
A Selective Profiling Tool: Towards Automatic Performance Tuning

Abhinav Bhatele1, and Guojing Cong2

1University of Illinois at Urbana-Champaign 2IBM Research
Dept. of Computer Science Thomas J. Watson Research Center

Urbana, IL 61801-2302 USA Yorktown Heights, NY 10598 USA
bhatele2@uiuc.edu gcong@us.ibm.com

Abstract

We present some preliminary results of selective profil-
ing in our efforts towards automatic performance tuning for
scientific codes. Performance analysis and tuning are be-
coming very important with the increasing complexity and
speed of high performance systems. Great efforts are neces-
sary to tune applications for optimal performance on such
systems.

In our efforts to automate most, if not all, of the perfor-
mance tuning process, we have developed a flexible profil-
ing tool that can quickly pinpoint the performance bottle-
necks and further refine the problem area. This is an im-
portant first step in our open framework with a rule-based
approach for the ongoing PERCS project.

1. Introduction

High performance computing (HPC) is essential in ad-
vancing science and society. In recent years, HPC systems
such as Blue Gene [1] are becoming increasingly powerful
and complex. Tremendous human efforts are necessary in
tuning an application for optimal performance on these sys-
tems. It would greatly increase the productivity of perfor-
mance engineers if, the bulk of the tuning process could be
automated. Currently it still remains more or less a philo-
sophical question whether without human input, a perfor-
mance problem can be identified automatically by a com-
puter itself. However, from observing the most effective
engineers working on performance optimizations in an in-
dustrial laboratory, we are convinced that in many scenarios
the applications can be automatically tuned for the target ar-

1-4244-0910-1/07/$20.00c©2007 IEEE.

chitectures. One such approach is for each scenario to de-
fine and apply the corresponding transformation that elim-
inates the performance bottleneck. The pool of scenarios
and transformations may not be exhaustive, but we expect
to catch most of the everyday recurring problems. Note that
this is a large project and we have barely begun our research
in this area. The current approach may not be the best as it
involves more heuristic than systematic ways for tackling
this problem. We present the development of our flexible
profiling tool under this context.

There are currently plenty of software tools, some of
which are very powerful and if properly used can help pin-
point hard-to-find performance bottlenecks and/or correct-
ness issues. However, for the tuning of scientific codes
on usually dedicated HPC systems, these tools may be too
complex to use, and after much effort the user might still be
left with a huge list of choices, unsure of which transforma-
tion to use to best improve the performance. We have had
the opportunity to observe the process or steps that many
performance engineers take with their applications and plat-
forms, and have noticed that many performance problems
and their solutions are highly repetitive in different applica-
tions. In our efforts to design performance support tools un-
der the PERCS project for the DARPA HPCS program [4],
we strive to determine the transformations that are sure to
help boost performance.

Profiling is invariably the first step that an engineer takes
when he is faced with the task of determining the bottle-
necks and tuning an application. Profiling gives a rough
idea of how much time each program construct (usually on
the statement or function level) takes to execute. After iden-
tifying the most time consuming constructs, the engineer
can then further collect more performance information and
investigate whether there is any mismatch between the pro-
gram and the architecture that causes performance degrada-

tion. In this paper we present our implementation of a pro-
filing tool that is flexible and facilitates these efforts. This is
our first step in automating the performance tuning process.
Some of the best features in this tool which are important
but non-existent in the current profiling tools are: it does
not need to access the source code nor does it need recom-
pilation for profiling. However, we believe its value lies
more in its contribution to automatic performance tuning.

The rest of the paper is organized as follows: Section 2
presents a brief review of the profiling technique and cur-
rent profiling tools. Section 3 and 4 describe the design and
implementation of our profiling tool. Section 5 compares
our implementation with other existing profiling tools; Sec-
tion 6 discusses the work in progress and finally Section 7
is the conclusion and future work.

2. Brief Review of Profiling

Profiling is the standard technique for studying the be-
havior of large, complex programs. As current applica-
tions are routinely composed of millions of lines of codes,
the ability to quickly pinpoint regions that take up most of
the execution time is critical to performance tuning. The
classical approach involves compiler-generated monitoring
routines for the collection of control flow information and
sampling for an estimate of the time distribution over the
program address space. The first and possibly the most
commonly used profiler isgprof [8]. It is able to present
counts of routine invocations and timing information for
statements. There are two parts to profiling a program with
gprof: 1. augment the code at “strategic” points for mea-
suring routine calls and statement executions, 2. sample the
value of the program counter at some intervals, and infer ex-
ecution time from the distribution of the samples within the
program. The profilergprof is not to be confused with the
post processing commandgprof provided for post process-
ing on most UNIX systems. There are a variety of similar
tools that differ in minor implementation details, for exam-
ple, tprof [10] and jprof [5].

gprof is probably the most frequently used tool by per-
formance engineers. While very useful,gprof has some re-
stricting limitations, especially in the context of automatic
performance tuning. For instance, access to the source code
and recompilation are necessary for inserting profiling rou-
tines. The source codes are often proprietary to a vendor
and recompiling complex programs can take a painstakingly
long time especially when a high optimization level is used.
Also gprof does not differentiate between code regions. As
a result, performance metrics at the same level of detail are
collected across the whole program and most of them do
not bring insights into detecting the performance problem.
A profiling tool that is flexible and leads towards automatic
performance tuning is thus highly desirable.

3. Our Profiling Tool

We have developed a new profiling tool that is capable of
selectively profiling an arbitrary set of routines. The toolon
one hand implements the functionality provided bygprof
and on the other hand, provides means to further narrow
down to the bottlenecks. The implementation is based on
binary rewriting. Binary rewriting has been used in study-
ing the behavior of the application for optimization pur-
poses [3]. We observe that augmenting an application for
profiling is a perfect case of application of binary rewriting.
Binary rewriting obviates the need for access to the source
code, and avoids recompiling the code with the profiling op-
tions. We found that similar ideas to tamper with either the
binary or the process have been explored independently by
other researchers (for example, see [7]). In [7], however,
the profiling only works for very simple applications and
gives wrong results for commonplace programs likegzip. It
does not work for MPI applications either. In addition to an
efficient, correct implementation and extensive comparison
with gprof, our contribution lies more in the selective ap-
proach for program analyis. We present selective profiling
in Section 6.

As a first step, we have designed our tool to be compati-
ble withgprof. Our tool is to be as efficient asgprof, and the
profiling data produced by our tool can also be processed by
gprof. The data format adopted bygprof does not always
accommodate the information we would like to store. Our
tool also produces data in a different format that is more
conducive to automatic tuning. Here we give a detailed de-
scription of our implementation based on binary rewriting
to simulategprof.

4. Sampling and Call Graph Generation

For statistical approximation of the execution time for
each statement,gprof samples the program counter (PC)
value regularly. Sampling does not necessarily require spe-
cial support from the operating system. On most versions
of Unix and alike systems, sampling can be naturally sup-
ported by time slicing. On dedicated systems, like the oper-
ating system for Blue Gene where time sharing and multi-
programming are not supported, user managed timer inter-
rupts can be used. The interface to the sampling utility is in
general theprofil(buffer, bufsize, lowpc, scale)routine that
registers a buffer to record the clock ticks that occur inside
a range of addresses. Choosing appropriate parameter val-
ues, we can achieve the effects such as higher precision for
a shorter range of addresses.

gprof counts the number of times each routine is invoked
as well as the arc (parent/children relationship) in the call
graph that activated the profiled routine. The compiler gen-
erated monitoring routine (usuallymcount) is immediately

2

called by each profiled routine and the monitoring routine’s
return address is recorded. Obviously this address falls in-
side the profiled routine that is the destination of an arc in
the call graph. The monitoring routine also identifies the
call site or the source of the arc. There can be millions,
even up to billions of dynamic function calls during an exe-
cution. gprof maintains a hash table of all arcs discovered,
using the call site address as the primary key and the callee
address as the secondary key. A linked list is used to resolve
the conflicts into the hash table entry. We employ similar
data structures and algorithms as ingprof.

4.1. Sampling

In order to simulategprof, we start profiling once the
program control first enters user code and stop it just before
we write out the collected data to the output file. We thus
need to detect the entry and exit of user code, and patch in
the profil routine. Detecting the entry is quite simple with
most of the binary formats like ELF [2] and XCOFF [11].
To ensure the stopping of sampling, we register a request
to stop the execution ofprofil at the exit of a program us-
ing theatexitutility. For this a call toprofil(NULL, 0, 0, 0)
is patched in. All the information obtained from profiling
is stored in a buffer whose pointer is passed on to thepro-
fil routine initially. Once the program ends, this buffer is
written to the output file.

4.2. Call Graph Generation

Our implementation of the monitoring routine is slightly
different frommcountas the patching involves “jumps” us-
ing trampolines that do not constitute full function calls,
hence the stack walking should be treated differently. The
monitoring routine we have implemented is calledgraph-
genand is patched in at the entry of every function.

The basic algorithm we use for recording call graph in-
formation is similar to what is used bygprof. We go over
it here briefly. When a function call is made, a counter is
incremented for the particular caller-callee arc. The method
of obtaining the caller and callee address have been dis-
cussed above. One can not afford to have the monitoring
routine output tracing information as each arc is identified.
Therefore, the monitoring routine maintains a data strucure
in the memory, of all the arcs discovered with counts of the
number of times each is traversed during execution. This
structure is accessed once per routine call. Access to it must
be as fast as possible so as not to overwhelm the time re-
quired to execute the program. The solution is to use a hash
table. We use the call site as the primary key with the callee
address being the secondary key. Since each call site typi-
cally calls only one callee, we can reduce the number of mi-
nor lookups (usually to one) based on the callee. The hash

is calculated by a simple divide on the caller’s address. So
the hash function used is trivial to calculate and collisions
occur only for call sites that call multiple destinations (e.g.
functional parameters and functional variables). The hash
table is implemented using arrays. We have an array for the
caller functions and another for storing the callee functions’
address and the count. The data structure is output to a file
at the end of the program.

Blindly intercepting each function call withgraphgen
can cause unexpected behavior. Infinite recursive invoca-
tion to a function occurs if it is also called bygraphgen. For
example, if functionf1 is intercepted withgraphgenandf1
is in turn called from withingraphgen, there will be an infi-
nite sequence ofgraphgen→ f1 → graphgen→ f1 → . . .

For most functions this generally would not occur as they
are not called bygraphgen. For those function calls to sys-
tem libraries insidegraphgen, for examplememset, our so-
lution is to provide our own version of implementation that
is guaranteed not to appear elsewhere.

Binary instrumentation can also cause problems with an-
other patched-in routine which is calledinitialize. This rou-
tine is patched in before the entry into the first user function
because it initializes the data structures used for storingthe
profiling information. In this routine, we usemalloc to al-
locate memory for the hash table and other data structures.
The call tomallocwill be intercepted bygraphgento record
the caller/callee arc if it is used by the user program. Con-
sider the execution of a binary augmented for profiling. We
will observe the following sequence of function calls sup-
posing the binary is compiled from a C program that calls
malloc: main → initialize → malloc → graphgen→ . . .

Notice that at the timegraphgenis called, the memory for
the hash table is not yet allocated because we are intercept-
ing the call tomalloc for allocating the memory for pro-
filing. Our solution is to have a piece of static array for
the initial table. Anyway as this table grows dynamically
during the lifespan of the execution, reallocation is to be
performed.

4.3. Binary Patching

We instrument the binary and patch in the monitoring
routinegraphgenfor each function. That is, we modify the
binary so that at the entry of each function, a call tograph-
gen is issued. Thegraphgenroutine walks the stack and
registers the call site and callee in the hash table. The entry
of the first user function (for example,main) is intercepted
for initialization and setting up the profiling environment.
The initialize function is patched in for this purpose. At
exit, we patch in the function which outputs the sampling
data and the call graph, to a binary file called “gmon.out”.
We use the SIGMA [6] tool for binary rewriting on AIX.

3

Figure 1. Call graph constructed from the profiling data coll ected by gprof. The figure on the left is a
global clustered view of the entire call graph. The part on th e right shows a zoomed in view of the
orphan cluster on the bottom right.

4.4. Output and Post Analysis

The output file is called “gmon.out” as ingprof and
shares the same format. Eventually the profiling data is out-
put for post-analysis when the program terminates. We have
customized an in-house post processing toolXprofiler for
presenting the profiling data.Xprofiler visualizes the call
graph using a graphical interface. The routines are repre-
sented as boxes while the arcs represent the caller-callee re-
lationship.Xprofiler is also capable of automatically laying
out the graph on the screen. We useXprofiler as it is in-
tuitive and helps the navigation among numerous function
calls and arcs.

5. Tests and Results

We have done extensive testing of the tool with the
SPEC2000 benchmark for correctness and performance.
SPEC2000 consists of 12 integer and 14 floating point
benchmarks, among which 18 are written in C, 6 in FOR-
TRAN and one each in FORTRAN90 and C++. They range
from swimandappluto gzip, gccandequake, and are good
test cases for our implementation. We compare our tool
with gprof on AIX.

We observed negligible difference for most benchmarks
between the execution time of binaries augmented bygprof
and our tool. However, it is hard to make a strict comparison
between the two as they do not always profile the same set
of functions. Currentgprof implementation on AIX links
against a special profiled librarylibc where the monitoring
routine is precompiled. Some of the functions being called

from this library are not visible to our instrumentation. For
example, forgzip about 20 extra function calls fromlibc
are profiled in the compiler generated code for to get a to-
tal of 63 functions. Our implementation instruments in total
around 40 functions that we can detect from the symbol ta-
ble. For most applications, the execution insidelibc is very
seldom of concern. The relative ranking of the user func-
tions is usually more informative.

We are able to profile function calls to precompiled li-
braries thatgprof fails to capture the caller-callee relation-
ship for. If the identity of the caller of a function cannot be
determined, the caller is labeled as “spontaneous”. This can
happen for signal handlers. Function calls to precompiled
libraries that were not augmented by the compiler for pro-
filing will result in many “spontaneous” callers. Although
the execution time for each individual function is still cap-
tured, the call graph is broken into many distinct compo-
nents. This can be a problem if a significant amount of
time is spent inside the precompiled library, for example,
the communication library, I/O library, and other highly op-
timized math libraries.

We test our implementation with SKaMPI [9]. The
SKaMPI benchmark is a suite of tests designed to measure
the performance of Message Passing Interface (MPI) imple-
mentations. SKaMPI maintains a database to illustrate the
performance of machine-dependent MPI implementations.
The majority of the code is on MPI communications. On
AIX, the profiling library of the POE environment is not
provided.

Figure 1 is the graphical presentation of a profiled run
with collective communication primitives. On the left we
present a clustered view of the call graph as there are too

4

Figure 2. Call graph constructed from the profiling data coll ected by our tool. The figure at the top
is a part of the call graph showing calls to MPI functions. The figure below it is a zoomed in view of
the box at the top.

5

many functions calls to show individually. The nodes are
clustered by the libraries. The arcs between two clusters
indicate function invocations. If you look at the third level
of the graph, there is a cluster in the right cluster that does
not have an ancestor. All the MPI collective communication
functions are inside this cluster.gprof does not capture the
caller-callee relationship for them. On the right is a partial
zoomed in view of the cluster.

Figure 2 is the graphical presentation of the profiling data
collected by our tool. In the top figure, we show the part of
the call tree that contains all the callers of the MPI func-
tions. Below it is a zoomed in view of the part inside the
box in the left diagram. We can see that the MPI function
calls are no longer dangling in the call tree. They are cor-
rectly plugged into the call graph.

6. Selective Profiling

Quite naturally, our profiling tool has the flexibility of
profiling an arbitrary set of functions since our implementa-
tion is based on binary rewriting. We can first do a top level
profiling of the entire program and then selectively profile
the functions that we are interested in for better efficiency.
This capability can be very helpful for long-running com-
plex applications on massively parallel systems.

The profiling actions taken at function entries and exits
may also extend beyond call chain chasing. Various other
performance metrics such as timing and hardware event
counts can be collected. It would be interesting to add the
ability to profile basic blocks/individual statements.

7. Conclusion and Future Work

We have developed a profiling tool that patches a binary
and does not need access to the source code. As a result,
profiling with our tool does not need recompilation. It also
has the capability of profiling precompiled libraries. This
capability is crucial in analyzing the performance of appli-
cations that rely heavily on standard libraries such as math
or communication libraries. Our tool also has the flexibil-
ity of selectively profiling an arbitrary set of functions with
arbitrary actions. We consider this as a new step towards
more accurate and useful profiling for performance tuning.

In the future, we will further improve the tool for the
foundation towards automatic performance analysis and
tuning. In the current implementation, when gprof attributes
times from a child to different parents, it does it in the ratio
of the number of times the child is called by each parent.
But we would like to attribute actual times to the parents
because it is possible that when the same function is called
with different arguments by different functions, it takes dif-
ferent amounts of time to execute. Selective profiling dis-
cussed in the previous section will be our primary focus.

References

[1] F. Allen and G. Almasi. A vision for protein science using a
petaflop supercomputer.IBM Systems Journal, 21(40):310–
327, 2001.

[2] Tool Interface Standards, ELF: Executable and Linkable
Format. ftp://ftp.intel.com/pub/tis, 1998.

[3] A. Eustace and A. Srivastava. ATOM: A flexible interface
for building high performance program analysis tools. 1994.

[4] High productivity computer systems.
http://highproductivity.org, 2005.

[5] Jprof: Java Glossary. http://mindprod.com/jgloss/jprof.html,
1999.

[6] L. DeRose, K. Ekanadham, J. K. Hollingsworth and S.
Sbaraglia. Sigma: A simulator infrastructure to guide mem-
ory analysis. pages 1–13, 2002.

[7] K. C. Lee and H. Lin. Gprof via binary instrumentation us-
ing dyninst. 2005.

[8] S. L. Graham, P. B. Kessler and M. K. McKusick. Gprof: A
call graph execution profiler.ACM SIGPLAN notices, pages
49–57, 1982.

[9] SKaMPI Benchmark. http://liinwww.ira.uka.de/∼skampi.
[10] Tprof. http://perfinsp.sourceforge.net/tpof.html.
[11] IBM XCOFF object file format.

http://publib16.boulder.ibm.com/peries/enUS/files/aixfiles/
XCOFF.htm.

6

