
A Case Study of Communication Optimizations
on 3D Mesh Interconnects

Abhinav Bhatelé, Eric Bohm, and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{bhatele, ebohm, kale}@illinois.edu

Abstract. Optimal network performance is critical to efficient parallel
scaling for communication-bound applications on large machines. With
wormhole routing, no-load latencies do not increase significantly with
number of hops traveled. Yet, we, and others have recently shown that in
presence of contention, message latencies can grow substantially large.
Hence task mapping strategies should take the topology of the machine
into account on large machines. In this paper, we present topology aware
mapping as a technique to optimize communication on 3-dimensional
mesh interconnects and hence improve performance.
Our methodology builds upon the idea of object-based decomposition
used in Charm++ which separates the processes of decomposition from
mapping of computation to processors and allows a more flexible map-
ping based on communication patterns between objects. Exploiting this
and the topology of the allocated job partition, we present mapping
strategies for a production code, OpenAtom to improve overall perfor-
mance and scaling. OpenAtom presents complex communication scenar-
ios of interaction between multiple groups of objects and makes the map-
ping task a challenge. Results are presented for OpenAtom on up to
16,384 processors of Blue Gene/L, 8,192 processors of Blue Gene/P and
2,048 processors of Cray XT3.

1 Introduction

A significant number of the largest supercomputers in use today, including IBM’s
Blue Gene family and Cray’s XT family, employ a 3D mesh or torus topology.
With tens of thousands of nodes, messages may have to travel many tens of
hops before arriving at their destinations. With the advances in communica-
tion technology, especially wormhole routing, it was observed that the latency
of communication was almost unaffected by the number of hops traveled by a
message [1, 2]. However, the fraction of bandwidth occupied by the message is
proportional to the number of hops (links) traversed. Increased contention for
bandwidth might result in longer latencies.

Consider a computation in which each processor sends one message to some
other processor, in a data permutation pattern (so each processor also receives
one message). For a thousand nodes organized in a 10 × 10 × 10 3D torus, the

Table 1. Execution time per step of OpenAtom on Blue Gene/L (CO mode) without
topology aware mapping (System: WATER 32M 70Ry)

Cores 512 1024 2048 4096 8192

Time (secs) 0.274 0.189 0.219 0.167 0.129

average number of hops traveled by a random message (i.e. the average inter-
node distance) is 7.5. In a torus, a message needs to travel at most 5 hops in
each dimension, leading to an average of 2.5 per dimension. So, if we organize
our computation so that each message travels only one hop, we will use 7.5 times
smaller global bandwidth than in the case of a random communication pattern.
This was not as significant an issue when the number of nodes was relatively
small and the processors were slower 1. But for today’s large machines with faster
processors, the issue becomes much more significant: on a machine with 64, 000
nodes organized in a 40 × 40 × 40 3D torus, the average inter-node distance is
30, and that is the ratio of bandwidth used by the two communication patterns.
Further, with faster processors, the need for delivered bandwidth is higher. As
the communication starts to occupy a large fraction of the available bandwidth,
the contention in the network increases and message delivery gets delayed [3].

In this context, it is important to map computation to the processors to not
just minimize the overall communication volume, but also the average number of
hops traveled by the bytes communicated. Even though the utility of doing this
may be apparent to programmers, the significance of the impact is probably more
than most programmers expect. Our methodology builds upon object-based de-
composition used in Charm++ [4] and related programming models, including
Adaptive MPI (AMPI) [5]. This separates the processes of decomposition from
mapping of computation to processors and allows a more flexible mapping based
on communication patterns between objects.

In this paper, we first present the abstraction of object-based decomposi-
tion in Charm++ and an API which provides a uniform interface for obtain-
ing topology information at runtime on four different machines – Cray XT3,
Cray XT4, IBM Blue Gene/L and IBM Blue Gene/P. This API can be used
by user-level codes for task mapping and is independent of the programming
model being used (MPI, OpenMP, Charm++ or something else). We then
demonstrate topology aware mapping techniques for a communication inten-
sive application: OpenAtom, a production Car-Parrinello ab initio Molecular
Dynamics (CPAIMD) code used by scientists to study properties of materials
and nano-scale molecular structures for biomimetic engineering, molecular elec-
tronics, surface catalysis, and many other areas [6–9].

Initial scaling studies of OpenAtom on Blue Gene/L uncovered inadequate
parallel efficiency for a small system with 32 atoms (Table 1). Further analysis

1 This fact had made early work on topology aware mapping obsolete. But with large
machines, bandwidth effects have again become important.

isolated the cause to poor communication performance, which naturally led us
to consider the network topology. We consider 3D torus topologies in this paper
but not irregular networks or flat topologies. For logarithmic topologies (such
as fat trees), the need to pay attention to topology may be smaller because the
maximum number of hops between nodes tends to be small. Also, there is no
support for user level derivation of topology for most fat-tree networks so any
implementation would be specific to an individual cluster layout.

2 Previous Work

There has been considerable research on the task mapping problem. It has been
proven that the problem is NP-complete and computationally equivalent to the
general graph embedding problem. Heuristic techniques like pairwise exchange
were developed in the 80s by Bokhari [10] and Aggarwal [11]. These schemes,
however, are not scalable when mapping millions of objects to thousands of
processors. This problem has been handled by others using recursive partition-
ing [12] and graph contraction [13] by mapping sub-graphs to a subset of proces-
sors. Physical optimization techniques like simulated annealing [14] and genetic
algorithms [15] are very effective but can take very long to arrive at optimal
results. Results in the 80s and 90s were not demonstrated on real machines and
even when they were, they were targeted towards small sized machines. They
also did not consider real applications. With the emergence of large parallel ma-
chines, we need to revisit these techniques and build upon them, on a foundation
of real machines, in the context of real applications.

A lot of work until the 90s was focused on hypercube networks [11, 14]. The
development of large parallel machines like Blue Gene/L, XT3, XT4 and Blue
Gene/P has led to the re-emergence of mapping issues. Both application and
system developers have evolved mapping techniques for Blue Gene/L [16–20].
Yu [20] and Smith [19] discuss embedding techniques for graphs onto the 3D
torus of BG/L which can be used by the MPI Topology functions. Weisser et
al. [21] present an analysis of topology aware job placement techniques for XT3.
However, our work is a one of the first for task mapping on XT3. This work builds
on our previous work [22] demonstrating the effectiveness of topology aware task
mapping for a 3D Stencil kernel. It presents a case study for OpenAtom, a pro-
duction quantum chemistry code, and demonstrates high returns using topology
aware schemes. Our earlier publication on OpenAtom [23] demonstrates the ef-
fectiveness of such schemes on BG/L. In this paper, we present results for XT3,
BG/L and BG/P for multiple systems including a non-benchmark simulation.

On machines like Blue Gene/L and Blue Gene/P, obtaining topology infor-
mation is simple and an interface is available to the programmers. The API
described in this paper provides a wrapper for these and additional function-
ality as we shall see in Section 3.1. However, on Cray XT machines, there is
no interface for topology information, in accordance with the widespread, albeit
mistaken idea, that topology mapping is not important on fast Cray machines.
For XT machines, our API uses lower level system calls to obtain information

about allocated partitions at runtime. To the best of our knowledge, there is no
published work describing such functionality for the Cray machines. We believe
that this information will be useful to programmers running on Cray machines.
Also, the API provides a uniform interface which works on all these machines
which hides architecture specific details from the application programmer. This
API can be used as a library for Charm++, MPI or any other parallel program.

3 Charm++ Arrays: A Useful Abstraction for Mapping

Parallelizing an application consists of two tasks: 1. decomposition of the prob-
lem into a large number of sub-problems to facilitate efficient parallelization to
thousands of processors, 2. mapping of these sub-problems to physical processors
to ensure load balance and minimum communication. Object-based decomposi-
tion separates the two tasks and gives independent control over both of them. In
this paper, we use the Charm++ runtime which allows the application devel-
oper to decompose the problem into objects and the Charm++ runtime does
a default mapping of objects to processors.

The basic unit of computation in Charm++ is called a chare (simply re-
ferred to as an “object” in this paper) which can be invoked through remote
function calls. The application developer decomposes the problem into chares
or objects and the Charm++ runtime does a default mapping of objects to
processors. Each processor can have multiple objects which facilitates overlap of
computation and communication. This default mapping does not have any in-
formation about the topology of the machine. The user can override the default
mapping with more intelligent schemes that take the topology of the machine
into account.

3.1 Topology Manager API: Runtime Information

Mapping of communication graphs onto the processor graph requires informa-
tion about the machine topology at runtime. The application should be able
to query the runtime to get information like the dimensions of the allocated
processor partition, mapping of ranks to physical nodes etc. However, the map-
ping interface should be simple and should hide machine-specific details from
the application. The Topology Manager API in Charm++ provides a uniform
interface to the application developer and hence the application just knows that
the job partition is a 3D torus or mesh topology. Application specific task map-
ping decisions require no architecture or machine specific knowledge (BG/L or
XT3 for example).

The Topology Manager API in Charm++ provides different functions which
can be grouped into the following categories:

1. Size and properties of the allocated partition: At runtime, the appli-
cation needs to know the dimensions of the allocated partition (getDimNX,
getDimNY, getDimNZ), number of cores per node (getDimNT) and whether
we have a torus or mesh in each dimension (isTorusX, isTorusY, istorusZ).

2. Properties of an individual node: The interface also provides calls to
convert from ranks to physical coordinates and vice-versa (rankToCoordinates,
coordinatesToRank).

3. Additional Functionality: Mapping algorithms often need to calculate
number of hops between two ranks or pick the closest rank to a given rank
from a list. Hence, the API provides functions like getHopsBetweenRanks,
pickClosestRank and sortRanksByHops to facilitate mapping algorithms.

We now discuss the process of extracting this information from the system
at runtime and why is it useful to use the Topology Manager API on different
machines:

IBM Blue Gene machines: On Blue Gene/L and Blue Gene/P [24], topol-
ogy information is available through system calls to the “BGLPersonality” and
“BGPPersonality” data structures, respectively. It is useful to use the Topology
Manager API instead of the system calls for two reasons. First, these system
calls can be expensive (especially on Blue Gene/L) and so it is advisable to
avoid doing too many of them. The API does a few system calls to obtain
enough information so that it can construct the topology information itself. It is
useful to use the API instead of expensive system calls throughout the execution.

Cray XT machines: Cray machines have been designed with a significant
overall bandwidth, and possibly for this reason, documentation for topology
information was not readily available at the installations we used. We hope that
the information provided here will be useful to other application programmers.

Obtaining topology information on XT machines is a two step process: 1.
Getting the node ID (nid) corresponding to a given MPI rank (pid) which tells
us which physical node a given MPI rank is on. This can be done through dif-
ferent system calls on XT3 and XT4: cnos get nidpid map available through
”catamount/cnos mpi os.h” and PMI Portals get nidpid map available from
”pmi.h”. These calls provide a map for all ranks in the current job and their cor-
responding node IDs. 2. The second step is obtaining the physical coordinates for
a given node ID. This can be done by using the system call rca get meshcoord
from ”rca lib.h”. Once we have information about the physical coordinates for
all ranks in the job, the API derives information such as the extent of the allo-
cated partition by itself (this assumes that the machine has been reserved and
we have a contiguous partition).

The API provides a uniform interface which works on all the above mentioned
machines which hides architecture specific details from the application program-
mer. This API can be used as a library for Charm++, MPI or any other parallel
program. The next section describes the use of object-based decomposition and
the Topology Manager API in a production code.

Fig. 1. Decomposition of the physical system into chare arrays (only important ones
shown for simplicity) in OpenAtom

4 OpenAtom: A Case Study

An accurate understanding of phenomena occurring at the quantum scale can
be achieved by considering a model representing the electronic structure of the
atoms involved. The CPAIMD method [25] is one such algorithm which has been
widely used to study systems containing 10−103 atoms. To achieve a fine-grained
parallelization of CPAIMD, computation in OpenAtom [23] is divided into a
large number of objects, enabling scaling to tens of thousands of processors. We
will look at the parallel implementation of OpenAtom, explain the communi-
cation involved and then analyze the benefit from topology aware mapping of
its objects.

In an ab initio approach, the system is driven by electrostatic interactions
between the nuclei and electrons. Calculating the electrostatic energy involves
computing several terms. Hence, CPAIMD computations involve a large number
of phases with high inter-processor communication: (1) quantum mechanical ki-
netic energy of non-interacting electrons, (2) Coulomb interaction between elec-
trons or the Hartree energy, (3) correction of the Hartree energy to account for
the quantum nature of the electrons or the exchange-correlation energy, and (4)
interaction of electrons with atoms in the system or the external energy. These
phases are discretized into a large number of objects which generate a lot of com-
munication, but ensures efficient interleaving of work. The entire computation is
divided into ten phases which are parallelized by decomposing the physical sys-
tem into fifteen chare arrays. For a detailed description of this algorithm please
refer to [23].

4.1 Communication Dependencies

The ten phases referred to in the previous section are parallelized by decomposing
the physical system into fifteen chare arrays of different dimensions (ranging
between one and four). A simplified description of five of these arrays (those
most relevant to the mapping) follows:

1. GSpace and RealSpace: These represent the g-space and real-space rep-
resentations of each of the electronic states [25]. Each electronic state is rep-
resented by a 3D array of “complex numbers”. OpenAtom decomposes this

data into a 2D chare array of objects. Each object holds a plane of one of the
states (see Figure 1) . The chare arrays are represented by G(s, p) [ns×Ng]
and R(s, p) [ns × N] respectively. GSpace and RealSpace interact through
transpose operations (as part of a Fast Fourier Transform) in Phase I and
hence all planes of one state of GSpace interact with all planes of the same
state of RealSpace.

2. RhoG and RhoR: They are the g-space and real-space representations of
electron density and are decomposed into 1D and 2D chare arrays respec-
tively. They are represented as Gρ(p) and Rρ(p, p′). RealSpace interacts with
RhoR through reductions in Phase II. RhoG is obtained from RhoR in Phase
III through two transposes.

3. PairCalculators: These 3D chare arrays are used in phase IV. They com-
municate with GSpace through multicasts and reductions. They are repre-
sented as Pc(s, s′, p) [ns×ns×Ng]. All elements of the GSpace array with a
given state index interact with all elements of the PairCalculator array with
the same state in one of their first two dimensions.

4.2 Mapping

OpenAtom provides us with a scenario where the load on each object is static
(under the CPAIMD method) and the communication is regular and clearly un-
derstood. Hence, it should be possible to intelligently map the arrays in this
application to minimize inter-processor communication and maintain load bal-
ance. OpenAtom has a default mapping scheme, but it should be noted that the
default mapping is far from random. It is the mapping scheme used on standard
fat-tree networks, wherein objects which communicate frequently are co-located
on processors within the constraints of even distribution. This reduces the total
communication volume. It only lacks a model for considering the relative dis-
tance between processors in its mapping considerations. We can do better than
the default mapping by using the communication and topology information at
runtime. We now describe how a complex interplay (of communication depen-
dencies) between five of the chare arrays is handled by our mapping scheme.

GSpace and RealSpace are 2D chare arrays with states in one dimension and
planes in the other. These arrays interact with each other through transpose
operations where all planes of one state in GSpace, G(s, ∗) talk to all planes of
the same state, R(s, ∗) in RealSpace (state-wise communication). The number of
planes in GSpace is different from that in RealSpace. GSpace also interacts with
the PairCalculator arrays. Each plane of GSpace, G(∗, p) interacts with the cor-
responding plane, P (∗, ∗, p) of the PairCalculators (plane-wise communication)
through multicasts and reductions. So, GSpace interacts state-wise with Re-
alSpace and plane-wise with PairCalculators. If all planes of GSpace are placed
together, then the transpose operation is favored, but if all states of GSpace
are placed together, the multicasts/reductions are favored. To strike a balance
between the two extremes, a hybrid map is built, where a subset of planes and
states of these three arrays are placed on one processor.

Fig. 2. Mapping of different arrays to the 3D torus of the machine

Mapping GSpace and RealSpace Arrays: Initially, the GSpace array is
placed on the torus and other objects are mapped relative to GSpace’s mapping.
The 3D torus is divided into rectangular boxes (which will be referred to as
“prisms”) such that the number of prisms is equal to the number of the planes
in GSpace. The longest dimension of the prism is chosen to be same as one
dimension of the torus. Each prism is used for all states of one plane of GSpace.
Within each prism for a specific plane, the states in G(*, p) are laid out in
increasing order along the long axis of the prism. Figure 2 shows the GSpace
prisms (box at the bottom) being mapped along the long dimension of the torus
(box in the center). Once GSpace is mapped, the RealSpace objects are placed.
Prisms perpendicular to the GSpace prisms are created which are formed by
including processors holding all planes for a particular state of GSpace, G(s, ∗).
These prisms (box on the left) are perpendicular to the GSpace prisms and the
corresponding states of RealSpace, R(s, ∗) are mapped on to these prisms.

Mapping of Density Arrays: RhoR objects communicate with RealSpace
plane-wise and hence Rρ(p, ∗) have to be placed close to R(∗, p). To achieve
this, we start with the centroid of the prism used by R(∗, p) and place RhoR
objects in proximity to it. RhoG objects, Gρ(p) are mapped near RhoR objects,
Rρ(p, ∗) but not on the same processors as RhoR to maximize overlap. The
density computation is inherently smaller and hence occupies the center of the
torus (box on the top in Figure 2).

Mapping PairCalculator Arrays: Since PairCalculator and GSpace objects
interact plane-wise, the aim is to place G(∗, p) and P (∗, ∗, p) nearby. Chares

with indices P (s1, s2, p) are placed around the centroid of G(s1, p), ..., G(s1 +
block size, p) and G(s2, p),, G(s2 + block size, p). This minimizes the hop-
count for the multicast and reduction operations. The result of this mapping
co-locates each plane of PairCalculators (box on the right in Figure 2) with its
corresponding plane of GSpace objects within the GSpace prisms.

The mapping schemes discussed above substantially reduce the hop-count for
different phases. They also restrict different communication patterns to specific
prisms within the torus, thereby reducing contention and ensuring balanced com-
munication throughout the torus. State-wise and plane-wise communication is
confined to different (orthogonal) prisms. This helps avoid scaling bottlenecks as
we will see in Section 4.3. These maps perform no better (and generally slightly
worse) than the default maps on architectures which have more uniform network
performance, such as Ethernet or Infiniband.

Time Complexity: Although maps are created only once during application
start-up, they must still be efficient in terms of their space and time requirements.
The memory cost of these maps grows linearly (3 integers per object) with the
number of objects, which is a few megabytes in the largest system studied.
The runtime cost of creating the most complex of these maps is O(pn2log(n))
where n is the number of objects and p the number of processors. Despite this
complexity, this time is sufficiently small that generating the maps for even the
largest systems requires only a few minutes. As an optimization, once created,
maps can be stored and reloaded in subsequent runs to minimize restart time.
Offline creation of maps using even more sophisticated techniques and adapting
these ideas to other topologies is an area of future work.

4.3 Comparative Analysis of OpenAtom

To analyze the effects of topology aware mapping in a production science code
we studied the strong scaling (fixed problem size) performance of OpenAtom
with and without topology aware mapping. Two benchmarks commonly used
in the CPMD community: the minimization of WATER 32M 70Ry and WA-
TER 256M 70Ry were used. The benchmarks simulate the electronic structure
of 32 molecules and 256 molecules of water, respectively, with a standard g-space
spherical cutoff radius of |g|2cut = 70 Rydberg (Ry) on the states. To illustrate
that the performance improvements extend beyond benchmarks to production
science systems, we also present results for GST BIG, which is a system be-
ing studied by our collaborator, Dr Glenn J. Martyna. GST BIG consists of
64 molecules of Germanium, 128 molecules of Antimony and 256 molecules of
Tellurium at cutoff radius of |g|2cut = 20 Ry on the states.

Blue Gene/L (IBM T. J. Watson) runs are done in co-processor (CO) mode
to use a single core per node. Single core per node runs were chosen to highlight
interconnect performance and to facilitate fair comparisons between the two
machines. Blue Gene/P (Intrepid at ANL) runs were done in VN mode using all

Table 2. Execution time per step (in secs) of OpenAtom on Blue Gene/L (CO mode)

WATER 32M 70Ry WATER 256M 70Ry GST BIG

Cores Default Topology Default Topology Default Topology

512 0.274 0.259 - - - -
1024 0.189 0.150 19.10 16.4 10.12 8.83
2048 0.219 0.112 13.88 8.14 7.14 6.18
4096 0.167 0.082 9.13 4.83 5.38 3.35
8192 0.129 0.063 4.83 2.75 3.13 1.89
16384 - - 3.40 1.71 1.82 1.20

Table 3. Execution time per step (in secs) of OpenAtom on Blue Gene/P (VN mode)

WATER 32M 70Ry WATER 256M 70Ry

Cores Default Topology Default Topology

256 0.395 0.324 - -
512 0.248 0.205 - -
1024 0.188 0.127 10.78 6.70
2048 0.129 0.095 6.85 3.77
4096 0.114 0.067 4.21 2.17
8192 - - 3.52 1.77

four cores per node. Cray XT3 (BigBen at PSC) runs are done in two modes:
single core per node (SN) and two cores per node (VN).

As shown in Table 2, performance improvements from topology aware map-
ping for Blue Gene/L (BG/L) can be quite significant. As the number of cores
and likewise, the diameter of the torus grows, the performance impact increases
until it is a factor of two faster for WATER 32M 70Ry at 2048 and for WA-
TER 256M 70Ry at 16384 cores. There is a maximum improvement of 40% for
GST BIG. The effect is not as strong in GST BIG due to the fact that the
time step in this system is dominated by a subset of the orthonormalization
process which has not been optimized extensively, but even a 40% improvement
represents a substantial improvement in time to solution.

Performance improvements on Blue Gene/P (Table 3) are similar to those
observed on BG/L. The improvement for WATER 32M 70Ry is not as remark-
able as on BG/L but for WATER 256M 70Ry, we see a factor of 2 improvement
starting at 2048 cores. The absolute numbers on BG/P are much better than on
BG/L partially because of the increase in processor speeds but more due to the
better interconnect (higher bandwidth and DMA engine). The performance for
WATER 256M 70Ry at 1024 cores is 2.5 times better on BG/P than on BG/L.
This is when comparing the VN mode on BG/P to the CO mode on BG/L. If we
use only one core per node on BG/P, the performance difference is even greater,

Table 4. Performance (time per step in secs) of OpenAtom on XT3.

WATER 32M 70Ry WATER 256M 70Ry GST BIG

Cores Default Topology Default Topology Default Topology

Single core per node

512 0.124 0.123 5.90 5.37 4.82 3.86
1024 0.095 0.078 4.08 3.24 2.49 2.02

Two cores per node

256 0.226 0.196 - - - -
512 0.179 0.161 7.50 6.58 6.28 5.06
1024 0.144 0.114 5.70 4.14 3.51 2.76
2048 0.135 0.095 3.94 2.43 2.90 2.31

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

512 1K 2K 4K 8K

S
pe

ed
-u

p
ov

er
 d

ef
au

lt
m

ap
pi

ng

No. of Processors

Performance Improvement for OpenAtom

Blue Gene/P
Blue Gene/L

XT3

Fig. 3. Comparison of benefit by topology aware mapping (for WATER 256M 70Ry)

but the higher core per node count, combined with the DMA engine and faster
network make single core per node use less interesting on BG/P.

The improvements from topology awareness on Cray XT3, presented in Ta-
ble 4 are comparable to those on BG/L and BG/P. The improvement of 20%
and 18.8% on XT3 for WATER 256 70Ry and GST BIG at 1024 cores is greater
than the improvement of 14% and 12% respectively on BG/L at 1024 cores in
spite of a much faster interconnect.

The improvement trends plotted in Figure 3 lead us to project that topology
aware mapping should yield improvements proportional to torus size on larger
Cray XT installations. The difference in processor speeds is approximately a fac-
tor of 4 (XT3 2.6 Ghz, BG/L 700 Mhz), which is reflected in the performance
for the larger grained OpenAtom results on XT3 when comparing single core
per node performance. The difference in network performance is approximately
a factor of 7 (XT3 1.1 GB/sec, BG/L 150 MB/sec), when considering delivered
bandwidth as measured by HPC Challenge [26] ping pong. This significant dif-

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

1024 2048 4096 8192

Id
le

 T
im

e
(s

ec
s)

No. of processors

WATER_256M_70Ry on Blue Gene/L

Default Mapping
Topology Mapping

 0.00

 200.00

 400.00

 600.00

 800.00

 1000.00

 1200.00

1024 2048 4096 8192

Ba
nd

w
id

th
 (G

B)

No. of processors

Aggregate bandwidth (in GB) per step

Default Mapping
Topology Mapping

Fig. 4. Effect of topology aware mapping on latency and bandwidth in OpenAtom

ference in absolute speed and computation/bandwidth ratios does not shield the
XT3 from performance penalties from topology ignorant placement schemes.

As discussed in prior sections, OpenAtom is highly communication bound.
Although Charm++ facilitates the exploitation of the available overlap and la-
tency tolerance across phases, the amount of latency tolerance inevitably drops
as the computation grain size is decreased by the finer decomposition required
for larger parallel runs. It is important to consider the reasons for these perfor-
mance improvements in more detail. Figure 4 compares idle time as captured
by the Projections profiling system in Charm++ for OpenAtom on BG/L for
the default mapping, versus the topology aware mapping. A processor is idle
whenever it is waiting for messages to arrive. It is clear from Figure 4 that the
factor of two speed increase from topology awareness is reflected directly in rela-
tive idle time and that the maximum speed increase which can be obtained from
topology aware mapping is a reduction in the existing idle time.

It is illuminating to study the exact cause for this reduction in idle time.
To that end, we ported IBM’s High Performance Monitor library [27] for Blue
Gene/P’s Universal Performance Counters to Charm++, and enabled perfor-
mance counters for a single time step in WATER 256M 70Ry in both topology
aware and non-topology aware runs. We summed the per node torus counters
(BGP TORUS * 32BCHUNKS), to produce the aggregate bandwidth consumed
by one step across all nodes to obtain the results in Figure 4. It is clear from the
figure, that topology aware mapping results in a significant reduction, by up to
a factor of two, in the total bandwidth consumed by the application. This more
efficient use of the network is directly responsible for the reduction in latency
due to contention and decreased idle time.

5 Conclusion and Future Work

In this paper we demonstrated that topology aware mapping can substantially
improve performance for communication intensive applications on 3D torus net-
works. Significant improvements were shown for the OpenAtom code and the

effectiveness of topology aware mapping was shown for both IBM Blue Gene and
Cray XT architectures. Mapping was facilitated by the object-based virtualiza-
tion in Charm++ and the availability of the Topology Manager API.

OpenAtom has complex but relatively regular or structured communica-
tion. We think that it may be possible to develop general methodologies that
deal with such structured communication. Unstructured static communication
patterns, as represented by unstructured-mesh computations might need some-
what different mapping techniques. Work in the future would be on the lines of
an automatic mapping framework which can work in tandem with the topology
manager interface. This would also require a study of a more diverse set of ap-
plications with different communication patterns. Further study will be given to
characterizing network resource usage patterns with respect to those which are
most affected by topology aware task mapping.

Acknowledgments

This work was supported in part by a DOE Grant B341494 funded by Center
for Simulation of Advanced Rockets, DOE grant DE-FG05-08OR23332 through
ORNL LCF, and a NSF Grant ITR 0121357 for Quantum Chemistry. This re-
search was supported in part by NSF through TeraGrid [28] resources provided
by NCSA and PSC through grants ASC050040N and MCA93S028. We thank
Shawn T. Brown and Chad Vizino from PSC for help with system reservations
and runs on BigBen. We also thank Fred Mintzer, Glenn Martyna and Sameer
Kumar from IBM for access and assistance in running on the Watson Blue
Gene/L. We also used running time on the Blue Gene/P at Argonne National
Laboratory, which is supported by DOE under contract DE-AC02-06CH11357.

References

1. Greenberg, R.I., Oh, H.C.: Universal wormhole routing. IEEE Transactions on
Parallel and Distributed Systems 08(3) (1997) 254–262

2. Ni, L.M., McKinley, P.K.: A survey of wormhole routing techniques in direct
networks. Computer 26(2) (1993) 62–76

3. Bhatele, A., Kale, L.V.: An Evaluation of the Effect of Interconnect Topologies
on Message Latencies in Large Supercomputers. In: Proceedings of Workshop on
Large-Scale Parallel Processing (IPDPS ’09). (May 2009)

4. Kalé, L., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented Sys-
tem Based on C++. In Paepcke, A., ed.: Proceedings of OOPSLA’93, ACM Press
(September 1993) 91–108

5. Bhandarkar, M., Kale, L.V., de Sturler, E., Hoeflinger, J.: Object-Based Adaptive
Load Balancing for MPI Programs. In: Proceedings of the International Conference
on Computational Science, San Francisco, CA, LNCS 2074. (May 2001) 108–117

6. A, P., MS, H., R, C.: Interface structure between silicon and its oxide by first-
principles molecular dynamics. Nature 396 (1998) 58

7. L, D.S., P, C.: Serine proteases: An ab initio molecular dynamics study. Proteins
37 (1999) 611

8. Saitta, A.M., Soper, P.D., Wasserman, E., Klein, M.L.: Influence of a knot on the
strength of a polymer strand. Nature 399 (1999) 46

9. U, R., P, C., K, D., M, P.: A comparative study of galactose oxidase and active
site analogs based on QM/MM Car Parrinello simulations. J. Biol. Inorg. Chem.
5 (2000) 236

10. Bokhari, S.H.: On the mapping problem. IEEE Trans. Computers 30(3) (1981)
207–214

11. Lee, S.Y., Aggarwal, J.K.: A mapping strategy for parallel processing. IEEE Trans.
Computers 36(4) (1987) 433–442

12. Ercal, F., Ramanujam, J., Sadayappan, P.: Task allocation onto a hypercube by re-
cursive mincut bipartitioning. In: Proceedings of the 3rd conference on Hypercube
concurrent computers and applications, ACM Press (1988) 210–221

13. Berman, F., Snyder, L.: On mapping parallel algorithms into parallel architectures.
Journal of Parallel and Distributed Computing 4(5) (1987) 439–458

14. Bollinger, S.W., Midkiff, S.F.: Processor and link assignment in multicomputers
using simulated annealing. In: ICPP (1). (1988) 1–7

15. Arunkumar, S., Chockalingam, T.: Randomized heuristics for the mapping prob-
lem. International Journal of High Speed Computing (IJHSC) 4(4) (December
1992) 289–300

16. Bhanot, G., Gara, A., Heidelberger, P., Lawless, E., Sexton, J.C., Walkup, R.: Op-
timizing task layout on the Blue Gene/L supercomputer. IBM Journal of Research
and Development 49(2/3) (2005) 489–500

17. Gygi, F., Draeger, E.W., Schulz, M., Supinski, B.R.D., Gunnels, J.A., Austel, V.,
Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C., Lorenz, J.: Large-Scale
Electronic Structure Calculations of High-Z Metals on the Blue Gene/L Platform.
In: Proceedings of the International Conference in Supercomputing, ACM Press
(2006)

18. Bhatelé, A., Kalé, L.V., Kumar, S.: Dynamic Topology Aware Load Balancing
Algorithms for Molecular Dynamics Applications. In: 23rd ACM International
Conference on Supercomputing. (2009)

19. Smith, B.E., Bode, B.: Performance Effects of Node Mappings on the IBM Blue
Gene/L Machine. In: Euro-Par. (2005) 1005–1013

20. Yu, H., Chung, I.H., Moreira, J.: Topology mapping for Blue Gene/L supercom-
puter. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, New York, NY, USA, ACM (2006) 116

21. Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T. Brown, and John Urbanic:
Optimizing Job Placement on the Cray XT3. 48th Cray User Group Proceedings
(2006)

22. Bhatelé, A., Kalé, L.V.: Benefits of Topology Aware Mapping for Mesh Intercon-
nects. Parallel Processing Letters (Special issue on Large-Scale Parallel Processing)
18(4) (2008) 549–566

23. Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A.,
Martyna, G.J.: Fine Grained Parallelization of the Car-Parrinello ab initio MD
Method on Blue Gene/L. IBM Journal of Research and Development: Applications
of Massively Parallel Systems 52(1/2) (2008) 159–174

24. IBM Blue Gene Team: Overview of the IBM Blue Gene/P project. IBM Journal
of Research and Development 52(1/2) (2008)

25. Tuckerman, M.E.: Ab initio molecular dynamics: Basic concepts, current trends
and novel applications. J. Phys. Condensed Matter 14 (2002) R1297

26. Dongarra, J., Luszczek, P.: Introduction to the HPC Challenge Benchmark Suite.
Technical Report UT-CS-05-544, University of Tennessee, Dept. of Computer Sci-
ence (2005)

27. Salapura, V., Ganesan, K., Gara, A., Gschwind, M., Sexton, J., Walkup, R.: Next-
Generation Performance Counters: Towards Monitoring Over Thousand Concur-
rent Events. In: IEEE International Symposium on Performance Analysis of Sys-
tems and Software. (April 2008) 139 – 146

28. Catlett, C., et. al.: TeraGrid: Analysis of Organization, System Architecture, and
Middleware Enabling New Types of Applications. In Grandinetti, L., ed.: HPC
and Grids in Action, Amsterdam, IOS Press (2007)

