold-faced variables
indicate the child nodes); (c) A probabilistic database with 4 uncertain attribute values, with
correlations captured by the graphical model in (a); (d, e) to execute a query over the probabilistic
database, we add new variables to the DGM and introduce additional CPDs.

4. We characterize queries that have NP-hard data complexity and provide approximation algo-
rithms for them. Our query optimization techniques guarantee that we can find a polynomially
computable query plan if one exists.

5. We have built a working system that can parse queries over probabilistic streams, and exe-
cute them efficiently. We present an extensive experimental evaluation using our system to
illustrate the necessity of correlation-aware query processing over probabilistic streams, and
the advantages of exploiting the Markovian nature of most probabilistic streams.

The rest of the paper is organized as follows. Section 2 provides a background on graphical
models and inference. In Section 3, we specify our query semantics using a probabilistic sequence
algebra and introduce Markov sequences. In Section 4, we provide algorithms for our query process-
ing operators. Section 5 describes our query language and query optimization issues. We conclude
with experiments in Section 7.

2 Background

In this section, we provide a brief overview of probabilistic graphical models and query processing
in probabilistic databases using graphical models.

4



2.1 Graphical models

A graphical model is a space-efficient way of representing the joint probability distribution (pdf) of a
set of random variables by exploiting the conditional independences that exist among them. In this
paper, we focus on directed graphical models (DGM) although most of our techniques are applicable
to undirected models as well. A DGM is represented using a directed graphical structure. The nodes
in the graph represent random variables and the edges represent the dependencies/correlations
between the random variables. Figure 2 depicts a DGM on four binary valued random variables
A, B, C and D. According to this model, the value of the random variable B depends directly on
the value of A. Similarly, the value of the random variable D depends directly on the values of B
and C, but only indirectly on A. The dependencies among the random variables are quantified by
conditional probability distribution functions (CPDs), which capture how the value of a random
variable depends on the values of its parents in the graph. Thus there is a CPD for each node X
in the graph, denoted by P (X|Pa(X)), where Pa(X) denotes the parents of node X. The CPDs
for our example graphical model are shown in Figure 2(b). The joint pdf across all the random
variables can be computed by multiplying the CPDs of all nodes.

2.2 Probabilistic databases as DGMs

Probabilistic databases may exhibit two types of uncertainties: tuple existence uncertainty, which
captures the uncertainty about whether a tuple exists in the database, and attribute value un-
certainty, which captures the uncertainty about the value of an attribute. Both these types of
uncertainties can be captured in a uniform manner using probabilistic graphical models [22] as
follows:
• Tuple existence uncertainty can be modeled by using a binary random variable for each tuple,

that takes value 1 if the tuple belongs to the database and 0 otherwise.

• Attribute value uncertainty can be modeled by using a random variable to represent the value
of the attribute; a pdf on the random variable can be used to capture any form of uncertainty
associated with the attribute.

Consider an example probabilistic database D shown in Figure 2(c) with four tuples, with
uncertain attribute values (for attribute X) represented using the random variables A, B, C and
D. Further, suppose the dependencies between these attributes are captured using the DGM shown
in Figure 2(a). To evaluate a query over such a database, Sen et al. [21] propose adding new random
variables to the graphical model to capture the intermediate result tuples generated during query
processing. Consider the query SELECT SUM(X) FROM D WHERE gid = g1. The query result is a
single attribute, whose value is the sum of the random variables B and C (since only those tuples
satisfy the selection predicate). To compute the sum, we introduce a new random variable S in
the DGM that represents the sum of B and C, and we add edges from B and C to S since they
determine the value of S. The exact dependence itself is captured using the CPD p(S|B,C) shown
in Figure 2(e); the CPD encodes the fact that S is the sum of B and C. Now, the query evaluation
problem is reduced to the computation of the marginal distribution of the random variable S. As
shown by Sen et al. [21], this is equivalent to the possible world semantics [9].

Computing the marginal distribution is a well studied problem on DGMs called inference. There
are a number of algorithms for performing inference on DGMs such as variable elimination [23], be-
lief propagation [24] etc. We illustrate variable elimination using the above example. To determine
the marginal distribution of node S, in essence we need to perform the following computation:
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p(S) =
∑

A,B,C,D

p(A,B,C,D, S)

From the joint distribution of the random variables, we need to sum out (eliminate) the variables
that we do not require, in this case A, B, C and D. The variable elimination algorithm takes in
the order of elimination as input and sums out the variables in the order specified. The first two
steps of the elimination (to eliminate A) are as follows:

p(S) =
∑

B,C,D

p(D|B,C)p(S|B,C)
∑
A

p(A)p(B|A)p(C|A)︸ ︷︷ ︸
=

∑
B,C,D

p(D|B,C)p(S|B,C) f(B,C)

The order of elimination affects the complexity of the computation. A bad ordering can potentially
result in an exponential computation (in the number of nodes in the graph) while a good ordering
can make inference polynomial-time computable. Some DGMs may not have a good ordering at all,
in which case, the inference problem is #P-hard. We can visualize the reasons for such scenarios by
observing the changes that occur to the DGM while eliminating variables. In the above example,
when A is summed out from the expression, a new dependency between B and C is created, which
is quantified by the function f in the equation. In other words, eliminating A introduces an edge
between B and C in the graph. In general, edges are introduced between every pair of neighbors
of the node that is being eliminated. If during the elimination process, a node gets connected to
a large fraction of the other nodes in the graph, it would result in the creation of a very large
joint probability distribution (possibly exponential in the number of nodes in the graph) since the
dependencies between all the nodes needs to be captured.

3 Formal Query Semantics & Markov Sequences

A probabilistic sequence is defined over a set of named attributes S = {V1, V2, · · · , Vk}, also called
its schema, where each Vi is a discrete probabilistic attribute with domain dom(Vi). An instance
of a probabilistic sequence with schema S is denoted by Sp = S1,S2, · · · ,St, · · · , where each
St = {vt

1, v
t
2, . . . , v

t
k} is a set of random variables vt

i . We use t to indicate the time or the position
of St in the sequence. We abuse the notation somewhat and call St the tth tuple in the sequence
Sp.

We use p(vt
i) to denote the marginal probability distribution over vt

i , p(S
t) to denote the joint

probability distribution over all variables at time t, and p(Sp) to denote the joint pdf over all
random variables comprising the sequence.

A probabilistic sequence is equivalent to a set of deterministic sequences (called possible se-
quences), where each deterministic sequence is obtained by an assignment of values to the random
variables in the sequence. There are an exponential number of such possible sequences, and for
each possible sequence PSi, we associate a probability pi that is equal to the probability that the
random variables in Sp take the values given by PSi; in essence pi represents the likelihood that
the Sp takes the value PSi. Each deterministic sequence can be visualized as a relation with the
schema S.
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3.1 Probabilistic sequence algebra

The probabilistic sequence algebra underlying our system is a probabilistic extension of the sequence
algebra model proposed by Seshadri et al. [10] (with some minor changes). The result of the
application of an operator on a probabilistic sequence is equivalent to applying the operator to
each of the possible sequences separately, and then adding the result sequences to a result set.
If two sequences return the same result, then we just add up the probabilities of the sequences
together. The result set is also a set of possible sequences and is therefore a probabilistic sequence.
Formally, applying operator op to probabilistic sequence Sp results in a probabilistic sequence
Rp = op(Sp) where,

Prob (Rp = x) =
∑

PSi∈Sp|op(PSi)=x

pi

We use this definition to extend the sequence algebra operators such as project, set union, aggregates
to probabilistic sequences. However, two of the operators deserve further discussion:
• Selection: The selection operator for a sequence is different from relational selection because we

cannot drop tuples in our deterministic sequence model [10]. If we drop tuples, then the sequence
loses the property that the tth tuple corresponds to the set St. If a tuple in a deterministic
sequence does not satisfy a predicate, rather than deleting the tuple, we make note that tuple
does not exist by creating a new binary valued attribute At

P , where P is the selection predicate.
At

P is assigned a value 1 if the tuple St satisfies the predicate and 0 otherwise. If the selection
predicate is over a probabilistic attribute, then At

P itself would be a probabilistic attribute. We
discuss this further when we present our operator algorithms.

• Join: We currently restrict our implementation to equi-joins on time. To join two probabilistic
sequences, Sp and T p, we compute the results of join between every possible sequence PSi of
Sp and every possible sequence PTj of T p; the probability of the result is the product of the
probabilities of PSi and PTj .

Along with the standard sequence operators, we introduce two new operators specific to probabilis-
tic streams. Both these operators take probabilistic sequences as input and return deterministic
sequences as output.

1. MAP: The MAP operator returns the sequence in the set of possible sequences that has the
highest probability.
MAP (Sp) = {PSi ∈ Sp|∀PSj ∈ Sp, p(PSi) ≥ p(PSj)}

2. ML: The ML operator constructs a new deterministic sequence whose tth tuple is the most
likely tth tuple over all the possible sequences. Suppose we denote the tth tuple in the deter-
ministic sequence D by Dt. Then, formally, ML(Sp) = D, where:
Dt = argmax

x∈Xt

f t(x),

where Xt =
⋃

PSi∈Sp

PSt
i and f t(x) =

∑
i|PSt

i=x

pi

We note that the selection operator commutes with both the MAP and ML operators (Lemma
9, .3). Similarly, the join operator commutes with both selection and projection operators. A
formal proof of the above is presented in the Appendix. These properties help us in designing more
efficient query plans for queries. We also notice that in general, the projection operator does not
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commute with the MAP and ML operators. However, for the restricted case of Markov sequences
which we describe next, we can still establish the commutativity of the projection operator with
the aggregation and the windowing operators, which is very crucial for query optimization.

3.2 Markov Sequences

Definition A Markov Sequence, Sp = S1,S2, . . . , is a probabilistic sequence that satisfies the
Markov property, i.e., the set of random variables St+1 is conditionally independent of St−1 given
the values of the random variables in St (denoted St−1 ⊥⊥ St+1|St).

Because it obeys the Markov property, any Markov sequence is completely determined by the
joint probability distributions between successive sets of random variables, p(St,St+1),∀t. There-
fore, we can represent a Markovian sequence as a sequence of joint probability distributions.
p(S1,S2), p(S2,S3), . . . , p(St,St+1).

Most real-world sequences obey further structure than just the Markov property. More specifi-
cally, the joint distributions between successive time slices (e.g. p(S1,S2) and p(S2,S3)) typically
exhibit identical conditional independences. Consider a Markov sequence Sp with schema {X,Y }:
(X1, Y 1), (X2, Y 2), (X3, Y 3), . . . , (Xt, Y t), . . . . The Markov property tells us that {X1, Y 1} ⊥⊥
{X3, Y 3}|{X2, Y 2}. Suppose that we have a further conditional independence: X1 ⊥⊥ Y 2|{X2, Y 1}
(in other words, Y 2 is conditionally independent of X1 given X2 and Y 1). Because of the underly-
ing mechanism using which the probabilistic streams are generated, it is likely that this conditional
independence is exhibited at all positions (e.g. X2 ⊥⊥ Y 3|{X3, Y 2}).

We can visualize such structure in a Markov sequence, if known, by representing it as a directed
graphical model. Figure 3(a) shows the DGM representation of the example sequence Sp. Note that
if there were no such conditional independence between the variables (i.e., if X1 6⊥⊥ Y 2|{X2,Y 1}),
then we would also have the edge X1 → Y 2 and Y 1 → X2 in the graphical representation.

3.3 Representing Markov Sequences

The repeating structure in the Markov sequences can be captured using a combination of two
components:

• The first component, called the schema graph, is the DGM representation of the two step
joint distribution that repeats continuously throughout the sequence.

• The second component, called clique list, is the set of direct dependencies that are present in
the sequence between two successive sets of random variables.

The schema graph and the clique list of the example Markov sequence discussed above are shown
in Figures 3(b,c). An assumption we make in the rest of the paper is that the number of nodes in
the schema graph is a constant 2c, i.e., c nodes per slice of the DGM.

This repeating structure also allows us to compactly represent a Markov sequence as a sequence
of tuples, each of which is an ordered list of CPDs corresponding to the clique list. Furthermore,
since the CPDs for each time instant and the domains of the random variables are known in advance,
we can also remove the schema information and simply transmit the numbers comprising the CPDs.

For the example shown above, the list of CPDs at time t is: {p(Xt), p(Y t|Xt), p(Xt+1|Xt), p(Y t+1|Xt+1, Y t)}.
Assuming all variables are binary, we instead represent these CPDs as an array of numbers:
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t p(Xt)
1 [0.5,0.5]

. . . . . .

t p(Xt+1|Xt)
1 [0.3,0.7,0.1,0.9]
. . . .

t p(Y t|Xt)
1 [0.2, 0.8, 0.5, 0.5]
. . . .

t p(Y t+1|Xt+1, Y t)
1 [0.7, 0.3, 0.6, 0.4

0.4, 0.6, 0.9, 0.1]
(d) Data in the relations

Figure 3: (a) Example of a Markov sequence Sp on attributes X and Y ; (b) Schema graph and (c)
clique list of Sp; (d) Representing Sp using one relation per CPD.

{p(Xt = 0), p(Xt = 1), p(Y t = 0|Xt = 0), p(Y t = 1|Xt = 0), . . . , p(Y t+1 = 1|Xt+1 = 1, Y t = 1)}
(total 18 numbers). This allows us to efficiently transfer the tuples between the operators, and
minimize the memory requirements of our operators.

Note that such a sequence of numbers can only be interpreted by entities that have the schema
information about the relation to which the tuple belongs. In our system, each operator is instan-
tiated with the schema of the tuple that it is going to receive, and only such arrays of numbers are
passed around between operators in successive get next() calls, resulting in efficient query process-
ing over Markovian streams.

This representation also allows us to efficiently store a Markov sequence using a relational
database, where we can use one relation per CPD as shown in Figure 3 (d).

3.4 Operating on Markov sequences

Since Markov sequences are a special case of probabilistic sequences, the operators defined in
Section 3.1 can be used to operate upon Markov sequences (Lemma .1). However, Markov sequences
are not closed under that set of operators. Several of the operators take Markov sequences as input
and return non-Markovian sequences as output depending on the input schema. We formalize this
observation by defining the notion of a safe operator-input pair.

Definition A safe operator-input pair is a combination of an operator and an input sequence
schema such that the operator returns a Markov sequence as output when applied to a Markov
sequence with the specified input schema.

Identifying safe operator-input pairs is crucial because we can evaluate such operators very
efficiently; on the other hand, if an operator is not safe for an input schema, then we may have
to resort to approximation schemes. Safe operator-input pairs can also be chained together with
other safe pairs in a sequence to form polynomial-time query plans for complex queries. In our
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query optimization framework (Section 5.2), we design an operator ordering algorithm that avoids
non-safe operators as much as possible.

We remark that despite the similarity of this concept to safe plans [9], there are several dif-
ferences between the two concepts. Safe plans were developed for probabilistic databases with
only independent tuple-level uncertainty; whereas Markov sequences exhibit high degrees of cor-
relations. Further, safe plans require global reasoning over the database schema and the query,
whereas safe operator-input pairs are defined locally without any global consideration. We also
note that query processing over Markov sequences is intractable even if we don’t allow joins, in
contrast to independent tuple databases where single relation queries are trivially answerable.

4 Operator Algorithms

In this section, we present detailed description of our algorithms for operating on Markov sequences
in accordance with the semantics defined in the previous section. Our system also supports sliding
window variants of the aggregate operators, a pattern operator that identifies user specified pat-
terns in the stream, and we present the details of that as well. Our operators are designed to be
incremental and treat the Markov sequence tuples as a data stream, operating on one tuple (corre-
sponding to a joint distribution between the variables at two consecutive positions in the Markov
sequence) at a time. If the operator-input pair is safe, then the output is also produced in the same
fashion (a tuple at a time). If an operator-input pair is not safe, then we resort to approximations.

Each operator that we have designed implements two high-level routines: (1) a schema routine,
which is invoked when the operator is instantiated, examines the schema of the input sequence and
deduces the schema of the output sequence (to be fed to the input of the next operator); (2) a
get next() routine that is invoked every time a tuple is routed through this operator.

4.1 Selection

In the schema routine, we first start with the DGM corresponding to the input schema. Then we
add a new node corresponding to the exists variable (AP ) to both time steps of the DGM. We
connect this node to the variables that are part of the selection predicate through directed edges.
In addition, we update the clique list of the schema to include the newly created dependencies. An
illustration of this operation is shown in Figure 4(a). Here, we have as input, the Markov sequence
Sp shown in Figure 3(a), and a predicate X > Y . We add a new node E corresponding to the new
exists variable, and directed edges from X and Y to E. Also, we add (Et, Xt, Y t) to the clique list.
In the get next() routine, we determine the CPD of the newly created node, add it to the input
tuple’s CPD list and return the new tuple. A typical example of a CPD for such a case (predicate:
X > Y ) is shown in Figure 5(a).

As we can see, the algorithm does not alter the Markovian property of the sequence, and
therefore every sequence can be paired safely with this operator.

4.2 Projection

In this operator, we need to remove the nodes that are not in the projection list. This corresponds
to an elimination operation on the graphical model. To determine the schema of the output
sequence, we need to determine if any new edges need to be added to the schema graph (as a
result of the elimination). We do this by performing a dummy inference operation on the input
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Figure 4: (a) Executing a selection predicate (X > Y ) entails adding new exists variables (Ei); the
dotted edges show the changes to the schema. (b) Projection may result in a non-Markov sequence
– if Y nodes are eliminated, the resulting X sequence (shown through dotted edges) is not Markov.

XiY iEi f
0 0 0 1
0 0 1 0
1 0 1 1
1 0 0 0
0 1 0 1
0 1 1 0
1 1 0 1
1 1 1 0

G1X2G2 f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
. . . .
1 1 2 1

G1E2X2G2 f
0 0 1 0 1
0 1 1 0 0
. . . . .
1 0 1 2 0
1 0 1 1 1
1 1 1 2 1
1 1 1 1 0
. . . . .

(a) X > Y (b)G2 = X2 + G1 (c)G2 = X2.E2 + G1

Figure 5: Constructing CPDs for new nodes for (a) selection, (b) aggregate, and (c) aggregate with
selection (dom(X) = dom(Y ) = {0, 1}).

schema graph and determine the new edges to be added to the graphical model. We then derive
the output sequence schema from the graphical model. In the get next() routine, we perform the
actual variable elimination procedure to eliminate the nodes that are not required.

The projection operator is not always safe for all input sequences. In certain cases, even if
the input is a Markov sequence, after projection, the output may not be a Markov sequence. An
example of such a sequence is shown in Figure 4(b). Here, if the nodes denoted by Y 1, Y 2 . . . Y n

are eliminated from the sequence (i.e., if Y is removed), edges will be introduced between every
pair of nodes (Xi, Xj) in the graph, which results in a non-Markov sequence.

We characterize the schema of the input probabilistic sequence which results in unsafe projection
as follows. Consider the connected subgraph G of the schema that contains the set of nodes E
being eliminated. If there is an edge between the set of nodes Et and Et+1 and there exists node
x ∈ vertices(G) \ E, then after projection, the resulting sequence will not be Markov and the
projection operation is unsafe. In Section 5.2, we present an algorithm to identify such scenarios
and to postpone the projection operation if it is unsafe.

4.3 Joins

In the schema routine, we concatenate the schemas of the two sequences in order to determine
the resulting output schema, i.e., we combine the schema graphs, and concatenate the clique lists.
Similarly, in the get next() routine, we concatenate the CPD lists of the two tuples, whenever both
tuples have the same time value. Thus, a join can be computed incrementally, and is always safe.

4.4 Aggregation

We support decomposable aggregates, SUM, AVG, MAX, MIN, COUNT, in our system. When com-
puting aggregates, the output schema is just a single attribute corresponding to the aggregate (note
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Figure 6: Illustrating aggregate computation. Gi = Agg(X1, X2, . . . , Xi). In each get next()
call, dotted variables are added to the DGM, and the boxed nodes are eliminated, continuously
maintaining state p(Xi, Gi) and p(Xi, Gi, Ei) respectively. Also, note the dependence of Gi on Ei

in (b).

that these are not sliding window aggregates, but rather one-time aggregates). The more compli-
cated routine is the get next() routine for which we have developed incremental algorithms. We
consider two cases based on the query, the first when there are no selection predicates in the query,
the second when there are selection predicates. We illustrate both cases with examples.
Case 1: No selection predicates
Consider a single attribute Markov sequence X1, X2, X3 . . . , and say we wish to determine the SUM
of all the variables in the sequence, in an online fashion. Let Gk denote the sum of all the Xi’s
from 1 to k. The trick we use here, is to incrementally compute the distribution p(Xi, Gi) as input
tuples arrive. p(Xi+1, Gi+1) can be incrementally computed from p(Xi, Gi) as follows:

p(Xi+1, Gi+1) =
∑

Xi,Gi

p(Xi, Gi)p(Xi+1|Xi)p(Gi+1|Gi, Xi+1)

At the end of the sequence, we get p(Xn, Gn), from which we can obtain p(Gn) by eliminating Xn.
The DGM corresponding to this operator is shown in Figure 6 (a). The CPD p(Gi+1|Gi, Xi+1) is
determined based on the nature of the aggregate (Figure 5(b) shows a SUM CPD).
Case 2: With selection predicates
When selection predicates are present, the DGM that we construct is slightly more complex. An
example is shown in Figure 6(b). This is because of the presence of the Ei (exists) attributes: a
value Xi contributes to the aggregate only if Ei is 1 and not otherwise. This information is added
to the CPD of the aggregate node, an example of which is shown in Figure 5(c). In this case, we
maintain the distribution p(Xi, Gi, Ei) for all time instants i and determine the p(Xi+1, Gi+1, Ei+1)
from p(Xi, Gi, Ei) using a similar operation as described earlier. The DGM for doing this is shown
in Figure 6(b).

In general, we have to maintain the distribution of all random variables in one time instance to
enable incremental computation of aggregates. For AVG, we maintain the joint distribution of SUM
and the COUNT aggregates for each time instant, and determine the distribution of AVG based on
this.

The time complexity of the aggregate operator is O(D3) for MIN and MAX aggregates and O(nD3)
for SUM, COUNT and AVG aggregates, whereD = |dom(Xi)| and n is the length of the sequence. This is
because the domains of the Gi variables for SUM and COUNT increase as i increases (|dom(Gn)| = nD).
Hence the CPD sizes increase resulting in high per tuple processing time as we receive more and more
tuples. In order to keep the per tuple processing time for SUM and COUNT small, we use constant-
time approximation algorithms for domains larger than a threshold parameter. We discuss these
strategies in Section 5.3.
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In addition, we also support entity based aggregates [13], for example, to determine the time
instances at which a variable value was maximized. For these we compute and store the distribu-
tion of (MAX, id) at each time instant, where MAX corresponds to the maximum value and id
corresponds to the time instant at which the MAX was achieved. Again, we can show that we can
update this distribution incrementally.

4.5 Sliding Window Aggregates

A sliding window aggregate query asks to compute the aggregate values over a window that shifts
over the stream. It is characterized by the length of the window, the desired shift, and the type
of aggregate. Sliding window operator is unsafe for all input sequences, since the output of the
operator is always non-Markovian (illustrated in Figure 7(a) and (b), formal proof in the Appendix).
This is because the aggregate value for a sliding window influences the aggregates for all of the
future windows in the stream. Therefore, the exact answer to the sliding window aggregate query
has exponential data complexity, which forces us to use approximations.

One approach to handling this, that we adopt, is to ignore the dependencies between the
aggregate values produced at different time instances, and to compute the distribution over each
aggregate value independently. We achieve this by splitting the sliding window DGM into separate
graphical models (one for each window), run inference on each of them separately and compute
the results. Figure 7(c) shows a simple illustration of the operation that computes the marginal
probability distributions of each of the nodes G1, G2, G3, G4. The unmarked nodes in the figure
denote the intermediate sums (we have used the decomposability property of our aggregates here).

However, for the special case of tumbling windows, where the length of the sliding window is
equal to its shift, we can compute exact answers in a few cases. We use a similar trick that we
used for aggregates, i.e., we maintain the distribution of all the random variables in the last step
of each window. By doing so, we can guarantee that the output sequence is Markovian. However,
this still requires a final unsafe projection operation; we postpone that for as long as possible, and
resort to approximation when the projection must be done. As shown in Figure 7(d), we eliminate
only the boxed nodes and end up with a Markovian sequence with schema shown in Figure 7(e).
Eliminating X3 and X6 is postponed to a later projection step. When ML aggregates are required,
the projection can be performed accurately, however, if MAP aggregates are required, then we resort
to approximation as shown in Section 5.3.

4.6 Pattern operator

A pattern is a list of predicates on the attribute values, with the ordering of the predicates defining
a temporal order on the sequence. For instance, (A = 3, B > 5, A < 3) is a pattern that looks for a
sequence of time instants such that the value of attribute A is 3 in the first instant, the next B has
value more than 5, and the following A has value less than 3. We currently only handle consecutive
patterns. To compute the probability of a consecutive pattern, we need to compute the product of
the corresponding conditional distribution functions. If the user specifies a threshold parameter,
we can prune out those time steps that do not contribute to the result. For instance if we want a
pattern with probability greater than 0.7, then each of the contributing CPDs must be at least 0.7.
In future, we plan to extend our system to incorporate techniques from [25] for supporting complex
non-consecutive patterns.
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Figure 7: (a) DGM for sliding window aggregate. Gi’s denote the aggregates that we have to
compute. (b) After eliminating theXi variables, we obtain a clique on theGi variables, which is #P-
hard. (c) Hence, we split the DGM into components as shown. Unmarked nodes are intermediate
aggregates. (d) For tumbling window aggregates, we only eliminate boxed nodes to obtain the
Markov sequence shown in (e). Removing nodes X3 and X6 is postponed to a later projection.

4.7 MAP operator

The MAP operator takes in a Markov sequence and returns a deterministic sequence. It is usually
the last operator in the query plan, and hence it does not have a schema routine. The get next()
routine uses the dynamic programming based approach of Viterbi’s algorithm [11] on Markov
sequences to determine the sequence that has the maximum probability. We have designed and
implemented an incremental version of this algorithm by maintaining appropriate state in memory.
For each value in the domain, we maintain the best sequence that ends in that value. After receiving
the CPD list of the new tuple, we extend each of the sequences that we have maintained in memory,
by concatenating one additional value to it and computing its probability. After this, we update
our memory state by recomputing the best sequences. We store these sequences in memory using
a circular list of finite size. When the size of the sequence exceeds the length of the list, we remove
the head of the list and continue our algorithm using the part of the sequence present in the list.

4.8 Most Likely operator

In order to determine the most likely value of a variable at each time step, we first compute the
marginal probability distribution for each time instant from each tuple. Based on this, we eliminate
the variables that are not required and determine the most likely values for the variables.

5 Query Evaluation

We begin with a brief discussion of our query language, and then present our overall query processing
and optimization algorithms for evaluating queries over Markov sequences.

5.1 Query Syntax

In our system, queries can be specified either in an SQL-style language or it can be specified using
the probabilistic sequence algebra described in Section 3. The SQL-style syntax is as follows:

<SELECT-MAP/ML> <Agg<attrs>>

FROM <tables>, ..., <tname>[size,shift]

WHERE <predicates>, <attr> like <pattern> (p)
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The main extensions to SQL that we support are: (1) the user has the choice between using MAP
or ML operators for converting the final probabilistic answer to a deterministic answer; (2) support
for specifying sliding window parameters, and (3) support for pattern queries (including specifying
the threshold probability).

5.2 Query Planning and Optimization

The key challenge in designing a query plan for a given query is avoiding unsafe operators. The
two operators that are potentially unsafe (among the operators described in the previous section)
are projection and the window aggregate operators. As we discussed above, the sliding window
aggregates are always unsafe (since the output itself is of exponential size) and we only compute an
approximate answer to those queries (by not computing the correlations in the output sequence).
For the tumbling window operator, we separate the final projection step (which may be unsafe)
into a separate projection operator. Because of this, the projection operator is the only unsafe
operator in our system, and the query planning reduces to determining the correct position for the
projection operators in the query plan. Next we present a sketch of our query planning algorithm.

For a given query, we first convert it to a probabilistic sequence algebra expression. We then
construct the query plan by instantiating each of the operators with the schemas of their input
sequences. Each operator then executes its schema routine and computes its output schema, which
is used as the input schema for the next operator in the chain. While doing this, we also check
the input to the projection, and determine if the projection operator is safe (see Section 4.2). If a
projection-input pair is not safe, we pull up the projection operator through the aggregate and the
windowing operators and continue with the rest of the query plan. If the operator we find after
the projection is ML, then we can determine the exact answer, however if we find a MAP operator, we
replace both the projection and the MAP operator with the approximate-MAP operator (Section 5.3)
and notify the user that a safe plan cannot be found for the query. After generating a safe query
plan as shown here, we optimize it in the next step.

Example Suppose that the user issues the query Q0 : SELECT MAP MAX(X) FROM SEQ WHERE Y < 20 on the
Markov sequence shown in Figure 3(a). The PSA expression for this query can be written as
MAP (Gp(Πp

X(σp
Y <20SEQ))). While running the query planning algorithm on this query, we see

that the projection operator immediately after the selection predicate is not safe (illustration is
shown in Figure 4(b)). Hence, we postpone the projection and execute it after the aggregate
operator, to obtain the new plan MAP (Πp

MAX(A)(G
p(σp

B>2SEQ))), which is now safe, because the
aggregate operator returns a single value.

Our query planning algorithm is both sound and complete, i.e., we guarantee that the above
procedure returns a safe plan if it exists for the query. This is trivial to see because the only reason
for not finding safe plans is when the data complexity of the output sequence is #P-hard (which
happens with unsafe projections and sliding windows). A formal proof of this fact is provided in
Lemma .6 in the Appendix.

We optimize the query plan generated above by applying various rules to rearrange operators
and to simplify the DGMs generated during query processing:

1. Projection push-down: If possible (i.e., safe), we push the projections down the query plan.
For instance, if the input data streams have no temporal correlations, we can safely execute
projections early on.
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2. Exploiting operator commutativity: If we drop the probabilities (CPDs) in the tuples early, we
can reduce the memory cost incurred in storing and routing tuples through the query plan;
so we try to push the MAP and the ML operator down the query plan as much as possible.
This is in contrast to a traditional database, where we try to push the selection predicate
as far down the query plan as possible. Recall that the selection operator commutes with
both MAP and ML operators (Section 3); hence we can push it down the query plan without
affecting the correctness.

3. Dropping correlations when ML values are requested: When only the ML values are requested
by the user, then we only need to determine marginal distributions for every time instant.
Hence, we can drop certain edges in the DGMs of operators that will not influence query
results. Suppose that a most likely sequence of the tumbling window aggregate is required
by the user. In this case, we can drop edges that exist in the DGM between the first window
and the second window because the most likely value sequence is not affected by these edges.
For instance, in Figure 7(d), if ML values are required, we can drop the dotted edges in the
Figure.

5.3 Approximation Strategies

To execute unsafe operators and to improve the throughput of the aggregate operators, we employ
the following two approximation strategies:

5.3.1 Approximate MAP operator

We use the Mini-Bucket elimination algorithm of Dechter et al. [26] to approximate the MAP
operator. The main idea here is to bound both the dimensionality of the CPDs and the number
of CPDs generated during inference. Using this algorithm, we can bound the complexity of a
potentially exponential MAP task to be polynomial in the number of tuples. We present results
from using this approximation in the Section 7.

5.3.2 Approximate Aggregates

As described earlier, when the domains of the SUM and COUNT aggregates become large, the
throughput of the aggregate operator falls. To counter this, we perform simple approximations
beyond a threshold domain size. One such approximation for aggregates/sliding window aggregates
is based on simply computing expected values. Using the linearity of expectation, we can compute
the expected value of SUM and COUNT of aggregates in just O(1) time. Our system currently
does not support approximating AVG aggregate. In future, we plan to use the generating function
technique of Jayram et al. [27] and techniques based on Central Limit theorem for this purpose.

6 Implementation

We have implemented a prototype system that supports querying over Markov sequences; we briefly
discuss some of the salient points of the implementation. The system is implemented using Java
(JDK 1.5), and we use the JavaCC parser to parse the user queries.
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We store CPDs using an array of double values. To represent a distribution such as P (X1, X2, X3),
we use an array of size D1 ×D2 ×D3, where Di’s are the domain sizes of the variables. The value
of the probability p(X1 = i,X2 = j,X3 = k) is given by the value in array[iD2D3 + jD3 + k].

Our get next() routines are implemented to fully exploit the structured nature of Markov se-
quences. For this purpose, we implement a template data structure that stores the set of data items
that each operator needs and an instruction list, which is a list of instructions to execute over the
data structure. This data structure is created in the schema routine of the operator, with empty
spaces to store the data that would be obtained from the tuple. The list of instructions to operate
on these data items is also written in the schema routine. Whenever the operator receives a new
tuple, these empty spaces are filled with the CPDs from the tuple and then the operator performs
the execution using the instruction list.

We illustrate this using a simple example. Consider the aggregate operator with the sequence
shown in Figure 6(a). In the schema routine of the aggregate operator, we realize that the DGM we
need to construct has three CPDs, one CPD previously computed and stored in memory p(Xi, Gi),
one CPD from the input tuple i.e., p(Xi+1|Xi) and an additional new CPD that we compute and
introduce p(Gi+1|Gi, Xi). Our template is an array of size four, the first position already filled and
second and third positions will be filled when we receive the new tuple, the fourth is for storing an
intermediate result.

template[0] template[1] template[2] template[3]
p(Xi|Gi) New tuple p(Gi+1|Gi, Xi) . . .

The set of instructions to perform are given as follows:

1. Multiply template[0], template[1]; Sum-out variable[0]

2. Store in template[3]

3. Multiply template[2], template[3]; Sum-out variable[1]

4. Store in template[0]

Note that on each get next() call, the template is filled out and the same sequence of execution
occurs. This way, we have effectively utilized the structure in the sequence to minimize the query
processing time.

7 Experiments

In this section, we present an experimental evaluation over our prototype system. Our experimen-
tal results demonstrate that probabilistic stream query processors must incorporate support for
temporal correlations, otherwise the query results can be highly inaccurate. We illustrate the effec-
tiveness of our query processing and optimization algorithms, especially for evaluating aggregate
queries over probabilistic streams. We also discuss the trade-offs between accuracy and performance
for our approximate MAP operator.
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(a) Different schemas used in the experiments

Q1: SELECT MAP Agg(A) FROM S;

Q2: SELECT MAP Agg(A) FROM S WHERE B > 1;

Q3: SELECT MAP MAX(A) FROM S[size,size]

Q4: SELECT MAP MAX(A) FROM S[size,1]

Q5: SELECT ML A FROM S2

Q6: SELECT MAP X FROM S1[size], S3[size]

WHERE S1.A > S3.Y

Q7: SELECT ML Agg(A) FROM S[10,10]

Q8: SELECT MAP X FROM S3

(b) Queries

Figure 8: The set of queries and the schemas used in the experiments.

7.1 Experimental Setup

Markov sequence generator:
We implemented a Markov sequence generator that generates Markov sequences for a given input
schema. Figure 8(a) shows the four schemas that we use in our experiments. Consider the third
schema (iii) shown in Figure 8(a). For this schema, the generator starts by creating random CPDs
for the first time instant - p(X1), p(X1, Y 1), p(X1, X2) and p(X1, X2, Y 2). For each time instant t
after that, it recursively computes p(Xt) and p(Xt, Y t) using the previous CPDs and then randomly
generates new CPDs p(Xt, Xt+1) and p(Xt, Xt+1, Y t+1) for the current time instant. By doing
this, we ensure that continuity is maintained for all time instants, i.e., marginals over overlapping
random variables in successive joint distributions match up. We also control the amount of spatial
and temporal correlations in the sequence using a correlation coefficient parameter, which is input
to the generator. The domains of the random variables we considered ranged from 3 ({0,1,2}) to
10 ({0, 1, . . . , 9}).

We generated such sequences for all schemas shown in Figure 8(a). We constructed schema (iv)
specifically to denote the sequence generated by our habitat monitoring application with 5 sensor
locations and with complex spatial and temporal correlations. We use the notation Si to denote
the sequence generated from the corresponding schema.

Figure 8(b) shows the 8 queries that we use in our experimental evaluation.

7.2 Experimental Results

Query Processing that is aware of temporal correlations is important We generate
Markov sequences based on the schema shown in Figure 8(ii) for different values of the correlation
coefficient parameter f ranging from 0 to 1. We ensured that the marginal probability of variable
A is {0.5, 0.5} for all time instants. We measure the amount of error for each of our operators when
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Operator S3 S4

Q1 Q2 Q1 Q2
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agg min 2802 1271 559 260
agg sum 34.5 30.3 15.7 15.6

(c) Aggregate throughput (tuples per second)

Figure 9: (a) We plot the % error in query processing for various operators when temporal cor-
relations are ignored, (b) We show performance (throughput) of the windowing operators, (c) We
show the throughput of aggregate operators for different cases.

temporal correlations are ignored. For the MAP operator, we measure the difference between the
probability of the answer returned and the correct probability (the probabilities match only when
f = 0, i.e., when there are no correlations). We plot the error as a function of the correlation
coefficient in Figure 9(a). We also measured the errors encountered for various aggregates. We
plot the error in the expected values of MIN and MAX and also the errors in the variance of the SUM

aggregate in the figure (expected value in SUM had 0 error as expected). The Pattern operator also
suffers lot of error if temporal correlations are ignored (not shown here). As shown in the figure,
for correlation coefficients beyond 0.2, the amount of error for all operators is very large if the
temporal correlations are ignored.

Study of Streaming Performance of Aggregates Here, we measure the throughput of our
aggregate and windowing operators. We execute queries Q1 & Q2 for all aggregates and measure
the time take to process each new tuple completely. From this, we estimate the throughput of
our aggregate function. For MAX and MIN aggregates, the amount of time taken to process new
tuples is constant (as expected), however the per tuple processing time increases continuously for
SUM and COUNT as the domains of intermediate results keep increasing. For SUM and COUNT, we
switch to returning expected values (Section 5.3) when the domain size exceeds 200. We measure
the throughput for both sequences S3 and S4. The results of this experiment are tabulated in
Figure 9(c). As we can see from the table, our system can support up to 500 tuples/second even
with our habitat monitoring schema, which is quite impressive for a system that handles temporal
correlations. The value shown for SUM is the lowest throughput we encountered in the experiment.
We can improve this number by switching to approximations earlier.
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Figure 10: Figures (a),(b),(c),(d) illustrate query optimization. (a),(b) show the need for deter-
mining the correct location for the projection operator. (c) demonstrates gains made by deleting
redundant edges in the model. Note that this is not drawn to scale, only used for comparison.
(e),(f) demonstrate advantages of our system over previous approaches. Notice that the y-axis is
in the log scale, so our gains are substantial. (g),(h) describe accuracy and performance for the
approximate map operator
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We also measured the throughput of our tumbling window and sliding window operators. We
executed queries Q3 and Q4 for each of sequences S3 and S4 as a function of the size of the window
and measured the time taken to process a window of tuples. The results are shown in Figure 9(b).
As we can see, the processing time increases linearly as a function of the window size. Sliding
window processing takes much less time as we perform approximations (Section 5.3).

Query Optimization Strategies With this set of experiments, we demonstrate the need for
query optimization and effectiveness of our query optimization strategies in choosing efficient query
plans.
• Projections: Determining the correct position for the projection operator in the query plan

is very critical to the query performance. We run query Q0 shown in Section 5.2 with two
query plans, QP1, which is obtained by our query optimizer - ΠMAX(A)(AggA(TBL)) (projec-
tions pulled up) and the näıve query plan, QP2 - AggA(ΠA(TBL)) (projections pushed down,
as in a standard query optimizer). As Figure 10(a) shows, QP2 is extremely inefficient when
compared to QP1. In fact, QP2 runs out of memory (1GB) for just 20 tuples. Also note that
QP1 is incremental and works well for streams while QP2 requires all the input data at once.
Pushing down safe projections also helps significantly improve performance (reduced data flow
among operators) in many queries. We run queries Q5 and Q6 with query plans QP1 and QP2

(projections pushed down – for Q6 we push the projection below join) and compute the total
query processing time, which are plotted in the Figure 10(b).

• Dropping edges for ML values: As we illustrated in Section 5.2, we can drop redundant edges
in the DGM to improve query performance. We run the ML query Q7 for SUM, MAX aggregate
using two query plans for each query - first one with all edges, the second with edges removed.
For analysis, we use both the sequences S1 and S3. The query processing times are plotted in
the bar chart in Figure 10(c). (We scaled down the query proc. times for SUM by 10 to fit the
figure). As we can see, we can reduce the query processing time to about half of its value. We
observed that even with the habitat monitoring sequence S4, we reduced the query processing
time by half.

• Exploiting commutativity of operators: We examine the amount of savings that we obtain
by exploiting the operator commutativity discussed in Section 3. We execute query plans QP1 -
ML(σp(PS)) and QP2 - σ(ML(PS)) and determine the amount of savings in this case. Similarly,
we execute query plans MAP (σp(PS)) and σ(MAP (PS)). First, we verified that the answers
returned by both the query plans is indeed the same. Second, we observe about 40% saving in
the query processing time if we execute the ML/MAP operator first, as shown in Figure 10(d).

Comparison with previous techniques (Sen et al. [21]) We illustrate that the get next()
query processing framework that we have developed is much more efficient than previous ap-
proaches. By performing incremental operations, we can not only reduce amount of memory
consumed, but also the query processing time. The advantage is magnified while computing aggre-
gates, which create large DGMs. We use queries Q1 and Q3 from Figure 8 for our experiments. We
run the incremental version using our system and then use techniques from Sen et al. [21] to fully
construct the DGM for the query. We plot the query processing times, as a function of the table
size in Figure 10(e). As we can see from the figure, the incremental algorithm is comparable with
the previous approaches for small tables, but does better as the size of the table increases. We also
have an order of magnitude reduction in the total memory consumed (10(f)).
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Approximation Performance and Accuracy Here, we describe the trade-offs between accu-
racy and performance provided by the approximate MAP operator (Section 5.3). For this experi-
ment, we use Query Q8 and fix the correlation coefficient to be 0.5. We run the exact version of the
query plan first, without any approximations. Since this is exponential, the algorithm could only
handle 25 tuples before running out of memory. Then we run the query plan with the approximate-
MAP operator for different bounds on the CPD size. We measure the accuracy of the results by
comparing the resulting sequence against the exact MAP sequence computed earlier. The accuracy
and the performance benefits of the approx-MAP operator is shown in Figure 10(g) and (h). As
we can see from the plots, the approximate-MAP operator can be used to obtain fairly accurate
query answers. In future, we plan to test this operator for more complex queries.

8 Related Work

Probabilistic Databases: The area of research most closely related to our work is probabilistic
databases. Research work such as Mystiq [9], Trio [12], Orion [13] and others [14, 16] have developed
techniques for handling tuple existence and attribute value uncertainties. Although we have adopted
some techniques from this prior work, our work differs significantly from it in that we focus on
efficient evaluation of continuous queries over probabilistic streams. In recent work Sen et al. [22]
discuss how to exploit shared correlation factors to improve query processing performance. Here,
the correlation factors have to be identical (including the probability values) to be able to compress
the graphical model generated. This work is complementary to ours, since we only require that the
structure of the correlations be identical, but allow for the probability values to be different.
Aggregates on Probabilistic Streams: Jayram et al. [27] and Cormode et al. [28] present algorithms
for computing expected values of aggregates such as MIN, MAX, AVG etc. Our work differs
from this in two aspects. First, our focus is on computing the exact probability distribution of
the aggregates rather than just the expectations. We resort to approximations for the SUM and
COUNT aggregates only when their domains become very large. Second, our techniques can handle
the strong spatial and temporal correlations present in real-world probabilistic data streams, which
this prior work ignores. In recent work, Re et al. [25] present an approach to evaluating pattern
queries over correlated streams, under a correlation model quite similar to ours; however in contrast
to them, we focus on evaluating general continuous queries.

9 Conclusions

There is an increasing need for building streaming databases that can efficiently query probabilistic
streams that exhibit complex spatial and temporal correlations. In this paper we presented a query
processing system for efficiently handling Markovian streams, which constitute a large class of
naturally occurring correlated streams. We show how to exploit the structured nature of correlations
in such sequences, which enables us to build an efficient query processing architecture. We also
developed incremental query operator algorithms that can reuse the previous computation during
query processing. Our experimental evaluation shows promising results, especially with regards
to the throughputs of the operators. In future, we plan to improve the scalability of our system
further by resorting to approximations with guarantees.
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APPENDIX

Lemma .1 Every Markov sequence is also a probabilistic sequence

Proof We prove that every Markov sequence can also be expressed as a Probabilistic Sequence.
Consider a Markov sequence of length L, given by the sequence of joint probability distributions
as shown below.
{p(X1, X2), p(X2, X3), . . . p(Xi=1, Xi), . . . p(XL−1, XL)}.
If Di is the domain of the random variable Xi, construct the crossproduct D = D1×D2×D3 . . . DL.
For each element (d1, d2, . . . , dL) ∈ D, we determine its probability using the expression given below.

p(d1, d2, d3, . . . , dL) = P (X1 = d1, X2 = d2, . . . , XL = dL)

= P (X1 = d1)
L−1∏
i=1

P (Xi = di, Xi+1 = di+1)
P (Xi = di)

Then, we construct a deterministic sequence along with the above probability for each element in
D. The set of all such deterministic sequences form a probabilistic sequence. Hence, every Markov
sequence is also a probabilistic sequence.
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Lemma .2 σ(MAP (Sp)) = MAP (σp(Sp))

Proof We start with a probabilistic sequence

Sp = {(R1, p1), (R2, p2), . . . (Rn, pn)}

Without loss of generality, assume that p1 is the highest among the above n probabilities.
Suppose we first apply the selection predicate and then apply the MAP operator. In that case,
we first obtain the probabilistic sequence {(R′1, p1), (R′2, p2), . . . (R′n, pn)}, where each relation
R′i has an additional binary attribute (when compared with Ri) that denotes whether the tuple
satisfies the predicate. Note here that the probability of the deterministic sequence R′i is same
as its probability before the application of the selection operator, which is pi. The MAP operator
then selects the element in this set with highest probability, i.e, R′1 in our case. Now suppose that
we apply the MAP operator first, in this case, it selects the deterministic sequence (R1). Now, the
selection predicate is applied to this sequence, which results in the sequence R′1, which is the same
as the answer we obtained before. Hence, the commutativity holds.

Lemma .3 σ(ML(Sp)) = ML(σp(Sp))

Proof We start with a probabilistic sequence

Sp = {(R1, p1), (R2, p2), . . . (Rn, pn)}

We will compute the RHS and LHS of the lemma and show their equivalence as before. Suppose
we first apply the ML operator on the above sequence. We obtain a deterministic sequence (R, 1)
as defined in Section 3 – computes the most likely tuple for each time instant in the sequence.
Suppose the most likely tuple for the ith time instant is ti. Now suppose that we apply the selection
predicate on this sequence, we obtain a new deterministic sequence given by (R′, 1). Where R′ has
an additional binary attribute in its schema. The value of this attribute for each tuple is 1 if the
tuple satisfies the selection predicate and 0 otherwise, i.e., the final output will be tuples of the
form (ti, σ(ti)).

Now suppose that we apply the selection predicate first, and then apply the ML operator. In
this case, we get a new probabilistic sequence (S′)P = (R′′i, pi) which can be represented by the set
{(R′′1, p1), (R′′2, p2), . . . (R′′n, pn)}. For every tuple t in the original probabilistic sequence (more
specifically, in the deterministic sequences of Sp), we have a tuple (t, σ(t)) in S′p, i.e., either (t, 1)
if t satisfies the selection predicate or (t, 0) otherwise. Note that the same tuple (either (t, 0) or
(t, 1)) appears in all the possible sequences of S′p. Also note that the probabilities of the possible
sequences remain the same even after the application of the selection operator. Therefore, after
applying the ML operator, the probability of tuple (ti, σ(ti)) is same as the probability of the tuple
ti for all values of i. Hence, the most likely tuple for the ith instant is (ti, σ(ti)), which is same as
the previous answer. Hence, the commutativity holds.

Lemma .4 Joins commute with selection and projection

Proof We prove for projections in part (a) and for selections in part (b).
(a)
Suppose we have probabilistic sequences Rp and Sp, also suppose we project attributes A ⊂ S.

25



Then we show that Πp
A(Rp ./p Sp) = Rp ./p Πp

A(Sp). Suppose that Rp ./p Sp = T p. We prove the
above result in two parts. We first show that the possible sequences of both the LHS and the RHS
are the same. Then we show that the probability of a given possible sequence is same for both LHS
and RHS.
Suppose we have a possible sequence X ∈ Πp

A(T p). This means that for some PRi ∈ Rp and
for some PSj ∈ Sp, we have X = ΠA(PRi ./ PSj), where the Π and ./ (equijoin) are relational
operators. We can rewrite this expression as PRi ./ ΠA(PSj). Clearly, the rewritten expression
belongs to the RHS. Hence, X also belongs to the RHS. We can similarly prove the argument in
the other direction also.
We now show that the probability of X is the same in both the RHS and LHS.

probLHS(X) =
∑

PRi∈Rp,PSj∈Sp

ΠA(PRi./PSj)=X

pipj

=
∑

PRi∈Rp

pi

∑
PSj∈Sp

ΠA(PSj)=ΠA(X)

pj

= probRHS(X)

(b)
For selections to commute with joins, clearly the selection predicate should be over only one of
the relations. We show the following result. σp

P (Rp ./p Sp) = Rp ./p σp
P (Sp). Just as in part (a),

given a sequence that belongs to LHS, it must belong to the RHS and vice versa. Also, as the
application of the selection operator does not change the probabilities of the possible sequences,
a given sequence must have the same probability in both the LHS and the RHS. Hence, both the
probabilistic sequences are the same.

Lemma .5 The output of a sliding window aggregate has exponential data complexity

Proof We illustrate this proof with a simple example and then use these techniques to prove the
general case. Consider a probabilistic sequence on a single variable X1, X2, . . . , Xn. Suppose we
have a sliding window of size 2. Denote the sliding window aggregates using S1, S2, . . . , Sn−1,
Si = Xi +Xi+1.

We illustrate that for all i, j where j > i + 1, Si 6⊥⊥ Sj |Si+1, Si+2, . . . , Sj−1. Consider S1 and
S3. A necessary and sufficient statistics to determine the value of S3 is any of X2 or X3, (Because
the distribution on X3 and X4 can be computed exactly from the knowledge of either X2 or X3,
from which we can determine the distribution on S3) Given the knowledge of S2 which is equal
to X2 + X3, we cannot determine the value of either X2 or X3 which would help us to determine
the value of the window aggregate S3. Hence, S1 would still influence the value of S3. Now,
consider any arbitrary Si and Sj such that j > i + 1. Given the values of every window between
them, i.e., Si+1 to Sj−1, we get a total of j − i − i linear equations in j − i variables, of the form
Sk = Xk + Xk+1 from which we cannot obtain a sufficient statistic for Sj . Hence, Si 6⊥⊥ Sj for
all values of j > i + 1. Even for a sliding window of length L > 2, we observe the same scenario,
where the number of equations is fewer than the number of variables, In order to represent the
dependencies that exist between all the n sliding window aggregates exactly, we need a distribution
of size that is exponential in n.
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Lemma .6 Assuming that the number of variables per slice is a constant, our query planning
algorithm is sound and complete

Proof We will first prove soundness, followed by a proof for completeness.
Soundness: The query planning algorithm only returns polynomially computable plans. Since
we verify that every operator-input pair is safe in the query plan returned by the algorithm, we
only return polynomially computable query plans.
Completeness: The query planning algorithm returns a polynomially computable plan if one
exists for the query.
Here, we are given that a polynomially computable plan exists for a query and we need to prove
that our algorithm computes such a plan. We will prove the contrapositive of the statement, i.e.,
if our query planning algorithm cannot find an algorithm for a query, then solving such a query is
NP-hard. If our query planning algorithm fails to find a polynomial plan for a query then we can
conclude that there exists a projection operator which is unsafe for the query. (It could also be the
case that the query was a sliding window query, which was already shown to be NP-hard in Lemma
x). Also, every safe projection is polynomially computable since the number of variables per slice is
a constant, the worst case complexity for a safe projection is exponential in this constant. However,
from Lemma y, we see that if the projection is unsafe, then the data complexity of the output is
necessarily exponential – equivalently, the query is NP-hard to be solved exactly. Hence, the result
follows.
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