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Abstract—In this paper, we address the problem of extending
a relational database system to facilitate efficient real-time
application of dynamic probabilistic models to streaming data.
We use the recently proposed abstraction of model-based views
for this purpose, by allowing users to declaratively specify the
model to be applied, and by presenting the output of the models to
the user as a probabilistic database view. We support declarative
querying over such views using an extended version of SQL
that allows for querying probabilistic data. Underneath we use
particle filters, a class of sequential Monte Carlo algorithms,
to represent the present and historical states of the model as
sets of weighted samples (particles) that are kept up-to-date as
new data arrives. We develop novel techniques to convert the
queries on the model-based view directly into queries over particle
tables, enabling highly efficient query processing. Finally, we
present experimental evaluation of our prototype implementation
over several synthetic and real datasets, that demonstrates the
feasibility of online modeling of streaming data using our system
and establishes the advantages of tight integration between
dynamic probabilistic models and databases.

I. INTRODUCTION

Enormous amounts of streaming data are being generated
everyday by measurement infrastructures that continuously
monitor a variety of things from environmental properties
using sensor networks [22] to behavior of large computational
clusters [14]. To fully harvest the benefits of this extensive
monitoring, we must be able to process and analyze such data
streams in real-time. In recent years, there has been much
work on data stream management systems [5], [6], [4], [24]
that can process high-rate data streams in real-time and can
continuously evaluate SQL queries over them. A large class of
commonly used stream processing tasks, however, cannot be
expressed as SQL queries and thus cannot benefit from these
advances in stream data processing. Examples of such tasks
include:

e Inferring hidden variables: In several real-world data
streams, the attributes of interest may not be directly
observable (e.g. working status of a remotely located
wireless sensor), or it may be very expensive to measure
them (light on a Berkeley Mote [11]). A common task
over such data streams is to continuously infer the value
of the hidden variables using the observed data. Hidden
Markov models [29], or variations thereof, are often used
for this purpose; these models allow us to combine prior
domain knowledge about the system behavior with the
actual observations to compute the most likely values of

the hidden variables (Section II-A).

o Eliminating measurement noise: Data Streams gener-
ated by distributed measurement infrastructures like sen-
sor networks or GPS devices are invariably noisy; this
could be because of calibration effects (e.g., temperature
sensors typically report voltages that are then converted
into Celsius), due to poor coupling or analog-to-digital
conversion, inaccuracies due to non-robust measurement
techniques that fail in harsh environments (e.g., multi-path
propagation errors that occur in GPS in urban settings),
or inherent flaws with mass-produced sensing devices. Re-
moving measurement noise is perhaps the most important
first step when analyzing such data streams or processing
user queries over them. Analytical filtering techniques such
as Kalman filters [33] and its extensions are commonly
used for this purpose in a wide variety of domains.

e Probabilistically modeling high-level events from low-
level sensor readings: Automatically recognizing higher
level events such as user activities through use of unob-
trusive sensing technologies is considered a key in the
field of Ubiquitous computing [8], [27], [20]. For instance,
Patterson et al. [27] demonstrate how the fransportation
mode of a user can be learned using GPS readings, which
they then use to design a guiding device for cognitively
impaired people. Increasing deployments of large-scale
sensing infrastructures will enable many such applications
in the near future. Ideally, we would like to perform this
type of modeling in real-time as the data is being generated
and streamed into the system; the application developers
can then be provided access to these inferred events (subject
to privacy policies) directly in a streaming fashion, so they
can provide user services.

There are several other common stream processing tasks such
as predictive modeling and extrapolation to fill up missing
values, identifying temporal or spatial trends in the data and so
on, that cannot be expressed as SQL queries. Because of this,
the majority of the analysis and querying in these applications
is typically done outside the database system, leading to much
repetition of functionality and highly inefficient execution.

In this paper, we present an extensible system that exploits
the commonalities between many of these tasks to natively
support them inside a relational database system. Most of the
aforementioned tasks can be seen as applications of specific
instances of dynamic probabilistic models (DPMs) to stream-



ing data [26], [23]. We use the recently proposed abstraction
of model-based views [12] to push the application of a wide
range of DPMs to streaming data inside a relational DBMS,
thus enabling easy application of these tasks. By exploiting
the structure of particle filters (a widely applicable sequential
Monte Carlo technique), we efficiently implement DPMs and
represent them as sets of weighted samples (called particles)
in relational tables. This representation of DPMs naturally cap-
tures many of the attribute correlations present in the data. In
addition, we have designed novel techniques to rewrite queries
posed over a single DPM-based view (including aggregate
queries) into queries over the above representation, allowing
us to exploit the existing query processing machinery. Our
experimental results reveal that our system achieves sufficient
accuracy (99%) in modeling data streams and that the pro-
cessing times are quite reasonable (20ms/tuple); we can easily
handle streams upto 50 tuples/sec. GPS and many common
streams have rates much below this figure (< 1 tuple/sec).
The rest of the paper is organized as follows. We begin with
an overview of dynamic probabilistic models in Section II. We
describe the abstraction of DPM-based views in Section III and
present a detailed description of our system and the algorithms
used in Section IV-V. We conclude with an experimental
evaluation of our prototype implementation in Section VI.

II. BACKGROUND - DPMS

Dynamic probabilistic models are widely used in practice
to model and to reason about complex real-world stochastic
processes [16], [26], [23]. The simplest and most widely
used examples of DPMs are hidden Markov models (HMM:s)
and linear dynamical systems (better known as Kalman filter
models (KFMs)). We start by illustrating HMMs and then
describe more general DPMs. A more detailed illustration of
DPMs can be found in the extended version of the paper [17].

A. Hidden Markov models (HMMs)

HMMs have been applied in a variety of areas like speech
recognition, bioinformatics, and fault detection [29], [18],
[35]. They are used to infer the values of unobservable
(hidden) state variables from imprecise observations about
related variables. We illustrate HMMs using a fault detection
application. Consider a single sensor, possibly faulty, that is
measuring temperatures in a room and transmitting them to
a central database server. We wish to know if the sensor is
working correctly (so we can ignore erroneous readings). The
only information we have about the sensor are the temperature
readings it transmits.

We can use an HMM to solve this problem as follows. The
hidden variable in this case (which we cannot measure), is
the working status of the sensor, S;, which takes two values:
Working (Wo) or Failed (Fa) (t denotes the time). The observed
readings are the temperatures, 73, measured by the device,
which may contain noise.

The prior knowledge about the system behavior (that is used
to determine whether the sensor has failed) can be captured
by two conditional probability distributions (Figure 1(iv)) :
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DISTRIBUTION STATE OF SENSOR AT TIME 't'

(iil) BBQ DPM (Intel Lab Data, Section VI)

P(Tt41|Tt, St+1 = Wo) = N(Tt, o)
p(Tt+1‘Tt, St+1 = Fa) = U(O, 100)
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Fa | 0.01 0.99 Priors : p(vo) and p(zg)

(iv) CPDs for HMM (V) CPDs for KFM

Fig. 1: Graphical representations and CPDs for various DPMs: (i),(iv)
HMM for fault detection; (ii),(v) KFM for velocity and location
estimation (Section VI); (iii) BBQ DPM (Section VI).

e P(Tyi1|Tt, Sty1): This distribution captures the behavior
of the sensor based on its working status. For instance,
from prior knowledge about the process, we expect that
if the sensor is working correctly (S 1=Working), then the
sensor temperature measured at time ¢+ 1 should be around
T; (temperature measured at t) plus a small (Gaussian)
noise. If the sensor is faulty, then a simple assumption is
that the sensor arbitrarily returns any value between 0 and
100, independent of the real temperature. Clearly, the faulty
behavior depends on the nature of the sensor.

e P(S;+1|S:): Figure 1(iv) shows a possible table for this
that captures the prior knowledge that the sensor has a small
probability of failing. The table indicates that if the sensor
was working at time ¢, then the probability that it will fail in
the next time instant is 0.01 and if the sensor has failed now,
the probability that it will work the next time instant is 0.01.
Once again, the actual probabilities depend on the nature
of the sensor and possibly the manufacturing process; for
most devices, this type of information is typically available.

These conditional distributions form the parameters of the
HMM. By combining them with the observed temperatures
from the data stream using an HMM inference algorithm like
forward-backward and the Vitterbi algorithm [29], we can infer
the best possible estimate of the hidden variables (in our case,
the status of the sensor at various times).

We note here that the above model is not suitable for
temperature prediction, but only for fault detection (since it
does not capture the temporal trends in the temperature).

B. DPMs: Graphical Representation

DPMs are represented using a directed graphical structure
(Figure 1), where the graph captures the dependencies be-
tween the process variables. Figure 1(i) shows the graphical
representation for the HMM described above and (ii) shows



a KFM model for velocity and location estimation (used
in Experiments, Section VI). The details of the graphical
representation are as follows.
Nodes of the graph represent the attributes of the system being
modeled (as random variables). In Figure 1(i), the attributes of
the system being modeled are the temperature (7;) and status
(St) variables. By convention, the observed nodes are shaded
while the hidden nodes are clear.
Time is represented in a DPM through use of vertical slices.
Each vertical slice of the graphical model corresponds to
the state of the system at a given time instant. As time
advances, we can unroll the model by repeating the structure
and parameters of the model as shown in Figure 1 (iii).
Edges/CPDs: The directed edges represent “causality”. In
Figure 1(i), the working status at time ¢ influences the
measured temperature at time t. The degree of causality is
indicated by the conditional probability distribution function
(CPD) described above. The CPD of node X is indicated by
P(X|Pa(X)) where Pa(X) denotes the parents of node X.
We need three sets of CPDs to fully specify a DPM:
e The prior (unconditional) probability distributions over the
variables in the first slice (that may not have any parents).
e The CPDs that encode the knowledge about how the state
at time ¢t 4+ 1 depends on the state at time t.
e The CPDs that encode the knowledge about how the
observations at time ¢ depends on the state at time ¢.
Typically it is assumed that the variables at time ¢ depend
directly only on the variables at time ¢ and ¢ — 1 (Markov
assumption), and hence a 2-slice representation (as shown in
Figures 1(i) and (ii)) is usually sufficient. The parameters
of the DPM may be input from prior knowledge or may
be learned from training data. We use Maximum Likelihood
Estimation (MLE) for learning parameters of the CPDs, if
needed. Details of the learning algorithm can be found in [17].

BBQ DPM [11]: Figure 1(iii) depicts the DPM that we use as
a running example in this paper. Here the observed variables
are noisy humidity readings, My, and the hour of day, h;. The
hidden variables are true humidity, H;, and true temperature,
T;, both of which are inferred using M;; more precisely, at
any time ¢, given the sequence of measurements My, - - - , M,
the DPM can be used to infer probability distributions over
values of H; and T;. Here, the CPD of node T;,; depends
on 73 and the hour of the day h;y; (since how temperature
changes depends on the time of the day).

C. Inference in DPMs

The ultimate goal of modeling a stochastic process using
a DPM is to obtain a posterior distribution over the hidden
variables of the model, given the observed measurements. This
task is called inference. Several inference algorithms have been
developed for efficient inference in special cases (e.g. Kalman
Filters), and many general purpose inference techniques (e.g.
Jjunction tree algorithm) are also known. We present one such
general purpose algorithm, based on Monte Carlo techniques,
in Section IV-C.

t | temp T3 | humid Hy SID | t T: H, weight
3 J\ 1 | 4] 2143 ] 4060 | 040
2 |4 2148 | 4050 | 020
4 ﬂ\ 3 | 42149 | 4051 | 0.05
4 | 42021 | 4151 o15
5 /\/\ /\ 5 |4 2162 4029 | 020

(i) DPM-based view (ii) Associated Particle Table
Fig. 2: (i) DPM-based views contain probabilistic attributes; (ii)
Particle-based representation of the view (only particles correspond-
ing to the second tuple, time = 4, are shown for clarity)

III. DPMS AS DATABASE VIEWS

The abstraction of model-based view, proposed in [12],
allows creating database views using statistical models. Exam-
ples of model-based views based on non-parametric statistical
models like linear regression and interpolation are described
in [12]. Here, we extend this abstraction by allowing views
to be defined using DPMs instead. Figure 2(i) shows the
schema of the view that could be presented to the user with the
BBQ DPM model (Figure 1(iii)). As we can see, the schema
contains all the hidden state variables in the DPM as attributes
along with a fime attribute (the observed attribute M may be
included as well). It must be noted that we in fact maintain
joint distributions (accross all schema attributes) although
the figure indicates only marginals (for illustration). As with
traditional database views, this is a virtual table that may or
may not be materialized. Although the above DPM-based
view shows only continuous variables, DPM-based views can
also have discrete variables. (e.g. status attribute in HMM-
based view presented to the user in the fault detection example
(Section II-A)).

The nature of DPMs forces these to be probabilistic views
since the attributes of this virtual table may be probabilistic
(both T} and H; are probabilistic attributes here). The issue of
querying and representing such probabilistic data has received
much attention in recent years [3], [19], [7], [34], [10],
[1], [31], and some of the challenges we face form active
research focuses in that area. We plan to utilize the techniques
developed in that work to a large extent in building our system.
We currently allow querying single table DPM-based views
using an extended version of SQL with the following features:

e 1(X): We allow the users to specify operations on ex-
pected values of probabilistic attributes. A predicate such
as u(temp) > 30 indicates that the condition is on the mean
value of the temperature attribute.

o with confidence c: This allows the users to specify a
minimum confidence in the result tuples returned.

In addition, we support SQL queries with aggregates such as
AVG, MIN, MAX and NN (Nearest Neighbor).

DPM-based views exhibit complex and strong attribute
correlations that can not be ignored during query processing.
Most of the probabilistic databases proposed above either
assume independence or severely restrict the correlations that



can be represented. We differentiate between two types of
correlations:

¢ intra-tuple correlations: that exist between attributes of
a single tuple (e.g., T3 and H; above).

¢ inter-tuple correlations: that exist between attributes of
different tuples (e.g., T3 and Tiyyq).

Our internal representation (that we discuss next) currently
captures the intra-tuple correlations, and the query results are
also affected by it. Inter-tuple correlations, on the other hand,
are harder to capture and we currently ignore those during
query processing; in future, we plan to develop intuitive ways
of representing and querying such correlations.

Particle-based representation

We use a representation based on weighted samples (called
particles) to store DPM-based views internally. This not only
allows us to handle the complex continuous probability distri-
butions that may be generated during probabilistic modeling,
but also forms the basis for our inference technique.

Definition: A particle is a weighted sample drawn from a
probability distribution. The weight associated with the sample
represents its likelihood of occurence in the distribution.

To represent a DPM-based view as a relational table with
deterministic attributes, we essentially maintain a set of par-
ticles for each tuple in the view in a separate table called
particle table. This table is initialized and then constantly
updated using the inference algorithm (Section IV-C). The set
of particles represents the joint distribution over the attributes
in the view. Figure 2(ii) shows a set of particles corresponding
to one of the tuples in the view. The schema of particle table
consists of the attributes of the view along with a SampleID
attribute (SID), and a weight attribute. Given such a particle
table, the expected (or most likely) values of the attributes are
computed by taking weighted averages over the particles. For
example, the expected value of the temperature attribute at
time 4 is given by (Figure 2(ii)) as Ty = Y. (T4 x w})
= 21.28. Note that, since the particles represent the joint
distribution, the intra-tuple correlations are naturally captured
in this representation.

The accuracy of this representation depends on the number
of particles used (IV, a system parameter). It has been shown
theoretically that the error in the representation is proportional
to 1/N [13].

IV. SYSTEM DESIGN

To model a data stream using an appropriate probabilistic
model, the following sequence of steps take place:

1) The user uses the create view command to specify the
DPM and to create the view (Section IV-A).

2) If the user specifies that the CPDs are to be learned using
training data, an MLE-based learning module (see [17])
is invoked over the training data.

3) A particle table is created and initialized using the prior
distributions (Section IV-C).

4) The particle table is continuously updated by the Up-
date Manager in response to the incoming data stream
measurements (Section IV-C).

The user interacts with the DPM based view by issuing SQL-
style queries (extended to deal with probabilistic data). A
query transformer intercepts these queries and converts them
into SQL queries over the particle table that are then executed
using the traditional query processor (Section IV-B).

Next, we discuss the details of these components in turn.

A. Specifying DPM-based Views

To create a DPM-based view over a stream, the user is required
to specify the following details:

— The schema of the view.
— The data stream to be modeled.
— The DPM to be used to model the data.

The generic view definition statement to create a DPM-based
view is as follows.

CREATE VIEW <name_of_view> <Schema> AS

DPM <DPM._config_in_file>

<TRAINING.DATA <SQL_query-for_training.-data>>
STREAMING DATA <SQL_query.for_streaming.data>

The first line of the statement specifies the schema of the

view, including its name and its attributes, just as a traditional

database view. The fourth line specifies the data stream to be
modeled using an SQL query. The structure and the parame-
ters of the DPM itself are specified using a configuration file
that is provided with the view definition. Figure 3 shows an
example of such configuration files for the HMM presented in

Section II. The configuration file consists of:

Properties: of attributes in the DPM — whether they are
hidden or observed, continuous or discrete, and the set
of values they can take if they are discrete. Attributes
corresponding to two slices of the DPM are typically
specified.

Adjacency matrix: of the graphical representation of DPM.
The edges are assumed to be directed from the node
corresponding to the row to the node corresponding to
the column. This graphical representation is required to be
acyclic.

CPDs: Prior and conditional probability distributions (Section
II-B) for each of the nodes in the graph. This is perhaps the
most complex part of the DPM specification. We allow the
users to specify CPDs using one of two ways.

e Using a set of pre-defined probability distributions: Fig-
ure 3(i) shows the distributions we currently support. For
example, N (u,0) represents a normal distribution with
mean p and standard deviation . The CPD for node 2
in Figure 3(ii) indicates that, based on the state of node 1
(Wo/Fa), node 3 is either normally distributed with mean
50 and standard deviation 0.05 or uniformly distributed
(between 0 and 100). Node 3 of the HMM, in Figure
3(ii) has a discrete distribution that was specified using a
transition probability matrix in Figure 1(i).

e By providing a java module file that supports an appro-
priate API: If the probability distribution to be specified



val(z) Variable modeled by node 7

cpd(1) CPD of node ¢
N(p,0) Normal distribution with mean p and variance o
U(a,b) Uniform distribution with range [a, ]

[p1;p2; P3] Discrete distribution that has probability p; of being

in first state, po in the second state and p3 in the third
state.

(val(i), [s1;s2]) | Discrete CPD with 2 possible states that takes state s1
if val(¢) is in the first state and state so if val(?) is

in the second state

)
# Node Properties | # CPDs of Nodes
numNodes: 4 lepd (1) : [1;07;
hidden: {1,3} |cpd(2) : (val(l), [N(50,0.05);
discrete: {1,3} | U(0,100)1);
node (1) : ['Wo’ 'Fa’] |
node (3): ['Wo’ ’'Fa’] |cpd(3) :(val(l),[[0.99;0.01]1;
# Graph adjacency matrix | [0.01;0.9911);
graph: [0 1 1 0; |
000 1; |cpd(4) : (val(3), [N(val(2),0.05);
000 1; | U(0,100)1);
0 0 00] |
(i)

Fig. 3: (i) Conventions used in specifying the DPM; (ii) Configuration
file for HMM-based view in Figure 1(i)

is not among the ones supported above, then we allow
the user to provide the distribution in the form of a java
class file. The class must be implemented to support a
pre-defined API (discussed in Section V).

Instead of specifying the parameters explicitly using the con-
figuration file, the user may instead specify a training dataset
from which to learn the parameters (line 3 in the view creation
syntax).

B. Query Processing

Query processing over DPM-based views is simplified as
a result of the particle-based representation in our system. A
probabilistic query over a DPM-based view is executed by
first converting it into a query over the corresponding particle
table, and then using an existing query processor (and query
optimizer) to execute the new query. This approach not only
minimizes the number of changes that we have to make to the
underlying database system, but also results in highly efficient
query execution.

We first describe the query transformation process for the
case of simple select-project queries over a single DPM-based
view, and then consider more complex aggregate queries in
Section IV-B.2. Designing robust query conversion algorithms
for arbitrary queries is a topic of future work. For simplicity
of discussion, we assume throughout this section that the
attributes of the view, other than the key attributes, are contin-
uous. The extensions for handling discrete attributes are quite
straightforward.

Consider a DPM-based view that infers the temperature
measured by a set of sensors from the observed humidity
values(Section II-B). The schema of this view is given by:

bbqview(time, id, temp, humidity)
Here id denotes the sensor identifier and temp is the temper-
ature of the sensor. The unique key for this view is (time, id),

Algorithm 1 Single-table select-project queries
Require: User SQL Query (@) on the model based view.
1: for attribute 7 in SELECT clause in () do
2:  if i is a key attribute then
Add i to the SELECT clause of Q'
else
Add sum(i *x weight) to the SELECT clause of @’
Replace occurrences of DPM-based view in () with par-
ticles in the FROM clause.
7. Add key(DPM based view) to the GROUP BY clause of
Q/
8: for each predicate o in WHERE clause of ) do
9:  if « involves only key attributes then
10: Add « to the WHERE clause of Q’
11: HAVING Clause of Q' «+ (confidenceQuery > ¢%)

> kW

Algorithm 2 Constructing the confidence query

Require: User SQL Query (Q)) on the model based view.
1: Construct Query Q" such that,
2: SELECT clause of Q" « sum(weight)
3: FROM clause of Q" « particles p2
4: WHERE clause of Q" «+— WHERE clause of Q
5: Add ‘pl.key = p2.key’ predicates to WHERE clause of

Q/

and the schema of the corresponding particle table is:
particles(SamplelD, time, id, temp, humidity, weight)

1) Select-Project SQL queries: Figure 4(i) shows a simple
example of query transformation over this view. The query
simply asks for the temperatures measured by all sensors.
As we discussed in Section III, if the final result attributes
in a query are probabilistic, the expected values are returned
instead. The corresponding query over the particle table sim-
ply groups the particles by the key attributes and returns a
weighted average of the temperature attribute.

The query in Figure 4(ii) specifies a predicate over a
probabilistic attribute and a confidence value that specifies the
minimum confidence required in the result tuples (a default
confidence value is assumed if the user doesn’t specify one).
In such a case, the query transformer constructs two queries,
a result query and a confidence query, that are then merged
into a single query as shown in the figure. The result query
generates the output as desired in a fashion similar to the first
query, whereas the confidence query ensures that only tuples
with sufficient confidence are returned to the user.

Algorithms 1 and 2 show the pseudo-code for the general
procedure for converting a select-project query on a single
DPM-based view into a query over the particle table. Given an
SQL query @ over a DPM-based view, Algorithm 1 computes
the result query Q" and Algorithm 2 computes the confidence
query Q".

Intuitively, the occurrence of a non-key attribute in the
select clause is replaced with a weighted average of the same
attribute. Any predicates in the where clause on non-key



SELECT id, time, temp FROM bbgview
(a) Original Query

SELECT id, time, sum(tempxweight)
FROM particles GROUP BY id,
(b) Converted Query

time

SELECT avg (temp)

WITH TBL AS (SELECT id, sum(weightxtemp)

FROM particles WHERE time = 20 GROUP BY id)
FROM TBL T;

(iii) Transformed AVG query (Original not shown)

®

SELECT id, temp FROM bbgview
WHERE temp > 20 AND time = 5
WITH CONFIDENCE 0.95

(a) Original Query
SELECT id, sum(tempxweight)
FROM particles pl WHERE time = 5
GROUP BY id HAVING 0.95 < (SELECT sum(weight)

WITH TBL1 AS (SELECT p.id AS pid, g.id AS gid, p.temp AS temp,

p.weight AS weight, log(sum(g.weight))

FROM particles p, particles g

WHERE pid != gid AND p.temp < g.temp
AND p.time = 20 AND g.time =

GROUP BY p.id, p.temp,

AS logsum

20
p.weight,g.id

) WITH TBL2 AS (SELECT pid, temp, weight, exp (sum(logsum)) AS prob

FROM TBL1 GROUP BY pid, temp
HAVING Count (x)= (SELECT COUNT distinct id FROM particles)+1

FROM particles p2 WHERE pl.id = p2.id )
temp > 20 time = 5) (a) VMinQ: SELECT sum(prob*weightxtemp) FROM TBL2,
(b) Converted Query

(i)

(b) EMinQ:

SELECT pid, sum(probxweight) FROM TBL2 GROUP BY pid;
(iv) Transformed Min Query (Original not shown)

Fig. 4: Examples of Query Transformation. Note that original queries are not shown for MIN and AVG.

attributes are moved to the confidence query, since they can
only affect the confidence in the result. Finally, a correlated
sub-query is used to ensure that only the tuples with sufficient
confidence are returned to the user.

The p construct (Section III) is treated as a key attribute
for the purpose of query conversion. For instance, if a
query contains predicate p(temp) > 5, we replace it with
sum(temp * weight) > 5 and keep this predicate in the
result query. If a view contains a discrete non-key attributes,
the final result returned to the user is the most likely value
of the attribute (the value with the highest probability). The
above algorithms can be extended in a fairly straightforward
manner to handle this case; we omit the details due to space
constraints.

The algorithms shown for query transformation assume that
the key attributes are implicitly present in the query posed
by the user. For instance, in Figure 4(i), the user explicitly
requires id and time attributes, while in Figure 4(ii), the
user explicitly requires the id attribute and implicitly the
time attribute, by constraining it to be exactly 5. If such
key attributes are not specified in the query, then additional
processing needs to be performed for the above algorithms
to perform query conversion correctly, in essence we need
to include the key attributes in the converted query and only
project them out in the final step of query execution.

2) Aggregate Queries: We now look at how to transform
probabilistic aggregate queries. Prabhakar et al. [7] propose
a classification of aggregate queries that can be posed on
an uncertain database. These are broadly classified as value
queries, that return a single number or aggregate, and entity
queries that return a set of objects that satisfy the query. They
are further classified as:

o Aggregate Value queries
(1) Probabilistic Sum, Avg Query (VSumQ, VAvgQ)
(2) Probabilistic Min, Max Query (VMinQ, VMaxQ)
e Aggregate Entity queries
(1) Probabilistic Range Query (ERQ)
(2) Probabilistic Min, Max Query (EMinQ, EMaxQ)

(3) Probabilistic Nearest Neighbor Query (ENNQ)

The query semantics we use for the aggregate queries is based
on the possible worlds semantics.

Probabilistic AVG query (VAvgQ)

Consider an SQL query on the bbgview that asks to compute
the average temperature over all sensors at time equal to 20.
To transform this query to a query on the particle table, we
first create a temporary table 7BL that contains the temperature
measured by each sensor individually. We then compute the
average of these temperatures in order to compute the average
across all sensors. In essence, we are exploiting the linearity
of expectation to compute the average. The transformed query
is shown in Figure 4(iii). However, aggregates such as MIN,
MAX and nearest neighbor (NN) do not have such properties
and in general we need much more complicated SQL queries
in order to compute such aggregates. We will now consider
the MIN aggregate.

Probabilistic Min Query (VMinQ, EMinQ)

An example of the entity version of a MIN query (EMinQ)
is a query that asks for the sensor recording the minimum
temperature at time equal to 20, whereas the value version
asks for the minimum temperature itself. Since temperature is
an uncertain attribute, each sensor has a (potentially infinite)
set of likely temperature values that it can take. In general, the
ranges of the values among sensors overlap and hence every
sensor might have candidate values that could potentially be
the overall minimum temperature. Equivalently, every sensor
might have a certain probability of being the one recording
minimum temperature.

To answer this query, we use the weighted samples to,
in essence, do numerical integration over a complex multi-
variate integral [7]. For each of the samples for a sensor S,
we compute the probability that it is the minimum value. This
is done by constructing two temporary tables TBL1 and TBL2
as shown in Figure 4(iv).

Intuitively, to compute the probability that a particular
value T; for sensor S is a candidate minimum, we compute
the probability that each of the other sensors measures a
temperature greater than 7; and multiply these quantities. This



involves performing a self-join of the particle table and then
computing the sum of weights of tuples in each of the other
sensors that have temperature values greater than 7; and then
multiply the sums. Since there are no operators to multiply row
values within a Group-by clause (we can only compute sums),
we evaluate the necessary product by turning it into a sum
using logarithms. The above information is stored in TBLI.
Table TBL2 is constructed by pruning the sensors that have
no probability of being the minimum. This check is performed
using the Having clause in CREATE TABLE TBL2 statement.
After computing tables TBL1 and TBL2, we compute the
results for the Entity query and the Value query as shown
in the Figure.

C. Update Manager: Particle Filtering

The update manager is in charge of keeping the particle
table updated and consistent with the incoming data stream.
We use a sequential Monte Carlo technique called particle
filtering [13] for this purpose. Particle filtering is a well
known sequential Monte Carlo algorithm for performing state
estimation in DPMs, and has been shown to be effective in a
wide variety of scenarios. In short, the algorithm computes and
constantly maintains sets of particles to describe the historical
and present states of the model. As discussed in Section III,
this is exactly the internal representation that our system uses
to maintain DPM-based views. Next we briefly describe the
five routines of the particle filtering technique using the BBQ
DPM (Figure 1(iii)). Pseudocodes for these routines and a
more comprehensive illustration is presented in [17].

Initialization: At the beginning of the process, an initial set
of particles is created by randomly sampling from the prior
distributions on the attributes.

Prediction: The prediction step is invoked to advance time.
During this step, the state at time ¢ 4 1 is predicted using the
state at time ¢. Specifically, for each existing particle at time ¢,
a new particle for time ¢ + 1 is created by sampling from the
relevant CPD. If (T}, H}) denotes the i‘" particle at time ¢, the
corresponding particle at time ¢ + 1, (17, ,, H{ ), is created
by sampling from the distributions p(7y41|T%, houriy1) and
p(Hyy1|Hy, houry1) where houryyq is the hour at time ¢+ 1.

Filtering: The filtering procedure involves using the data that
arrives at time ¢ + 1 to update the state estimate at time
t + 1. Each new particle is assigned a weight based on the
values of the observed variables at time ¢ + 1. These weights
are computed using the CPDs of the observed nodes. In our
example, the weights are assigned to the predicted particles
based on the CPD of the observed node M, p(M;|Hy). At
the end of this step, the weights are normalized so they sum
up to 1.

Re-sampling: Particle filtering may sometimes degenerate to
the case where a single particle has all the weight. This is
handled through a re-sampling step, where the current set of
particles are re-sampled among themselves (based on weight)
to generate a new set of particles. The re-sampling step creates
a new set of particles, all with the same weight, thus taking

care of the degeneracy. Note that the same particle may be
repeated multiple times in the resulting set of particles. This is
not a problem as the next prediction step will generate different
new particles from these identical particles.

Smoothing: This routine uses the current state distribution to
“correct” the state at previous times. Consider a scenario where
the temperature being modeled changes suddenly. However,
the first reading that contains this change may not affect
the inferred temperature because the model would attribute
the reading to noise. Over time, as new readings arrive
confirming the change, the inference process becomes more
certain of the change in temperature. The earlier change that
was attributed to noise, is now re-attributed to an actual
change in the temperature. This is done using the smoothing
procedure which recomputes the weights of the particles at
earlier times. This effect typically diminishes after a few steps,
and we backward update the distribution of those steps that are
atmost L time units away (where L is called the smoothing
lag). The Smoothing step also reduces the variance of the
filtering output. However, it is a very expensive operation -
O(N2L) where N is the number of particles; and is hence
not performed at every time step. This offers a trade-off
between accuracy and performance wherein we can control
the smoothing operation and its lag in order to meet user
requirements.

V. IMPLEMENTATION DETAILS

We built the prototype of our system using Java, and we
use the open source Apache Derby (Java embedded database
system) [2] to store the particle tables. Our prototype imple-
mentation is currently an application level software that lies
above the Derby abstraction layer. The application accesses
the particle tables using JDBC calls. In addition, we cache
the particles that belong to the last L time steps (smoothing
lag, Section IV-C) in memory for efficient access; the particles
are written to the database in background. We are currently
working on moving the entire implementation inside Derby.

The most important challenge we faced in our implemen-
tation was managing the many different possible types of
node variables and their associated CPDs. Nodes may be
continuous or discrete (with a variety of domains), may have
any combination of discrete or continuous parent attributes and
so on. To make the implementation generic and to provide
the user with the flexibility to easily augment the system, we
provide an extensible API that can be used to implement a
new CPD:

e Object getSampleFromCPD(ArrayList pVals):

This function produces a new sample value for the node

given the value of its parents (supplied in the ArrayList).

e double getProbability(double val, ArrayList pVals):

This function returns the probability that the node variable

takes the value val, given its parents values (in pVals).

o addSample(double val, ArrayList pVals): This function

adds a new data sample to the repository of samples used

to learn this particular CPD.



e computeParams(): This function, invoked after training
samples are added, is used to “learn” parameters of the
CPD.

VI. SYSTEM EVALUATION

In this section we present results from the experimental
evaluation of our prototype implementation. Our experimental
evaluation illustrates the need for using DPMs when dealing
with erroneous and incomplete data streams, and demonstrates
that our system is effective and efficient at applying DPMs to
streaming data. Furthermore, our results also show that the
mean squared errors obtained in the inference process follow
the theoretically expected 1/N behavior [13].

A. Experimental setup
Dataset I: Moving Objects Dataset

Moving objects databases have received much attention in
recent years [30], [32], [7]. We consider a moving objects
scenario where a number of point objects with GPS devices
constantly transmit their location to a central server. This
data stream is assumed to be noisy and incomplete, and we
would like to model it to infer the true locations and the
velocities of the objects. Lacking a real-world dataset with
GPS traces over multiple objects, we generate simulated data
with the properties described above. We simulate a random
linear trajectory for each object and add white Gaussian noise
with a standard deviation of 2 units to the data. In addition, we
randomly drop 5% of the readings to simulate incompleteness.

We use a KFM to infer the true locations and velocities
(Figure 1(ii)). We enable the smoothing routine with a lag of
2. We model each moving object separately using a different
KFM (different parameters), but store the information about
all objects in a single table. The schema of this view is:

kfview(time, OID, x, y, vy, vy)
Dataset II: Sensor Data

There has been much work recently [11], [27], [7] on man-
aging noisy and incomplete sensor data and inferring useful
information from them. We attempt to use our system to
perform similar tasks. We use the publicly available Intel
Lab dataset [21] that consists of traces from a 54-node
sensor network deployment that measured light, humidity and
temperature readings collected in a lab. The readings collected
are extremely noisy and incomplete. Also, sensors that failed
midway through deployment continued to transmit erroneous
values. In our experiments, we attempt to accurately infer the
temperature based on the observed humidity values. This is a
common query processing strategy [11] in power-aware sensor
networks, where acquiring all attributes is expensive. We run
a series of processings tasks over this data.

Step 1: Remove Incorrect Data: Detect failure times of
sensor nodes using an HMM-based view (Figure 1(i)) and
remove all readings generated after this time.

Step 2: Learn DPM: Split the resulting data into training
and testing datasets. Use training dataset (data collected for
6 days) to learn all CPDs of the DPM.

Step 3: Infer Temperature values: Use the humidity read-
ings in the test dataset (data collected for 3 days) to infer
the temperatures using the BBQ DPM (Figure 1(iii)).

Step 4: True Temperature Values: Determine exact tem-
perature values by cleaning the observed temperatures using
another DPM based view (not shown).

The resulting correct temperatures from Step 4 are compared

with the temperatures inferred from Step 3 to evaluate the

accuracy of the inferred temperatures.

B. Experimental Results

1. Applying DPMs to data is critical

Dataset I: The intersection query in Figure 5(i) measures the
number of times at which two particles are closer than a speci-
fied distance 6. We execute this query on the raw GPS data and
kfview and compare the number of correct intersections that are
measured in both cases. Figure 5(ii) shows the plot comparing
the percentage of missing intersections in the raw data and
kfview. As we can see, a large number of the intersections are
missed while executing the query on the raw data, especially
for smaller values of J. kfview on the other hand, is able to
capture most of the real intersections.

Dataset II: Figures 5(iii),(iv) show the results of executing
Step 1, i.e., detecting the failure times for sensors. As we
can see from Figure 5(iii), there are several incorrect values
in the data after 500 hours (20 days approx), that need to be
removed before we can use the data for learning. We also
added a few simulated faults (iv) in order to further verify that
the HMM-based view correctly identifies the faulty readings.

2. Inference using particle filtering is accurate

Dataset I: We execute the trajectory query shown in Figure
5(i), that returns the path traced by object 4, on the raw data
and on kfview. The accuracy of the result is measured by
computing the deviation of the path from its actual path using
the sum-squared error function. We plot the estimate of the
error as a function of the number of particles (/V) in Figure
5(v). From the plots, we can see that the error in the KFM-
based views for GPS datasets is much less than that in the raw
data. (Error in raw data is indicated by the straight line.)
Dataset II: We compare the value of temperatures that were
inferred in Step 3 (with just filtering, no smoothing) to the
true temperature values generated in Step 4. We compute a
mean square error estimate and plot the mean squared error
as a function of the number of particles. We obtain the graph
shown in Figure 5(v). For low values of N, the error reduces
drastically in the beginning, however, for higher values of N
(more than 100 particles), it remains fairly constant. The mean
square error obtained on the test data with just Filtering alone
is less than 0.25 units (<1% error) when just 100 particles
are used. We note here that queries over temperature (or other
hidden variables) cannot be posed on the raw data as it was
not explicitly measured. We can see that the error graphs for
both datasets follow the theoretically estimated (1/N) which
validates our experiments.
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step for various values of Smoothing Lag(L).

3. Inference using particle filtering is efficient

Learning: Given data to be modeled and a DPM, time is
initially spent for learning the CPDs. Learning the CPDs for
the Temperature and Humidity nodes in the BBQ DPM from
about 430000 tuples(each of dimension 3) took 7.5 seconds.

Inference: After the CPDs are learnt and we receive data
continuously, time is spent on performing the Inference proce-
dure. The inference procedure, performed at each time instant,
results in addition of several new rows and modification of
already existing rows. We measure the time taken for one
inference step as a function of the number of particles. We
carry out this experiment for different values of the smoothing
lag parameter, L = 0, 1,2, 4. The results obtained are shown
in Figure 5(vi). We find that the execution time increases
linearly with increase in the number of particles (as y-axis
is in log scale, this cannot be explicitly seen). If we perform
only filtering, the inference time is very small; we process
more than 1000 particles in just 20ms (which means we
can handle streams with 50 updates/second). However, if we
continuously perform smoothing, the time taken for inference
increases drastically as shown in the graph. However, even
with a smoothing lag of 4 time steps, we can process 100
particles in less than 100ms (still reasonable for most common
streams). As the accuracy graph shows in Figure 5(v), this may
be enough to achieve sufficient accuracy. We are considering
“lazy” smoothing strategies where we perform smoothing
ocassionally (not at every time step) and only when it is
essential.

VII. RELATED WORK

Due to space constraints, we only discuss some of the most
closely related work here.

Bayesian Networks and DPMs: Bayesian networks have
been widely researched across a variety of research disciplines
and numerous books have been written addressing their several
aspects (e.g. [28], [16]). DPMs are a relatively newer and
less well-established concept; they allow reasoning about
temporal dimension as well, and are used extensively for
modeling complex stochastic processes [26], [23]. Recently,
DPMs have been seen as generalizations of well established
concepts in seemingly disparate domains. For instance, both
HMMs and Kalman filters, perhaps the most common ex-
amples of such models, were developed independently in
engineering and speech recognition communities, and their
similarities to graphical models were observed fairly recently.
Over the years, several general purpose toolkits have been
developed that support Bayesian networks, and in some cases,
dynamic Bayesian networks (e.g. [25]). However, to the best
of our knowledge, ours is the first work that proposes to di-
rectly implement arbitrary dynamic probabilistic models inside
databases thereby making it easier to use DPMs, and also
increasing the functionality and appeal of relational database
systems.

Probabilistic Databases: In recent years, we have seen a
renewed interest in the area of probabilistic databases, fueled
primarily by a large increase in the amount of real-world data
that is inherently noisy and incomplete. (e.g., [19], [3], [10],




[34], [31]). Several research efforts are underway to build sys-
tems to manage uncertain data (e.g. MYSTIQ [10], Trio [34],
ORION [7], ConQuer [1]). As we discussed in Section III,
views based on DPMs are naturally probabilistic, and we plan
to use the techniques developed in the probabilistic databases
research, especially query languages and semantics, in our
future work.

Data Streams & Sensor Networks: Many data stream man-
agement systems have been proposed for real-time processing
of continuously generated data by sensor networks [5], [6],
[4], [24]. The main focus of that work has been on efficient
evaluation of large number of continuous queries over high-
rate streaming data. Our work is complementary to this work;
it focuses on efficiently modeling streaming data so that the
query results can be more meaningful and useful to the user.
There is also a large body of work on data collection from
sensor networks that has applied higher-level techniques to
sensor network data processing. Several systems propose to
use probabilistic modeling techniques to answer queries over
sensor networks [15], [11], [9], though these have typically
used specific models rather than a generalized implementation
in an existing relational database.

VIII. CONCLUSIONS

Advances in miniaturization technology and networking have
resulted in a rapid increase in the number of large-scale
deployments of measurement infrastructures that continuously
generate tremendous volumes of priceless data. In this paper,
we presented an approach to build an extensible database
system that enables users to apply general purpose dynamic
probabilistic models to such data in real-time, thus signifi-
cantly enriching the functionality and the appeal of databases
for managing such data. We provide intuitive interfaces to
declaratively specify the models to be applied, and to query
the output of the application of such models to data streams.
We use particle filtering to perform the inference tasks, and
we show how this also enables efficient query execution over
DPM-based views. The techniques we develop for represent-
ing and querying probabilistic tables using particles are of
independent interest to the probabilistic database community
as well. Our experimental evaluation over a prototype im-
plementation illustrates the advantages of enabling real-time
application of dynamic probabilistic models to streaming data.
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