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Abstract Modern HPC systems, such as Cray’s XE and IBM’s Blue Gene line, fea-
ture sophisticated network architectures, often in the form of high dimensional tori.
In order to fully exploit the performance of these systems, it is necessary to carefully
map an application’s communication structure to the underlying network topology.
In this step, both latency (i.e., physical distance between nodes) and bandwidth (i.e.,
number of concurrently used links) have to be taken into account, leading to map-
pings that are often non-intuitive. To help developers with this complex problem, we
are developing a set of tools that aim at helping users understand the communication
behavior of their codes, map them onto the network architecture, and create better-
performing topology-aware node mappings. In this paper, we present initial steps
towards this goal, including a measurement environment capturing both communi-
cation patterns and network metrics within the same run, a methodology to compare
these measurements, and a visualization tool that helps users understand the impact
of their application’s characteristics on the network behavior.

1.1 Motivation and Background

Modern HPC architectures typically feature high dimensional tori as their inter-
connection network. Some examples are the IBM Blue Gene line, Cray’s XT/XE
systems, and Fujitsu’s K computer. Because of their constant per-node link count,
these these networks are relatively easy to deploy and scale. However, the resulting
high network diameter creates performance and scaling problems for applications.
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Fig. 1.1 Application performance of an FPMD application on 64K nodes of Blue Gene/L using the
default (left) and the optimized mapping (right). Blocks of the same color denote nodes assigned
to the same row of the core data structure, a dense 2D matrix.

Thus, it is critical to lay out the tasks of an application on the underlying network
topology carefully, so that communication is efficient for the specific patterns the
application exhibits.

The topology mapping problem is well-documented in the literature [9, 5, 4, 2,
18, 3]. As one example, during the optimization process of a first principle molec-
ular dynamics (FPMD) application [9], we found that the performance difference
between the default and the best performing layout was 64%. Further, the best map-
ping was contrary to prior expectations and non-intuitive (see Figure 1.1).

In order to enable such optimizations, we need tools that help users understand
the communication patterns of their application, how they map onto the hardware
topology, how this impacts performance, and ultimately provide efficient node map-
pings for their applications. To achieve this goal, we make use of performance data
gathered in multiple independent domains to provide the user with informative per-
spectives on the performance of their code [12]. Further, we can map data gathered
in one domain to another domain enabling us to compare and correlate the per-
formance data and features found in different domains. In particular, we focus on
data from the communication domain, representing the application’s communica-
tion pattern, and the hardware domain, in which we gather network statistics. This
allows us to understand the impact of an application’s communication behavior on
the network for a particular layout.

We present initial steps towards a novel tool set to explore and optimize topology-
aware node mappings for HPC applications, using information mapped and corre-
lated between multiple performance domains. We make the following contributions:

• We show the use of a three-domain model of performance data for studying node
mappings in HPC systems.

• We present a flexible measurement tool set that can be used to concurrently track
data from multiple measurement domains.

• We introduce a technique to correlate network measurements with application
communication behavior.

• We show preliminary results of an Algebraic Multigrid (AMG) solver.
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The remainder of this paper is organized as follows: Section 1.2 introduces the un-
derlying domain model as well as the necessary data mappings. Section 1.3 dis-
cusses how we gather and interpret the data, Section 1.4 shows first preliminary
results, Section 1.5 briefly discusses related work, and Section 1.6 contains con-
cluding remarks and an overview of future work.

1.2 Gaining Insight from Multiple Perspectives

Performance data can be gathered and analyzed in multiple domains. In previous
work [12], we provided a structured approach for the three most relevant perfor-
mance data domains. In this section, we briefly introduce this model and show how
it applies to the node mapping problem.

1.2.1 The HAC Model
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Fig. 1.2 Interplay between the three crit-
ical domains for performance analysis.

Figure 1.2 shows the basic concept behind our
domain model, the HAC model. We identify
the three most relevant domains for perfor-
mance analysis, namely the application, the
hardware, and the communication domain.
The application domain is used by the applica-
tion scientist to express the actual problem be-
ing computed. For scientific simulations it of-
ten represents some physical simulation space
on which the problem is defined, although
more abstract representations are also possi-
ble (e.g., for graph algorithms or sparse matrix
representations in solver libraries). The hard-
ware domain expresses the structure of the underlying architecture, e.g., a torus
with multicore nodes and is often used for hardware related measurements, such as
hardware counters. The communication domain is used to express the code’s com-
munication pattern, often represented as a graph with nodes representing application
tasks (e.g., MPI processes) and edges showing communication between nodes.

For each of the three domains we can use specialized analysis techniques that
allow us to extract features from the respective data sets. Additionally, we can de-
fine mappings for data between domains allowing us to compare data from multiple
domains for further analysis. For example, we can map performance data gathered
in the hardware domain, such as hardware counter data, into the application domain
and display it concurrently with simulated features from the application. In our pre-
vious work [12] we have demonstrated that this can show correlations between sim-
ulated features and measured performance data allowing us a clear attribution of
performance data and establishing clear baselines.
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1.2.2 Domains Relevant for Node Mappings

For the node mapping problem, we focus on two of the three domains: the communi-
cation domain showing an application’s communication behavior and the hardware
domain showing its network behavior. By contrasting the data from these two do-
mains we can analyze the impact of the application’s characteristics on the network
behavior and gain the necessary insight to optimize performance.

In the communication domain we are interested in all communication executed
by the application, in our case in the form of MPI messages. Conceptually, we gather
the full communication graph, although in reality we restrict ourselves to a statistical
summary of the data which is sufficient for our purposes. In the hardware domain we
must acquire the data showing the actual communication executed in the system. For
this work we focus first on Blue Gene systems, which provide a set of performance
counters to monitor the actual number of packets exchanged on each hardware link
in the system.

1.2.3 Mapping Communication to Hardware Data

We must establish a mapping between the two domains in order to allow a direct
comparison of hardware and communication data. This mapping has two compo-
nents: we first map MPI processes to physical nodes in the hardware domain. This
is the actual node mapping we are aiming to optimize and hence we will evaluate
how changing this mapping affects performance.

Second, for a concrete node mapping, we map the performance data from one do-
main to the other. Ideally, we would map the hardware domain data to the communi-
cation domain, since this is the most relevant for the user. Unfortunately, though, this
is impossible because each hardware link is potentially used by several MPI commu-
nication pairs, since links are shared for all packets passing through the connected
nodes. Therefore, we cannot cleanly correlate the hardware data back to individual
MPI message events.

We therefore reverse the mapping and map the MPI communication behavior to
the network architecture. We do this by mapping each message individually, assum-
ing no contention, interference, or bandwidth limits, and with that we emulate the
hardware behavior under ideal load. As a result, we gain a best case view of how
the application’s communication under the given node mapping behaves on the sys-
tem. We can contrast this best case estimate with the actual measurements showing
where behavior deviates from the best case estimate and hence where bottlenecks
manifest themselves during execution.
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Fig. 1.3 Usage of the MPI profiling interface (left); combining two measurement tools using
PNMPI (middle); effective tool stack as seen by the application (right).

1.3 Creating a Flexible Measurement Environment

Our approach requires the ability to gather data from multiple domains concurrently,
since only this keeps the data comparable and avoids cross-execution variations.
We implement this on top of the PNMPI infrastructure, and develop a series of
plugin modules for the actual data acquisition. We further define structured, self-
explanatory data formats to store the data for post-processing in our analysis and
visualization tools.

1.3.1 Concurrent Measurements using PNMPI

As most tools targeting MPI, we rely on the MPI Profiling Interface (PMPI), which
allows tools to transparently intercept invocations to MPI routines and with that to
establish wrappers around MPI calls to gather execution information. However, the
usage of this interface is limited to a single tool. We therefore rely on the PNMPI
infrastructure [13], which virtualizes this interface and enables the concurrent ex-
ecution of an arbitrary number of PMPI tools, in the extreme case even without
changes to the tool or the application. Figure 1.3 illustrates the principle behind
PNMPI.

In the following we refer to PMPI tools used within PNMPI as tool modules,
since they are used as plugin modules in the overall infrastructure. The modules
used for a specific run are specified in an ASCII configuration file, which PNMPI
loads at startup and then uses to locate, load, and instantiate its modules.

For our experiments we implement the data acquisition in the two domains as
separate PNMPI modules and load them dynamically at runtime. Both are executed
independently and can gather data in their respective domains.
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1.3.2 Gathering Data in the Hardware Domain

In the hardware domain we collect performance counter data from each node in the
application’s partition. In particular, we gather the number of packets sent in each
direction of the torus from each node along with some non-network metrics such
as cache misses or floating point operations. We implement this module on top of
IBM’s Universal Performance Counter (UPC) interface. At program termination,
we gather the data to rank zero and store the result as a table with a row for each
rank and a column for each hardware counter metric.

1.3.3 Gathering Data in the Communication Domain

The data in the communication domain represents the communication patterns of
the application. We gather this information in the form of a communication matrix
that stores aggregated information for all MPI rank pairs that exchange messages
during the application’s execution. In particular, we store the number of messages
sent between two ranks as well as the total number of bytes. Further, we distinguish
the data for three different messages sizes to capture data for different communi-
cation protocols on the Blue Gene systems. The latter is necessary, since different
communication protocols lead to different network traffic and hence emulating this
traffic requires separate handling for each protocol.

1.3.4 Phase Attribution

For both domains we further need to refine the data gathered by the two modules to
expose phase behavior. For this we instrument the application with MPI Pcontrol
calls to specify application specific phase boundaries. We use the level argument
to MPI Pcontrol to indicate the ID of new phases and extend both modules to
recognize these phase transitions and to annotate any performance data with the ID
of the phase during which it was collected.

1.3.5 Data Storage in Structured YAML Files

The results from both modules are stored in the form of a structured file using ASCII
together with a YAML header [6] describing the contents. An example is shown in
Figure 1.4. This enables our tools to interpret the data, opens our tools to multiple
data sources, and allows us to implicitly document the data represented in the file.
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---
- !!python/tuple [mpirank, int32]
- !!python/tuple [phase, int32]
- !!python/tuple [x, int32]
- !!python/tuple [y, int32]
...
0 1 4 5
1 1 8 9
0 2 1 1
1 2 6 3

Fig. 1.4 Example of a YAML file (header and body) showing data for a 2D coordinates (x/y) with
data for different ranks (0, 1) and application phases (with IDs 1, 2).

1.3.6 Investigating Best Case Mappings

Once gathered, we need to map the data from one of the domains to another. As
mentioned in Section 1.2.3, we do this by mapping the effect of all messages ob-
served in the communication domain individually onto the hardware domain. To
enable this, we first studied the network traffic for individual MPI messages (see
Figure 1.5) and used this data to construct an accurate model for individual mes-
sages. To capture the correct behavior we distinguish short and long messages and
model them separately.

We then apply this model to every communication pair observed in the commu-
nication domain and recorded in the communication matrix during the execution of
our target application and add up the resulting number of modeled packets. This
gives us an overall estimate of the total traffic in the system. While this estimate
is not accurate since it does not take contention and overlapping and interfering
traffic into account, it still gives a best case estimate of traffic as if the traffic was
executed on a system with unbounded communication capabilities. Any difference
between this estimate and the actual observed traffic is therefore caused by system
limitations or bottlenecks and therefore gives an indication of problems with the
underlying node mappings.

Fig. 1.5 Message traffic on a part of a plane of BG/P nodes for a short message (left) and a long
message (right). Green arrows indicate packets sent in the positive direction of the torus network,
red arrows packets in the negative.
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1.3.7 Approximating Collectives

The current approach only covers point to point messages, since we can isolate their
behavior on the network. Collective operations are implemented as a set of point
to point messages themselves, but the exact algorithm used depends on both the
underlying network topology — and with that the node mapping — and the MPI
implementation. In the current version of our tool set we use an idealized model
to represent collectives showing the effectively communicated data rather than the
data exchanges in a specific MPI implementation. While this is sufficient for most
applications, it has the potential of decreasing the estimate’s accuracy. We are cur-
rently working on extending the approach using probabilistic models for collectives
to avoid this drawback.

1.4 Preliminary Results

To demonstrate our techniques, we apply them to an Algebraic Multigrid (AMG)
solver from the hypre library [7]. This codes solves a system of sparse linear equa-
tions using an iterative approach and operates on a V cycle, which means it starts
with a fine grid, coarsens it through multiple levels until it can be solved directly,
and interpolates the coarse grain solution back to the fine grain grid. This process is
then repeated until the system converges to a stable solution.

While finer levels of the AMG computation are compute-dominated and have
regular communication structures with a limited set of neighbors, coarser levels are
communication bound and exhibit more random and input-dependent communica-
tion pattern with a large set of neighbors [8].

We execute the AMG code on 512 nodes of a Blue Gene/P machine at LLNL,
which are organized as a 8×8×8 torus. We extract both communication and hard-
ware counter data using our measurement infrastructure. The top row of graphs in
Figure 1.6 shows the measured link activity visualized on top of the underlying
physical 3D torus structure for two node mappings and for specific AMG levels;
the middle row of graphs shows the communication data mapped into the hardware
domain using our best case network emulation approach introduced above, and the
bottom row shows the ratio between the emulated data and the hardware measure-
ments.

The left column of the data shows results from a run in which the data set is
decomposed into an 8×8×8 problem and hence matches the underlying topology.
We can clearly see that the measured and estimated data are close to each other,
indicating a mostly bottleneck free execution. However, looking at the ratio graph,
we can see a roughly 7% degradation of the actual measurement compared to the
ideal best case model for links in the Z direction, while the measurements in the
X and Y direction don’t show a significant difference (red vs. orange links). This
asymmetry is unexpected since neither the application nor the system favor any of
the three dimensions.
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(a) 8×8×8, level 2, counter data (b) 2×4×16, level 1, counter data

(c) 8×8×8, level 2, emulated data (d) 2×4×16, level 1, emulated data

(e) 8×8×8, level 2, emulated/counter (f) 2×4×16, level 1, emulated/counter

Fig. 1.6 Measured vs. emulated network traffic for two node mappings of AMG on 512 nodes of
BG/P.

The right column of the Figure 1.6 shows a different picture. Here, the input
problem is decomposed into 2×4×16 blocks and hence does not match the under-
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lying hardware topology. As a consequence, measured and emulated best case data
no longer match up indicating messaging bottlenecks in the system. In particular,
we see a significant difference on the right side of the torus, as indicated by the red
links in Figure 1.6 f).

Overall, our measurement, analysis, and visualization approach enables users to
understand the behavior of their code under different node mappings and based on
that optimize the node mappings.

1.5 Related Work

A significant body of work on optimizing node mappings exists from the 80’s, which
was targeted towards topologies such as hypercubes and two-dimensional grids [14,
1, 15]. Recent work has focused on three-dimensional tori, a popular topology for
current supercomputers, and includes techniques to optimize communication for
specific applications [9, 5, 4] as well as general frameworks [2, 18, 3]. However,
there are few existing tools to map communication to hardware data and to visualize
the mapping of tasks on processors.

Individual application developers have developed or exploited existing visual-
ization frameworks such as ParaView to visualize task mapping on the physical
network. SCALASCA [17] and its predecessor Kojak [11] feature a data browser
that presents projections of performance data onto the physical network topology of
supercomputers. The TAU tool set includes support to specify and visualize map-
pings within the hardware space using a simple mapping language [16], but it fails to
exploit inter-domain mappings as we do with the HAC model. The Projections visu-
alization framework [10] has capabilities to show the average number of hops/links
that messages originating from a processor travel on a 3D torus/mesh. However, it
does not have 3D views to visualize this data.

1.6 Conclusions and Future Work

Optimizing the mapping of application processes to nodes in the physical topology
of a machine is a critical performance optimization step on today’s HPC systems.
Without it, applications might pay high messaging costs both in terms of latency and
bandwidth. In this work, we presented an initial step towards a general tool set for
optimizing these mappings. Our approach enables users to correlate communication
data with actual observations on the system leading to the detection of bottlenecks in
the communication subsystem. We introduced the base measurement infrastructure
and explored the overall approach using an Algebraic Multigrid solver as a case
study.

We are currently in the process of extending this work in several directions. We
are working on additional application studies using a 3D laser-plasma interaction
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code at LLNL as well as an adaptive mesh refinement library. In both cases, the
communication, and consequently the node mappings, have been identified as one
of the critical bottlenecks. We will study these codes both in a static scenario, where
the partition size and shape is known a priori, and in a dynamic scenario, where
the scheduling system decides on the partition shape at job startup. Further, we are
currently developing a flexible data analysis and visualization tool, Boxfish (see
Figure 1.7), that will enable users to interactively analyze their codes’ behavior and
will guide mapping optimizations.

Fig. 1.7 Screenshot of the Boxfish tool showing the data control panel (right), statistical data on
link usage (middle), and the 3D torus of Blue Gene/P with the nodes highlighted that correspond
to the selected statistical data (left).
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