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Abstract—Parallel machines are becoming more complex with
increasing core counts and more heterogeneous architectures.
However, the commonly used parallel programming models,
C/C++ with MPI and/or OpenMP, make it difficult to write
source code that is easily tuned for many targets. Newer
language approaches attempt to ease this burden by providing
optimization features such as automatic load balancing, overlap
of computation and communication, message-driven execution,
and implicit data layout optimizations. In this paper, we compare
several implementations of LULESH, a proxy application for
shock hydrodynamics, to determine strengths and weaknesses
of different programming models for parallel computation. We
focus on four traditional (OpenMP, MPI, MPI+OpenMP, CUDA)
and four emerging (Chapel, Charm++, Liszt, Loci) programming
models. In evaluating these models, we focus on programmer
productivity, performance and ease of applying optimizations.

Keywords-parallel programming models, productivity, perfor-
mance, co-design, proxy application

I. INTRODUCTION

We face a variety of challenges on the path to extreme
scale computing. Solving them will require substantial changes
in how we design and implement parallel programs. One
frequently mentioned area of change is the programming
model used for writing parallel applications. Traditionally,
most scientific applications are implemented using the Mes-
sage Passing Interface (MPI) [1], coupled in some cases, with
a second model for threaded execution on-node, typically
referred to as MPI+X. Examples of X include OpenMP [2]
for multi-core architectures or CUDA and OpenACC for GPU
architectures. In order to address future systems and appli-
cations, however, a wide range of new programming models
have been proposed with the goal of improving performance,
productivity or both. In particular, domain specific languages
(DSLs) [3] are attracting significant attention as one possible
technique to write applications easily and efficiently.

Programming approaches vary in many aspects, including
but not limited to, how parallelism is expressed, how data
are organized, how execution is scheduled and how com-

munication and synchronization are handled – all of which
determine the amount of control the programmer has over
various aspects of the program execution. Additionally, they
differ in their generality (in terms of application domains that
can be covered), portability (which architectures they can run
on), as well as productivity (the amount of work a programmer
has to invest to design, implement, optimize, and maintain an
application). In the rest of the paper, we refer to the collective
set of parallel programming models, languages, runtimes, and
specific implementations as “programming models” for ease
of reference. Programming models can range from purely task
based models like Intel’s TBB [4], Cilk [5], or PLASMA [6],
to globally synchronous approaches, such as BSP [7]. Fur-
thermore, they can be based on a common memory paradigm
like Global Arrays [8] or HPF [9] or be data-driven, such as
CHARM++ [10]. In contrast to these application domain inde-
pendent systems, DSLs seek to create a language for a specific
problem domain, such as MATLAB [11] for linear algebra,
Liszt [12] for partial differential equations and SEQUEL [13]
for databases.

In this paper, we explore both traditional and emerging
programming models using the LULESH (Livermore Unstruc-
tured Lagrange Explicit Shock Hydrodynamics) proxy appli-
cation (proxy app). LULESH [14] is a shock hydrodynamics
code developed at Lawrence Livermore National Laboratory
(LLNL) as part of the DARPA UHPC effort and now used
in DOE’s co-design efforts. LULESH is large enough (more
than 4,000 lines of code for the parallel MPI implementation)
to be more complex than traditional benchmarks, yet compact
enough to allow a large number of implementations. It is also
exhibits characteristics similar to typical problems in both the
DOE and DOD application space, making it an ideal candidate
for such a study.

The base version of LULESH is available as serial, OpenMP
and MPI code [15]. Further, LULESH can be executed as
hybrid MPI+OpenMP code with threading introduced within
each MPI process. A version of LULESH exists for GPUs



with an implementation in CUDA [16]. Additionally, we have
ported LULESH to four new and emerging programming mod-
els: Chapel [17], CHARM++ [10], Liszt [12] and Loci [18].
The Liszt port can generate both a multiprocessor version
and a GPU-enabled version. The models and languages were
chosen based on their widespread use or their potential for
extreme scale (for performance or productivity). We think that
the chosen models span a large design space covering DSLs,
partitioned global address space (PGAS), message-driven and
functional/relational models.

Comparison between programming models is not straight-
forward and must be done using a holistic approach across a
range of aspects and metrics. Further, in order to provide a fair
comparison and to take the different stages of development
into account for the various models, we need more than
just metrics that measure performance. We therefore take a
different approach, which includes:

• Productivity: In addition to easily derivable metrics,
like the number of source lines of code (SLOC), we
provide subjective impressions on the productivity we
experienced when porting LULESH to different models.

• Performance: We compare the performance of the im-
plementations on an Intel Sandy Bridge cluster, Cab (uses
an Infiniband interconnect) and an IBM Blue Gene/Q
(BG/Q) machine, Sequoia, both at LLNL. In some cases,
we manually adjust the implementations as described in
the text, in order to do an apples-to-apples comparison.

• Ease of Optimization: We compare the models with
respect to the ease of applying possible manual and
automatic optimizations in LULESH.

Our analysis shows that the newer programming approaches,
such as Loci and Chapel result in programs that are up to
80% smaller than the MPI implementation (based on SLOC).
These models also contain many features that enable portable
application performance with less programmer effort. Models
like CHARM++ perform comparably to the MPI implemen-
tation, despite LULESH not benefiting from the adaptivity
and asynchrony in CHARM++. Other newer models, such as
Liszt, show high levels of portability and the potential for high
performance, once its compiler back end improves. Overall,
our paper makes the following novel contributions:

• We provide implementations of a single application – the
shock hydrodynamics proxy app, LULESH, in a wide
range of traditional and emerging parallel programming
models/languages.

• We discuss the differences in implementation of LULESH
in the various models.

• We explore the productivity and performance potential of
the various models.

• We discuss the suitability of particular models for the
given problem and discuss design criteria for future
programming models.

The remainder of this paper is structured as follows. We
introduce LULESH in Section III and discuss its implemen-
tation in the traditional models in Section IV. We introduce

the emerging models used in this study in Section V together
with a description of the implementation of LULESH in these
models. In Section VI, we describe optimizations we have
found profitable for LULESH performance and then describe
how the new languages make it easier for the programmer to
apply these optimizations. This is followed by an evaluation
of the implementations in Section VII and we conclude the
paper with lessons learned in Section VIII.

II. RELATED WORK

Several studies have investigated the benefits of individual
models, described motivations, or compared models in the
same language family. Coarfa et al. [19] compare two PGAS
languages, Co-Array Fortran and Unified Parallel C and show
that on four NAS parallel benchmarks, both languages can
yield scalable performance when using bulk synchronous
communication. Podobas et al. [20] look at task-based mod-
els and compiler implementations of OpenMP using micro-
benchmarks and small kernels. Janssen et al. [21] use skeleton
applications and simulations to explore how different message
exchange schemes will perform on future hardware. Ap-
peltauer et al. [22] compare eleven context-oriented languages
using micro-benchmarks and show that they often have high
execution overhead.

Chamberlain [17] and Saha [23] present multiple models
as a theoretical foundation to point out the benefits of the
authors’ own approach. However, no study exists in which
a single, realistic application is used to compare a wide
range of traditional and emerging programming models or
approaches in a systematic way, covering a wide range of
aspects, including expressiveness, performance, productivity
and manageability. Such information would be highly valuable
to help direct research into future programming models and
would contribute to current co-design efforts to design an
efficient software and hardware ecosystem for extreme scale.

III. THE LULESH PROXY APPLICATION

The Livermore Unstructured Lagrange Explicit Shock Hy-
drodynamics (LULESH) [14] proxy app was originally devel-
oped as one of the five challenge problems in the DARPA
Ubiquitous High Performance Computing (UHPC) program.
Hydrodynamics was chosen for inclusion because it accounts
for about 27% of data center utilization at DOD. LULESH
solves one octant of the spherical Sedov problem using
Lagrange hydrodynamics. In this section, we describe the
baseline serial implementation of LULESH and the parallelism
available within the code.

A. Serial Implementation

The serial reference implementation of LULESH is a hexa-
hedral mesh-based physics code with two centerings. Element
centering (at the center of each hexahedron) stores thermody-
namic variables, such as energy and pressure. Nodal centering
(where the corners of hexahedra intersect) stores kinematics
values, such as positions and velocities.



The program flow involves a setup and initialization phase
where the spatial coordinates of the domain are defined. Then
an index set is defined for the single material. The index set
is used to mimic multi-material problems and their associated
algorithmic costs. Next, the initial problem state and boundary
conditions are defined. The simulation is run via time stepping
using a Lagrange leapfrog algorithm followed by a time
constraint calculation. Algorithm 1 shows the three main com-
putational phases in the serial LULESH code. The operations
in italics denote communication and are absent in the serial
version (they occur only in the parallel implementations and
are shown for completeness).

Algorithm 1 Phases in a single LULESH time step
Advance node quantities

Calculate forces (stress and perform hourglass correction)
Calculate acceleration, velocity and update positions

Communicate positions
Advance element quantities

Calculate kinematics
Calculate artificial viscosity

Communicate velocity gradients
Apply material properties
Update volumes

Calculate time constraints
Calc Courant constraint
Calc hydro constraint
Reduce global minimum constraint

The Lagrange leapfrog algorithm consists of two major
steps: advancing the node quantities followed by advancing
the element quantities. Advancement of the node quantities
requires calculating the nodal forces, which is the most
compute-intensive part of the simulation. First, the volume
force contribution of each mesh element is computed, followed
by the stress values for each element. Then the contributions of
each element are summed to its eight surrounding nodes. After
a diagnostic check for negative volumes, the hourglass contri-
bution is applied to each node’s forces on an element basis.
The forces obtained are then used to calculate accelerations
via F = ma with appropriate symmetry boundary conditions
applied to the acceleration. Subsequently, the nodal velocities
are advanced to the next time step using the accelerations and
then the positions are advanced using the velocities.

The second part of the leapfrog phase involves advanc-
ing the element quantities. This entails calculating kinematic
values for the elements based on the new nodal positions
and velocities. Next artificial viscosities are calculated in two
phases. First, element-based values are computed followed
by the region-based values. Note, though, that these two
loops are over the same space, since LULESH is a single
material problem. However, for multi-material problems, a
different loop structure would be used for the region-based
loop. Next, material properties are applied to each element
and the equation of state is evaluated. Finally, the new volume

calculated in the kinematics is stored for use in the first phase
of the leapfrog algorithm at the next time step.

Time constraints are used to limit how far in time the
simulation advances at the next time step. Two functions,
each which is only applied to elements whose volume is
changing, are used to limit time stepping. The first calculates
the Courant constraint, which is the characteristic length of an
element divided by its change in volume. However, when the
element is being compressed additional terms are added. The
second calculates the hydro constraint, which is a prescribed
maximum allowable volume change divided by the change in
volume in the previous time step. The minimum value of these
constraints for all elements in the mesh limits the time step
that can be taken in the next leapfrog phase. The simulation
can be run without any constraints if a small enough value is
chosen as a fixed time step.

B. Available Degrees of Concurrency

LULESH contains large amounts of potential concurrency
by design. The problem can be weak scaled to millions of
domains by increasing the resolution of the problem being
solved. Also, all loops in the reference serial implementation
of LULESH, except for the one that checks the boundary
conditions, perform work over either 453 elements or 463

nodes per time step. Finally, since each element can usually be
represented as an independent work unit, SIMD vectorization
can be performed on most loops. Therefore, parallel imple-
mentations have many options for exploiting multiple nodes
and threads on modern machines.

IV. TRADITIONAL PROGRAMMING MODELS

Model Single-node Multi-node

Serial V
OpenMP V
MPI V
CUDA V
Chapel V V
CHARM++ V V
Liszt V V
Loci V V

TABLE I
LIST OF THE PROGRAMMING MODELS LULESH IS IMPLEMENTED IN AND

PARALLELISM AVAILABLE IN EACH

Table I lists the programming models in which we have
implemented LULESH. The first column identifies if the
model provides constructs for on-node parallelism and the
second column denotes models that work across nodes. Models
that provide cross-node parallelism along with specific code
optimized for single node environments within a unified model
are included in both columns. When the model is a library
usable with C/C++/Fortran, we use the model along with C++.
All single-node only models presented here can be used as
multi-node models by using MPI to communicate between



nodes. In this section, we provide an overview of the com-
monly used models (MPI, OpenMP, hybrid MPI+OpenMP,
and CUDA) along with a description of how the parallel
implementation of LULESH differs from the serial code.

A. OpenMP

OpenMP uses pragma directives that are added to C, C++
and Fortran programs [2]. These directives can specify regions
and loops to be parallelized by the OpenMP compiler using
threads. Further, directives can be used to mark critical or
atomic sections within the parallel regions. Through infor-
mation added to the compiler directives, a programmer can
specify which variables are shared or private in order to pre-
vent false sharing and to isolate effects from multiple threads.
Additionally, the pragmas allow specification of the number of
threads per loop as well as reductions. Finally, OpenMP allows
for nested parallelism with each thread capable of spawning
child threads.

The OpenMP implementation of LULESH adds thread level
parallelism by placing #pragma omp parallel for di-
rectives around the 45 loops over elements or nodes. In
some cases multiple loops are wrapped in the same parallel
region, resulting in 30 parallel regions. There are two places in
LULESH where multiple threads can write data to the same
node simultaneously. The resulting race conditions occur in
the stress and hourglass routines where values are calculated
on a per element basis and written to the nodes. To remove
the race condition, all eight values computed for each node
are placed in a temporary array as they are calculated and
then a second loop sums the values to the nodes. The other
changes necessary to support OpenMP in LULESH were in
the hydro and Courant constraints where a reduction to find
the minimum and maximum values is performed. Each thread
finds its own local minimum and maximum and then the main
thread uses the local values to determine the global value. In
all cases, the techniques used were faster than using critical
or atomic statements, and faster than transactional memory on
Blue Gene/Q.

B. MPI

The Message Passing Interface (MPI) provides a compre-
hensive messaging API that can be used to communicate
between processes that reside in separate address spaces [1].
The MPI standard specifies the functionality of the routines
and a library writer is then free to implement them as seen
fit for a particular hardware. Because each process has its
own address space, a copy of the program and data tables
is required for each MPI task.

A consequence of this distributed memory approach is that
no process has immediate access to all of the data and access
to data on neighboring processes is only possible through
explicit messaging. The MPI implementation of LULESH
adds communication of ghost fields (that represent copies of
boundary data on neighboring processes) in two places. After
the force calculation, the force values, fx, fy and fz are
communicated so that neighboring elements have the same

values at their shared mesh nodes. Then, a second exchange of
velocity gradients, ∆vξ, ∆vη and ∆vζ is needed between the
two phases on the monotonicq calculation. A final all-to-
all communication is performed to find the minimum Courant
constraint and the maximum hydro constraint across all tasks.

C. Hybrid MPI plus OpenMP

A hybrid MPI plus OpenMP programming model typically
refers to the situation where MPI handles coarse-grained
domain-level parallelism and OpenMP is used for more fine-
grained parallelism within each MPI process. Further, in most
applications, OpenMP parallel regions are kept separate from
MPI communication, since this simplifies synchronization both
for the user code and the MPI implementation.

The hybrid MPI+OpenMP LULESH implementation uses
MPI between nodes and OpenMP for cores on a node.
OpenMP directives are put on the same loops as the pure
OpenMP code to obtain strong scaling within an MPI task.
The reductions of the hydro and Courant constraints are done
within the threads on a task before messages are sent between
tasks. The location of message passing constructs is unchanged
from the pure MPI code.

D. CUDA

CUDA is set of C++ language extensions plus an accom-
panying runtime API for programming NVIDIA GPUs [16].
A computational kernel is programmed essentially as a C++
function that is run for every thread. Threads are grouped
hierarchically into warps, blocks, and grids. The finest group,
a warp (currently 32 threads), runs the same set of instructions
in SIMD fashion with support for diverging execution paths.
Threads in the same block are active at the same time and
have access to fast, on-chip shared memory and local syn-
chronization primitives. Finally, the various thread-blocks in
a grid are executed completely independently and in arbitrary
order, allowing for execution of problems too large to fit on
the hardware simultaneously.

Porting LULESH to CUDA is similar to porting the code
to OpenMP (and in fact the initial CUDA port was used as
a basis for the OpenMP port). Kernels generally either map
threads to mesh elements or mesh nodes. As in the OpenMP
port, two element-centered kernels need to accumulate force
values into the adjacent nodes, causing potential parallel write
conflicts. The same solution to that problem is applied here:
first writing the data to temporary arrays, then accumulating
in a second node-centered kernel.

When optimizing the CUDA variant of LULESH, we suc-
cessfully applied two types of GPU-specific optimizations. The
first involves data layout. Hexahedral meshes are unstructured
with respect to their nodes, so each element requires 8 indices
or pointers to the adjacent node data. The serial code favors
storing this information by element and then by corner node,
whereas the GPU code favors the transpose. Thus when all the
threads in an element-centered kernel request corner i for their
particular element, the memory references are all adjacent in
linear memory. Our mesh structure stores element data, node



data, and corner indices in arrays to be accessed by the CUDA
kernels. If the optimal layout of these arrays changes from
architecture to architecture, no GPU code requires rewriting,
only the initial mesh setup code does.

The second useful optimization is in the mapping of sequen-
tial loops to threads. For some particularly complex numerical
kernels, the performance is limited by the large number of
registers required (which in turn reduces our utilization of
the hardware). In some of these cases, we have achieved
speedups by reducing the loop body granularity, i.e., by
parallelizing over element corners instead of elements. After
some per-corner computation, final results for each element are
accumulated using the on-chip shared memory. Unlike the first
type of optimization, this level of code optimization requires
significant human effort to rewrite the relevant CUDA kernel,
and could vary between generations of GPUs.

V. EMERGING PARALLEL PROGRAMMING APPROACHES

In addition to the commonly used, traditional HPC program-
ming models described in the previous section, we have imple-
mented LULESH in four new and emerging models: Chapel,
CHARM++, Liszt and Loci. In this section, we describe
these programming models as well as the implementation and
optimization of LULESH using these models in more detail.
We also discuss how our porting process was able to improve
the design of some of these models.

A. Chapel

Chapel is an emerging parallel language initiated under
the DARPA HPCS program with the goal of improving pro-
grammer productivity [17]. Chapel is designed using a block-
imperative syntax with optional support for object-oriented
programming, type inference, and other productivity-oriented
features. Chapel supports both task- and data-parallel styles of
programming, and permits these styles to be mixed arbitrarily.
Task-parallelism is supported by creating abstract concurrent
tasks that coordinate through shared synchronization and
atomic variables. Data-parallelism is expressed via loops and
operations on data aggregates—most notably, first-class index
sets called domains and arrays defined via domains. Chapel
supports reasoning about locality on node via the concept
of a locale; for example, locales are often used to represent
compute nodes on large-scale systems. Domains and arrays
can be distributed across sets of locales in a high-level manner
using the concept of user-defined domain maps [24].

The Chapel version of LULESH was initially created by
transliterating the OpenMP version into Chapel; for example,
OpenMP’s parallel for loops were rewritten as data-
parallel forall loops in Chapel. Chapel domains were intro-
duced to represent the sets of nodes and elements, and their
fields were stored using arrays defined by those domains. From
this initial version, further localized rewrites were applied to
make better use of Chapel features and improve performance.
The code was converted from shared to distributed memory
by applying the Block distribution to the node and element
domains. Over the course of the code’s evolution, we also

changed the code from using regular 3D domains to an
irregular 1D domain representation, and from using dense
representations of the material elements to sparse ones. These
changes demonstrate Chapel’s ability to separate data structure
implementation details from the computations that operate on
that data in a rank-independent manner. In the specific case of
LULESH, only the domain declarations and some supporting
iterators had to change, while all of the physics computation,
i.e., the core of the code, did not.

B. CHARM++

CHARM++ is a parallel programming system based on
message-driven migratable objects [10], [25]. It is imple-
mented as additions to the C++ language coupled with an
adaptive runtime system. Parallelism in CHARM++ is created
by over-decomposing an application into its logical work and
data units, referred to as chares; the number of chares is
typically more than the number of processors. The programmer
expresses application flow, computation and communication
as operations performed by chares. The distribution of chares
to processors and scheduling of their execution is handled
by the CHARM++ runtime system. Communication between
chares is performed through remote method invocations and
is also handled by the runtime system. Communication is
asynchronous with respect to other chares which provides the
benefit of adaptive overlap with computation. One optional
language feature is that the parallel control flow can be
specified by the user through a structured directed acyclic
graph (SDAG) which can lead to more elegant code.

CHARM++ introduces new language extensions and syntax
to allow the programmer to specify and use chares with respect
to the runtime system, without modifying the standard C++
syntax. Therefore, the CHARM++ port is able to leverage the
original C++ code to implement the physics computations
of LULESH. The work in porting the application lies in
expressing LULESH in terms of chares. This expression was
handled by discretizing the problem into sub-domains, with
appropriate ghost regions, such that two neighboring domains
could share the relevant data necessary for computation.

The CHARM++ version of the port includes the same three
communication phases as the MPI implementation. Therefore,
the execution flow of a single chare is performed in three
stages. Upon receiving the time step value for the next
iteration, the chare executes the force calculation, which it
then sends to its neighbors. After a chare receives all the
information it is expecting from its neighbors for the force
calculation, it begins executing again until it has sent the
results of its viscosity calculation. In the same manner as
the previous stages, the third execution stage begins with
the receipt of the final viscosity message and ends with the
computation and sending of the local minimum time step for
the sub-domain the chare covers.

C. Liszt

Liszt is a Scala-based domain-specific language for solving
partial-differential equations on meshes [12]. The language is



designed for code portability across heterogeneous platforms.
The problem domain is represented as a three-dimensional
mesh whose elements can be accessed only through mesh-
based topological functions as immutable first-class values.
The mesh is initialized at program start time and its topology
does not change over the program’s lifetime. Fields are ab-
stracted as unordered maps indexed only using mesh elements.
Liszt provides three features for parallelism: a parallel for-
comprehension on sets of mesh elements, atomic reduction
operators on field data, and field phases, i.e. read/write re-
strictions on field data inside a for-comprehension. Moreover,
Liszt does not support recursion. These semantic constraints
ensure that the Liszt compiler can infer data dependencies
automatically, enabling it to generate a parallel implementation
for code written in a serial style. One drawback is that Liszt
provides no high-level abstraction for load balancing and mesh
decomposition. Lack of direct programmer control on these
aspects has performance implications for certain back ends.

The Liszt implementation of LULESH is almost identical
to the serial C++ version, modulo syntactic differences. Race
conditions in the stress and hourglass routines are handled
implicitly due to the atomicity of reductions, thus requiring
no programmer intervention. Furthermore, Liszt also supports
dense vector and matrix operations, which significantly re-
duces the overall number of lines of code. The current Liszt
implementation does not preserve consistent planar orientation
for mesh elements; hence for each iteration the alignment of
a cell’s vertices along the x, y and z planes needs to be
recalculated in the monotonicq gradient routine incurring
additional overhead.

From the Liszt source, the compiler generates equivalent
C++ code that can then be compiled for the desired execution
platform. This output C++ code is fairly modular itself, and
computationally intensive sections of it can be hand-optimized,
or completely replaced with relatively little effort. Currently,
Liszt supports back ends that produce either MPI or GPU code.

D. Loci

Loci is a C++ framework that implements a declarative
logic-relational programming model [18]. The programming
model is implicitly parallel and uses relational abstractions to
describe distributed irregular data structures. A logic program-
ming abstraction similar to Datalog [26] is used to facilitate
composition of transformation rules. The programming model
exploits a notational similarity to mathematical descriptions
found in papers and texts of numerical methods for the solution
of partial differential equations [27]. In addition, the pro-
gramming model facilitates partial verification by exploiting
the logic programming model to provide runtime detection of
inconsistent or incomplete program specification. Parallel exe-
cution is achieved using loosely synchronized SPMD approach
that exploits the data-parallelism that naturally emerges from
the distribution of relations to processors. Communication
costs in the generated parallel schedule are controlled through
message vectorization and work replication optimizations [28].

In the Loci code, computations are defined at a fine-grained
per-entity level. For example, the computation for a single
node is provided and the system coordinates the identification
of sets of entities that require the same computation and sched-
ules loops over these entities. For the Loci implementation of
LULESH, we utilize the built-in data-types for 3D vectors to
simplify the algorithm description. For example, the time-step
advance of the mesh coordinates are specified as:

1 // Update nodal coordinates using computed nodal
2 // velocity. Inform Loci that it is permitted to
3 // destroy old coordinate values in the update.
4 $rule pointwise
5 (coord{n+1}<-coord{n}, vel{n+1}, dt{n}),
6 inplace(coord{n+1}|coord{n}) {
7 $coord{n+1} = $coord{n} + $vel{n+1} * $dt{n};
8 }

Note, the above computation is for a given node of the
computation. The Loci preprocessor generates the loop over
entities and the runtime system uses set inferences to compute
loop bounds automatically. Reductions are described in Loci
using a map-reduce formalism. For example, element contri-
butions to nodal forces are computed and then combined using
the hexnodes relation that contains the indexes of the nodes
that form an element. Loci schedules the communication such
that the reductions are applied consistently in parallel. Thus
the force computation is represented by the Loci rule:

1 // Compute force on element nodes due to
2 // element stresses
3 rule apply(hexnodes->force<-elemNodes,
4 p_next,q_next) [Loci::Summation] {
5 double P = -$p_next - $q_next ;
6 // pressure contribution to stress
7 vect3d Stress(P, P, P) ;
8 // element node normals
9 Array<vect3d, 8> B ;

10 ElemNodeNormals(B, $elemNodes) ;
11 // Integrate stress to nodes
12 Array<vect3d, 8> nf ;
13 ElemStressToNodeForces(nf, B, Stress) ;
14 // Here we join (sum) the element
15 // forces to nodes
16 for(int i=0; i<8; ++i)
17 join($hexnodes[i]->$force, nf[i]) ;
18 }

VI. OPTIMIZATIONS TO LULESH

In previous work [29], we have shown four optimizations
that significantly improve the performance of the OpenMP
version of LULESH. In this section, we present these opti-
mizations along with others, followed by a discussion of the
ease of applying these optimizations in various programming
models to achieve portable performance of large codes.

A. Optimization Possibilities in LULESH

Loop fusion is the combination of multiple (often adjacent)
loops into a single loop, eliminating redundant data motion.
Temporary arrays produced by one loop and consumed by
another can be eliminated as well [30].



Model Loop fusion Global allocation Data struct. trans. Vectorization Blocking C-C Overlap

Chapel V V V
CHARM++ V V
Liszt V V V * *
Loci V V * V V

TABLE II
OPTIMIZATIONS MADE EASIER BY EACH MODEL

Global data allocation involves moving all malloc and free
statements of temporary variables outside of the time step loop.
Doing this reduces the number of system calls and also the
number of times a local to global TLB mapping is made.

Data structure transformations change the typical struct of
arrays representation to an array of structs. This transformation
has two performance advantages. First, it reduces the number
of data streams, thereby using the hardware prefetch units
more effectively. Second, it reduces the number of indirect
accesses and cache misses required for codes like LULESH
that read unstructured data across multiple centerings. For
example, if x, y and z are typically accessed together, storing
them together generally improves performance. While there
are ways to add support for this in C and C++ [31], doing
so requires using that approach during initial development.
Without such a design, time consuming and error prone
changes would be required for each architecture.

Vectorization using SIMD (Single Instruction Multiple
Data) instructions increases the performance of the compute
heavy portions of LULESH, such as the hourglass calculation
and part of the monotonicq calculation. These instructions
improve performance by evaluating multiple compute opera-
tions in a single cycle. For most codes, programmers rely on
the compiler to issue these. However, codes written in lower
level languages like C lose higher level information about
the calculation being performed. Without this information,
the compiler must be conservative. Due to these and other
difficulties at the compilation level, it is often possible to get
performance gains by manually adding intrinsics and directives
that are typically not portable.

Blocking is a decomposition technique that breaks up a
large data computation into a set of memory-coherent blocks.
The size of these blocks is chosen to fit within a level of
the memory hierarchy (registers, cache, TLB). This increases
temporal data reuse as the full computation is performed
by iterating over the blocks. Because the ideal block size
is dependent on both the problem and the target hardware,
writing portable blocked code in a language like C is difficult.
Although possible for small kernels such as those found in the
BLAS library, this is impractical for larger codes [32].

Communication and Computation Overlap allows for better
hardware utilization by keeping both the processor and the
network busy at the same time. However, modifications for
overlap in a complex code often create maintainability and
portability issues.

B. Applicability to Each Model

Some programming models reduce the amount of work
needed to optimize code, effectively increasing the portable
performance of the code for a given programmer effort. Table
II lists programming models that allow easier expression or
portability of optimizations relative to C++ code using MPI
and OpenMP for parallelism. We use checkmarks (V) to denote
places where the model makes it easier for a programmer
to perform optimizations and asterisks (*) where the model
makes a compiler writer’s job easier to perform the static
analysis to optimize the code automatically.

Chapel’s domain maps can be used to implement many
high-level tuning techniques. These maps are used both to
distribute data among nodes and to specify the memory layout,
parallelization strategies and iteration order within a node.
By applying appropriate domain maps, blocking optimizations
can be achieved. Common domain maps such as block and
cyclic are provided within the standard library but users can
also define their own. By changing the domain map of a
domain, all operations on its indices and arrays are rewritten
to use the specified strategy with no further modification
to the source needed. Zippered iterators [33] perform what
we define as data layout transformations. Chapel also has
asynchronous communication constructs that make it easier
to overlap computation and communication.

CHARM++ leverages over-decomposition of an application
into chares to achieve a number of optimizations. Blocking
is enabled by choosing the number/size of chares so that
the data can fit in cache. Communication and computation
overlap occurs naturally by scheduling multiple chares per
processor – when one chare is waiting on communication,
another can perform its computation. In addition, CHARM++
eases load balancing via transparent chare migration by the
runtime system. CHARM++ still allows any optimization that
can be performed to a C++ application, such as loop fusion
or data structure transformations, however it does not provide
any support to make these easier than in C++.

As a domain specific language for PDEs on meshes, Liszt
allows a higher level expression of mesh information and
its associated calculations. This high-level, domain-specific
information about the problem makes it easier for a compiler
to optimize the application. In this setting, the static analysis
needed to determine profitability and safety of vectorization
and blocking is less complex. It is also easier to determine if
and when to perform optimizations such as loop fusion. By



moving this tuning to the compiler, portability is increased.
Finally, since all data are allocated in Liszt globally it performs
this optimization already, though this can be a drawback when
memory is tight.

The Loci programming model performs many optimiza-
tions for the user such as automatically generating loops
over element and node sets. While the system does not
presently implement loop fusion optimizations, this is not a
fundamental limitation and such optimizations can be im-
plemented in the future. Loci utilizes a blocking strategy
to minimize memory allocation, improve cache performance
and access costs involved in transferring information between
loops that are potential candidates for loop fusion. The model
supports global data allocation, but defaults to the opposite
approach of minimizing memory footprint through variable
lifetime reduction and maximizing memory recycling through
a randomized greedy scheduler. Loci also utilizes aliasing
directives when synthesizing loops over sets of elements to
allow the compiler to better utilize SIMD instructions. Finally,
a work-replication optimization eliminates communication by
re-computing values on the local processor. Although overlap-
ping of communication and computation is not implemented,
it can be added to the runtime system without changing the
program specification.

VII. COMPARATIVE EVALUATION

Evaluating the various strengths and weaknesses of pro-
gramming languages requires a holistic approach as there are
many factors that impact programmability, productivity and
performance. In this section, we look at the productivity of
the languages, the performance they currently achieve, and
the ease of performance tuning on various architectures. For
emerging languages and programming models, we report their
current state along with an analysis of what the model is
capable of with further implementation work.

A. Productivity

Programmer productivity is difficult to measure in a con-
trolled manner due to the differing strengths and weaknesses
of each programmer and the fact that some languages allow
certain applications to be more effectively expressed than
others. However, source lines of code (SLOC) is a quantitative
metric used often and one that does not require a carefully
controlled experiment. SLOC is a measure of the number of
lines of code not counting blank lines and comments. The
SLOC metric has limitations, such as the implicit assumption
that each line of code requires the same effort and thought
in each language, but we believe that in the case of the
LULESH proxy app, it is a reasonable way to quantitatively
compare programming models and to derive overall trends. We
measure SLOC using sloccount [34] and use it to compare all
investigated versions of LULESH. Table III shows the results.

From the SLOC counts, we can see a clear advantage of
newer programming models in reducing source code size. The
Chapel, Loci and Liszt versions are about one quarter the
size of the MPI program or smaller, while providing both

Model SLOC

Serial 2183
OpenMP 2403
MPI 4291
MPI + OpenMP 4476
CUDA 2990
Chapel 1108
CHARM++ 3922
Liszt 1026
Loci 742

TABLE III
SOURCE LINES OF CODE FOR LULESH IN EACH PROGRAMMING MODEL

on- and off-node parallelism in a single code. In addition,
Liszt handles multiple target architectures from this single
source compounding its advantage. As we explain later in
Section VII-C, another advantage of these approaches is that
fewer lines of code need to be changed to implement an
optimization, i.e., the code becomes more maintainable.

B. Performance

Our goal with presenting performance results is to provide
an intuition regarding trade-offs of using different program-
ming models on existing systems. For the non-GPU versions
we measured performance on two systems: a cluster of Intel
Sandy Bridge processors named Cab, and an IBM Blue
Gene/Q (BG/Q) system called Sequoia. Strong scalability tests
were run on a single-node with a problem size of 813 and 1213

on the node. Weak scalability tests were run at a problem size
of 323 and 483 per core. We compared the GPU versions
(CUDA, Liszt) to the OpenMP version on a single node
containing Intel Westmere CPUs and NVIDIA Tesla M2050
GPUs at problem sizes of 453, 553, 653, 753, 853 and 963.
For all experiments, each programming model was allowed to
find its optimal workload division between tasks, threads, or
other units. Optimal on-node configurations were utilized in
the weak scaling studies on the same architectures.

All tests were run ten times for 500 iterations and we
report the execution time per iteration here. The time does not
include mesh generation and load time because these costs
are a small fraction of total runtime for large simulations. For
the non-CUDA variants, except Liszt, we used icc version
12.1.339 with the -O3 -mavx options on the Sandy Bridge
cluster, and xlc 12.1 with -O3 -qhot=novector -qsimd=noauto
-qarch=qp on the BG/Q system. For Liszt we used Clang
on the Intel machines because Liszt-generated code makes
excessive use of the memcpy function to access mesh fields
and Clang++, in contrast to other compilers that we tested,
was able to optimize away these constructs leading to a
significantly improved performance. We do not report Chapel
and Loci performance on BG/Q because they are not yet ported
to this new architecture.



Version Blue Gene/Q 323 Blue Gene/Q 483 Sandy Bridge 323 Sandy Bridge 483

Serial 0.179 0.617 0.027 0.099

TABLE IV
SERIAL PERFORMANCE (TIME PER ITERATION IN SECONDS) OF LULESH ON BLUE GENE/Q AND THE SANDY BRIDGE CLUSTER

1) Baseline Performance for the Serial, OpenMP and MPI
versions: Table IV shows the performance of the serial code
on the problem size that is weak scaled in order to provide a
baseline cost per iteration. Figure 1 shows that the OpenMP
variant exhibits good strong-scaling behavior, indicating that
there is ample parallelism to be harvested in the code. Figure 2
(top) shows that the MPI version of the code exhibits near
perfect weak scaling of the serial code, which is not surprising
since there is not much communication and most of what is
present is local.
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Fig. 1. Strong scaling performance of the OpenMP implementation

Figure 2 (bottom) shows that the hybrid MPI plus OpenMP
version displays similar scaling characteristics, but signifi-
cantly worse performance. OpenMP code contains extra data
motion to handle the race condition when summing to the
nodes in the hourglass and stress computations. Also, different
experiments on both machines show that for low processor
counts, the OpenMP overhead is higher than the MPI overhead
and can cause hybrid codes to run slower. However, there are
other advantages to having threaded code, including a smaller
memory footprint due to shared data structures, and a better
surface to volume ratio for domains (in cases unlike LULESH)
that need to be subdivided into smaller pieces in order to fit
within memory.

2) Performance of Emerging Programming Models: When
evaluating emerging technologies, one must keep in mind the
focus of effort in developing them and their relative maturity.
In addition, they often compile to intermediates like C to avoid
the need to develop and constantly update their own compiler
back ends. Therefore, performance is not always as good as
commercially supported technologies.

Figure 3 shows Chapel’s single node performance. Chapel
achieves more than 80% efficiency at 16 cores although its
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Fig. 2. Weak scaling performance of the MPI and MPI+OpenMP ports

single-core performance is significantly worse compared to
OpenMP. Part of the difference comes from the fact that in
computing the cube input set, Chapel linearizes the global set
of elements/nodes and block-distributes the 1D linearization
of them rather than block-distributing the conceptual 3D set.
The result of this is that the surface-to-volume ratio in the
Chapel implementation is much worse than OpenMP’s and
undoubtedly results in a lot more communication.

These results do show that Chapel has the machinery in
place to be a high performance parallel language. However,
like many other new languages, performance is limited by
the large resources needed to create efficient compilers and
runtime technology. Currently Chapel relies on converting its
code to C99 and most of the Chapel literature is focused on
expanding the feature base to broaden its usability. Therefore,
it is not surprising that its performance is currently behind
highly-optimized native code languages and compilers.

CHARM++ also weak scales extremely well on both ma-
chines as shown in Figure 4. Its performance is compara-
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Fig. 3. Strong scaling performance of the Chapel implementation

ble to the MPI implementation that it was based on and
it out-performs that implementation on one core of BG/Q.
LULESH is not a good fit for porting to CHARM++ because
it does not allow the exploitation of two of CHARM++’s
strongest features: load balancing and asynchronous execution.
These features are not very useful for LULESH because it is
perfectly load balanced and does not leave much room for
computation-communication overlap. Thus, obtaining compa-
rable performance to MPI on LULESH indicates a strength of
the CHARM++ approach.
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Fig. 4. Weak scaling performance of the CHARM++ implementation

Figure 5 shows the results of a weak scaling experiment
on the Liszt code. Liszt scalability is significantly impacted
for small problem sizes once the calculation is run on more
than one node (and hence requires cross-node communication).
From profiling various parts of the physics, we saw that per-
formance issues were occurring in courantconstraint
where a global reduction occurs, positionupdate and in
monotonicqgradient where ghost zone exchanges occur.
Another limiting factor with the current implementation (but
not the language itself) is that the mesh file, which scales with
problem size, is read on one processor and then distributed.
Also, on BG/Q, each processor can only access a fraction of
a node’s memory, further restricting the sizes that can be run.

The Liszt MPI back end’s on-node performance was about

50% worse when compared to the native MPI implementation,
which was caused by the function call semantics in the
Liszt runtime system. Liszt performance has been focused on
memory bound codes and LULESH was the first significant
compute intense application ported to the language. By work-
ing with the Liszt developers we were able to insert native C++
code into our Liszt program for two compute intense kernels,
hourglass and monotonicqgradient, which brought the
runtime of the Liszt version to within 10% of the MPI
implementation. This optimization can be integrated in the the
Liszt compiler and hence does not demonstrate an inherent
disadvantage of this programming model.
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Fig. 5. Weak scaling performance of the Liszt implementation

Loci is the one language that was able to outperform a
comparable approach. Figure 6 shows its strong scaling on a
node where it outperforms OpenMP by up to 15%. Overall,
its scaling is a bit worse than OpenMP, but good serial
performance often limits overall scalability.
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Fig. 6. Strong scaling performance of the Loci implementation

Figure 7 shows the weak scaling performance of the Loci
implementation on the Sandy Bridge cluster. In this case also,
the performance of the Loci port comes close to that of its
counterpart, the MPI implementation. This shows the potential
of Loci as a programming model for extreme scale - with the
fewest number of lines of code, it performs comparably to the
OpenMP and MPI implementations.
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3) Comparison of GPU and OpenMP Variants: Table
V shows a performance comparison of LULESH OpenMP,
CUDA and Liszt GPU variants. In this test our goal was to
grow the problem size in order to explore the performance
characteristics of the OpenMP and CUDA versions, which
share many similarities in terms of the style of coding. The
Liszt-produced GPU code was about a factor of two slower
than the original CUDA code. In this case even replacing
Liszt code with native CUDA code did not help performance
because the compiler’s default (and the only available) thread-
scheduling strategy, coloring, proved to be sub-optimal for
LULESH. Our assessment is that the language and approach
are not at fault, but that the current implementation requires
further optimization.

Version 453 553 653 753 853 963

CUDA 0.008 0.014 0.023 0.035 0.052 0.069
Liszt 0.016 0.029 0.047 0.071 0.103 0.147
OpenMP 0.017 0.032 0.053 0.086 0.128 0.182

TABLE V
GPU AND OPENMP PERFORMANCE OF LULESH. A SINGLE NVIDIA

FERMI M2050 (CUDA AND LISZT) IS COMPARED AGAINST DUAL INTEL
WESTMERE HEX-CORE CPUS (OPENMP), SHOWING A 2-2.6X

PERFORMANCE ADVANTAGE (NOTE: A SECOND AVAILABLE GPU IS NOT
EXERCISED IN THIS TEST).

C. Ease of Optimizations

Aside from the productivity in implementing a proxy app
in a particular language and its performance, we also explore
how easy it is to apply optimizations to the code. This has
an impact not only on the ease of improving performance of
a code, but also provides a good indicator of performance
portability across platforms, where each platform may need a
different set of optimizations, as well as code maintainability.

We start by looking at applying blocking to Chapel, which
can be achieved using a high level mapping construct:

1 var x, y, z: [1..n] real;
2 var xd, yd, zd: [1..n] real;
3

4 x += xd * dt;
5 y += yd * dt;
6 z += zd * dt;

By adding a domain map we can change the underlying
data structure, without modifying the source:

1 const map = [1..n] dmapped Block([1..n]);
2 // ...rest of code unchanged...

It should be noted the same map construct is also used
to block computations and change data distributions among
nodes. Other optimizations, such as data structure transforma-
tions, are applied similarly without touching the source.

For CHARM++, we discuss the discretization of the domain
into multiple smaller sub-domains on a processor, leading to
a blocked computation. The creation of a chare or arrays of
chares is done simply by calling its class constructor using
the language constructs provided through CHARM++. For
example in LULESH, if the class name of the chare array is
SubDomain, defined in the interface file as array [3D]
SubDomain, the handle provided by the runtime system
to the programmer is CProxy_SubDomain. Calling the
constructor is done by using the method ckNew on one of
these handles. After any constructor arguments, chare arrays
also take size arguments. Any chare can use this method
to create other chares. For LULESH, the sub-domains were
created during the initialization phase of the main chare. The
sub-domain chare array did not take any other constructor
arguments so only the dimension sizes were specified:

1 subdomains = CProxy\_SubDomain::ckNew(chareDimX,
chareDimY, chareDimZ);

The actual discretization of the domain was performed at
runtime by way of command line arguments, and it was
found that about eight chares per processor produced the best
performance in most cases.

CHARM++ also simplifies the process of checkpointing
for fault tolerance with minimal coding overhead. Since
CHARM++ programs are already equipped to migrate chares
across processing units for load balancing, the mechanism to
save program state is essentially already in place. Furthermore,
the CHARM++ runtime system provides routines to perform
the checkpoint operation of these chares to disk or memory.

By being domain-specific, Liszt enables and/or simplifies
optimizations at compilation. A higher level syntax provides
more information than C++ and the similarity of expressions
means optimizations such as loop fusion can be performed
using similar changes to those made in C++. For instance, in
Liszt, the following two loops:



1 val dt = timestep()
2 for (v <- vertices(mesh)) {
3 velocity(v) = acceleration(v) * dt
4 }
5 for (v <- vertices(mesh)) {
6 position(v) = velocity(v) * dt
7 }

can be fused together as a single loop:

1 val dt = timestep()
2 for (v <- vertices(mesh)) {
3 position(v) = acceleration(v) * dt * dt
4 }

eliminating the (temporary) field velocity. While man-
ually performing this optimization in Liszt is somewhat less
effort than in C++, the advantage comes from enabling a com-
piler to have more information. Therefore a compiler is more
likely to be able to perform this optimization automatically
with no programmer intervention.

The Loci framework is implemented using a preprocessor
that translates rule descriptions into C++ kernels along with a
runtime system that manages kernel coordination in the form
of runtime generated execution schedules or plans. Generally,
programs are optimized for an architecture by the preprocessor
and runtime system. Since the assembly of kernels is per-
formed at runtime, loop fusion of the type that is described for
the Liszt DSL is not possible without some sort of just-in-time
compiler support, however, Loci does identify computation
chains that represents loops that could be fused. Instead of
fusing the loops, the kernel computations are blocked into
segments that can fit into the L1 cache and then chained giving
nearly the same benefit as loop fusion.

In addition to these optimizations at the vector instruction
level, Loci manages the lifetime of intermediate values of
the computation in order to reduce aggregate memory re-
quirements of the program while improving cache reuse at
higher levels. Loci programs can typically see about a 10-
20% performance improvement when intermediate variable
lifetimes are optimized. In addition, the work replication
optimization where select values are recomputed on processors
saving interprocessor communication can be enabled. Under
this optimization, the replication of work can be determined
based on the relative cost of the computation versus commu-
nication costs and is generally an effective approach for high
latency network fabrics.

VIII. FUTURE WORK AND LESSONS LEARNED

Implementing LULESH in some of the new models high-
lighted deficiencies in their ability to express scientific appli-
cations. This led the developers of the respective languages to
make enhancements as LULESH was being written. We also
identified other issues in some of these models which can be
considered future work. For example, Chapel used LULESH
as a motivating example to implement fully unstructured grid
support in the language. While LULESH is a block structured
mesh using an unstructured access pattern, it is meant as a

proxy for fully unstructured codes, so this language feature
allows more complex applications to be expressed in Chapel.

For the Liszt language, LULESH was the first computation-
ally intensive code ported to the model and the port showed
that Liszt handles memory-bound loops well. However, the
need to improve the code generation for compute-heavy loops
was shown. Other lessons learned from the port include several
ideas for new Liszt abstractions and fine-grained control over
data and workload distribution that will allow algorithms such
as anisotropic diffusion to be coded in Liszt.

In summary, this paper presents a unique study exploring
the implementation of a single application in eight different
parallel programming models ranging from on-node and off-
node to hybrid models and models for accelerators. In the spirit
of co-designing hardware, system software (which includes
programming languages/models, runtimes and tools), and ap-
plications, we implemented LULESH, a shock hydrodynamics
application in these eight traditional and emerging program-
ming approaches. In this paper, we described our experiences
and details of the LULESH implementations. We also outlined
various optimizations and showed how new programming
models reduce required programmer effort relative to C++.

This study was not intended to find one champion language
that can be used for all kinds of applications and architec-
tures in the future; but to explore new approaches that can
help achieve extreme-scale performance and high program-
mer productivity at the same time. Models such as Chapel,
Loci, and Liszt show promise in terms of high programmer
productivity. The source lines of code (SLOC) needed to
produce a parallel implementation in these models was less
than the serial C++ code. However, some of these models
require more developmental effort to match the performance
of the MPI implementation. When comparing models for the
GPU, the Liszt port is almost one third the size of the CUDA
implementation and did not require any changes from the CPU
version to the GPU version.

In terms of performance, Loci along with CHARM++ were
the two performance competitive programming models among
the emerging approaches. When evaluating this result, one has
to remember that being older emerging language approaches,
these technologies have had more time to mature their com-
piler and runtime technologies. These results should be viewed
as an example of what can be done with other models given
the time and resources to mature.

This study shows that the newer approaches contain many
higher level constructs and compiler-driven advantages for
tuning codes to multiple architectures. While each model
facilitates a certain set of optimizations, no model in its
current form handles all optimizations we looked at. Because
of the power of these high-level tunability advantages, we
hope that it would take less time and effort to port between
significantly different architectures with the newer languages
and still achieve reasonably good performance. In addition,
since tuning is handled at a high level, the risk of programmer
error should be smaller. Therefore, programmer productivity
in these emerging approaches will be higher.
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