
Predicting Application Performance using Supervised
Learning on Communication Features

Nikhil Jain?, Abhinav Bhatele†, Michael P. Robson?, Todd Gamblin†, Laxmikant V. Kale?

?Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA

?{nikhil, mprobson, kale}@illinois.edu, †{bhatele, tgamblin}@llnl.gov

ABSTRACT
Task mapping on torus networks has traditionally focused
on either reducing the maximum dilation or average num-
ber of hops per byte for messages in an application. These
metrics make simplified assumptions about the cause of net-
work congestion, and do not provide accurate correlation
with execution time. Hence, these metrics cannot be used to
reasonably predict or compare application performance for
different mappings. In this paper, we attempt to model the
performance of an application using communication data,
such as the communication graph and network hardware
counters. We use supervised learning algorithms, such as
randomized decision trees, to correlate performance with
prior and new metrics. We propose new hybrid metrics that
provide high correlation with application performance, and
may be useful for accurate performance prediction. For three
different communication patterns and a production applica-
tion, we demonstrate a very strong correlation between the
proposed metrics and the execution time of these codes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; C.4
[Performance of Systems]: Measurement techniques,
Modeling techniques

General Terms
Measurement, Performance

Keywords
prediction, modeling, supervised learning, torus networks,
contention, task mapping

1. INTRODUCTION
Intelligent mapping of application tasks on nodes of a

torus partition can significantly improve the communication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13, November 17-21, 2013, Denver, Colorado, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503263

performance of the code [5, 7, 10]. The process of finding
the best mapping for an application may require executing
a large number of runs at different scales (number of proces-
sors). This can consume a significant amount of resources
including both man hours and machine allocation. Hence, it
is desirable to predict the communication performance of an
application on a system without performing real runs, given
a communication graph and the mapping of tasks to nodes
on the machine. The central question we want to answer is
whether a mapping improves performance over the default
or another mapping. For this goal, predicting the correct
rank correlation of different mappings based on their per-
formance is sufficient. Predicting the absolute performance
correctly is a secondary consideration.

Traditionally, task mapping on torus networks has focused
on either reducing the maximum dilation or average number
of hops per byte for messages in an application. These met-
rics make simplified assumptions about the cause of network
congestion and do not provide accurate correlation with ex-
ecution time. Mapping algorithms [4, 7, 15, 16] are gen-
erally designed to minimize these metrics which might be
sub-optimal. Detailed network simulations provide another
tool for predicting application performance but the simula-
tion models also require a deep understanding of congestion
issues and their root causes.

Understanding network congestion requires a study of
message flow on the network. We present a detailed descrip-
tion of the life cycle of a message on the five-dimensional
torus interconnect of Blue Gene/Q. From the instant that a
message is placed in the injection queue on the source node
to when it is received at the destination, we examine the
various resources for which messages can contend, and thus
potentially suffer from delays. This information is extremely
valuable in writing network simulators, deciding which hard-
ware counters to probe for contention, and developing new
metrics that might provide a better correlation with appli-
cation performance.

The focus of this paper is on the use of supervised learn-
ing algorithms, such as forests of randomized decision trees,
to correlate individual metrics and their combinations with
application performance. In addition to using prior metrics
for predicting performance, we present several new metrics.
Some of these can be obtained by analyzing the communi-
cation graph, network graph and the mappings, and others
can be obtained through an experimental or simulated ap-
plication run. For the results in this paper, the latter are
obtained using real experiments. As part of future work, we
plan to develop simulation techniques to obtain them offline.
Maximum dilation is an example of an analytically derived

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2503210.2503263

20

30

40

50

60

 0 2 4 6 8 10

T
im

e
pe

r
ite

ra
tio

n
(m

s)

Maximum Dilation

20

30

40

50

60

8e8 1.2e9 1.6e9 2e9

Average bytes per link

20

30

40

50

60

1e09 3e9 6e9 9e9

Maximum bytes on a link

Figure 1: Performance variation with prior metrics for five-point halo exchange on 16,384 cores of Blue
Gene/Q. Points represent observed performance with various task mappings. A large variation in performance
is observed for the same value of the metric in all three cases.

metric. In contrast, maximum bytes on a link is an experi-
mentally obtained metric. In addition to these new metrics,
we also use derived metrics that use information only from
some outliers (nodes or links).

We present performance predictions using the random-
ized forests ensemble method for three different communi-
cation kernels: a two-dimensional five-point halo exchange,
a three-dimensional 15-point halo exchange, and an all-to-
all benchmark over sub-communicators. We show almost
perfect correlation for runs on 16,384 and 65,536 cores of
Blue Gene/Q. We also show predictions for a production
application, pF3D, and for combining samples from differ-
ent benchmarks into a single training set and testing set.

In Section 2, we describe the common metrics used in
literature and motivate the need for more precise metrics.
Sources of contention on torus networks, methodology for
collecting hardware counters data, and the proposed met-
rics are discussed in Section 3. The benchmarks and super-
vised learning techniques used in the paper and the mea-
sures of prediction success are described in Section 4. In
Sections 5, 6, 7, we present results using prior metrics, new
metrics and their combinations. We conclude our work in
Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to

evaluate task mappings offline. Let us assume a guest graph,
G = (Vg, Eg) (communication graph between tasks) and a
host graph, H = (Vh, Eh) (network topology of the parallel
machine). M defines a mapping of the guest graph on the
host graph (G on H). The earliest metric that was used
to compare the effectiveness of task mappings is dilation [3,
12]. Dilation for a mapping M can be defined as,

dilation(M) = max
ei∈Eg

di(M) (1)

where di is the dilation of the edge ei for a mapping M .
Dilation of an edge ei is the number of hops between the
end-points of the edge when mapped to the host graph. This
metric aims at minimizing the length of the longest wire in
a circuit [3]. We will refer to this as maximum dilation
to avoid any confusion. We can also calculate the average
dilation per edge for a mapping as,

average dilation-per-edge(M) =

∑
ei∈Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “ex-
pected” dilation for an edge and “average” dilation for a
mapping [11]. Their definition of expected dilation for an
edge can be reduced to equation 1 above by assuming that
messages are only routed on shortest paths, which is true for
the IBM Blue Gene and Cray XT/XE family (if all nodes are
in a healthy state). The average dilation metric, as coined
by Hoefler and Snir, is a weighted dilation and has been pre-
viously referred to as the hop-bytes metric by Sadayappan [9]
in 1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted
sum of the edge dilations where the weights are the message
sizes. Hop-bytes can be calculated by the equation,

hop-bytes(M) =
∑

ei∈Eg

di(M)× wi (3)

where di is the dilation of edge ei and wi is the weight (mes-
sage size in bytes) of edge ei.

Hop-bytes gives an indication of the overall communica-
tion traffic being injected on to the network. We can derive
two metrics based on hop-bytes: the average number of hops
traveled by each byte on the network,

average hops-per-byte(M) =

∑
ei∈Eg

di(M)× wi∑
ei∈Eg

wi
(4)

and the average number of bytes that pass through a hard-
ware link,

average bytes-per-link(M) =

∑
ei∈Eg

di(M)× wi

|Eh|
(5)

The former gives an indication of how far each byte has to
travel on average. The latter gives an indication of the av-
erage load or congestion on a hardware link on the network.
They are derived metrics (from hop-bytes) and all three are
practically equivalent when used for prediction. In the rest
of the paper, we use average bytes-per-link.

Another metric that indicates congestion on network links
is the maximum number of bytes that pass through any link
on the network,

maximum bytes(M) = max
li∈Eh

(
∑

ej∈Eg|ej=⇒li

wj) (6)

where ej =⇒ li represents that edge ej in the guest graph
goes through edge (link) li in the host graph (network). Hoe-
fler and Snir use a second metric in their paper [11], worst

On link

 Injection
Memory
FIFOs

(per task)

MU
Memory

Injection
Network

FIFOs
(per node)

Network
Device

Source node

Network Device
Receiver

Buffers based
on channels,
next link etc.

Intermediate router/switch

MU

Reception
Memory
FIFOs

(per task)

Memory

Reception
Network

FIFOs
(per node)

Network
Device

Destination node

On links

Figure 2: Message flow on Blue Gene/Q - a task initiates a message send by putting a descriptor in one of its
memory injection FIFOs; the messaging unit (MU) processes these descriptors and injects packets into the
injection network FIFOs from which the packets leave the node via links. On intermediate switches, the next
link is decided based on the destination and the routing protocol; if the forward path is blocked, the message
is stored in buffers. Finally on reaching the destination, packets are placed in network reception FIFOs from
where the MU copies them to either the application memory or memory reception FIFOs.

case congestion, which is the same as equation 6 above.
We conducted a simple experiment with three of these

metrics described above – maximum dilation, average bytes-
per-link and maximum bytes on a link to analyze their cor-
relation with application performance. Figure 1 shows the
communication time for one iteration of a two-dimensional
halo exchange versus the three metrics in different plots.
Each point in these plots is representative of a given task
mapping on 16,384 cores of Blue Gene/Q. We observe that
although the coefficient of determination values (R2, metric
used for prediction success) are high, there is a significant
variation in the y-values for different points with the same
x-value. For example, in the maximum bytes plot (right),
for x = 6e9, there are mappings with performance varying
from 20 to 50 ms. These variations make predicting perfor-
mance using simple models with a reasonably high accuracy
(±5% error) difficult. This motivated us to find new met-
rics and ways to improve the correlation between metrics
and application performance.

3. CONTENTION ON TORUS NETWORKS
Networks with n-dimensional torus topology are currently

used in many supercomputers, such as IBM Blue Gene
series, Cray’s XT/XE, and K computer. The IBM Blue
Gene/Q (BG/Q) system is the third generation product in
the Blue Gene line of massively parallel supercomputers.
Each node on a BG/Q consists of 16 4-way SMT cores that
run at 1.6 GHz. Nodes are connected by a five-dimensional
(5D) torus interconnect with bidirectional links that can
send and receive data at 2 GB/s. The BG/Q torus supports
two shortest-path routing protocols – deterministic routing
for short messages (<64 KB by default, configurable) and
configurable dynamic routing for large messages.

3.1 Message flow and resource contention
Figure 2 presents the life cycle of a message on BG/Q.

The tasks on a node send data on to the network through
the Messaging Unit (MU) on the node. Injection mem-
ory FIFO (imFifo) is the data structure used to transfer
information between the tasks and the MU. To initiate a
message send, a task puts a descriptor of the message in one
of its imFifos. Selection of which imFifo to inject a descrip-
tor in is typically based on the difference in coordinates of
source and destination. The MU processes the descriptors
in the imFifos, packetizes the message data it reads from

the memory (packet size up to 512 B), and injects them into
the injection network FIFOs. The descriptor of the mes-
sage contains information of the binding that is used by the
MU to inject into the appropriate injection network FIFO.
In the default setting, there is a one-to-one mapping be-
tween imFifos and injection network FIFOs. This may lead
to contention for injection network FIFOs if the distribution
of source-destination pairs is such that a particular network
injection FIFOs receives more traffic than others.

From the injection network FIFOs, packets are sent over
the network based on the routing strategy and the destina-
tion. On the network, contention for hardware links is the
most common source of performance degradation. When a
packet injected on a link reaches an immediate neighbor, the
network device decides the next link the packet needs to be
forwarded to. If the next link is occupied, the packets are
stored in buffers mapped to the incoming link. In the event
of heavy contention for links, these buffers may get filled
quickly, and prevent the use of the incoming link for data
transfer. When packets eventually reach their destination,
they are copied by the MU from the reception network
FIFOs to either the reception memory FIFOs or the appli-
cation memory. Limited memory bandwidth may prevent
the MU from copying the data, and hence reception injec-
tion FIFOs and the buffers attached to the corresponding
links may get filled. This may lead to blocking of the links
for further communication.

3.2 Collecting hardware counters data
We use two methods to collect information that can indi-

cate resource contention as described in Section 3.1:

Blue Gene/Q Counters: The Hardware Performance
Monitoring API (BGPM) provides a simple interface for
the BG/Q Universal Performance Counter (UPC) hard-
ware. The UPC hardware programs and counts performance
events from multiple hardware units on a BG/Q node. Using
BGPM to control the Network Unit of the UPC hardware,
we implemented a PMPI-based profiling tool that records
the following information:

• Sent chunks: count of 32-byte chunks sent on a link.
Counters used for collecting this information:
PEVT_NW_USER_PP_SENT: user-level point-to-point 32-
byte packet chunks sent (includes chunks in transit);
PEVT_NW_USER_ESC_PP_SENT: user-level determinis-
tic point-to-point 32-byte packet chunks sent (includes

chunks in transit);
PEVT_NW_USER_DYN_PP_SENT: user-level dynamic
point-to-point 32-byte packet chunks sent (includes
chunks in transit);
• Received packets: count of packets (up to 512 B)

received on a link. Counter used for collecting this
information:
PEVT_NW_USER_PP_RECV: user-level point-to-point
packets received (includes packets in transit).
• Packets in buffers on incoming links: count of packets

added across all buffers associated with an incoming
link. Counter used for collecting this information:
PEVT_NW_USER_PP_RECV_FIFO: user-level point-to-
point packets in buffers.

Analytical Program: In order to derive information that
is not available via counters, we implemented an analyti-
cal program to mimic important aspects of the BG/Q net-
work, including the routing scheme and the injection net-
work FIFO selection method. We use it to compute the
following information:

• Dilation - number of hops (links) traversed by individ-
ual messages on the network.
• Messages in network FIFOs - number of messages in-

jected in a particular injection network FIFO.

3.3 Indicators of resource contention
The information collected from hardware counters and the

analytical program allows us to define several new metrics
(Table 1). Bytes passing through links are used to com-
pute average bytes and maximum bytes on links, which are
indicators of link contention (these two are prior metrics).
Buffer length, which increases as more packets get blocked
during communication, is useful for measuring congestion
on the intermediate switches. It may also indicate memory
contention, since packets gets buffered if available memory
bandwidth to the MU is not sufficient to remove packets
from the reception network FIFOs (at the destination). Ra-
tio of the buffer length to the number of received packets in-
dicates the average delay of packets passing through a link.
FIFO length, which is also local to nodes, is an indicator of
contention for injection network FIFOs, which may reduce
the effective message rate.

Indicator Source Derived from

Bytes on links? Counters Sent chunks
Buffer length† Counters #Packets in buffers
Delay per link† Counters #Packets in buffers di-

vided by received packets
Dilation? Analytical Shortest-path routing be-

tween source and destina-
tion

FIFO length† Analytical Based on PAMI source

Table 1: ?Prior and †new metrics that indicate con-
tention for network resources.

4. EXPERIMENTAL SETUP
In this section, we describe the machines and benchmarks

used for the experiments, and the scikit package which pro-
vides a Python interface for using several machine learning
algorithms.

4.1 Machines
All the experiments were performed on two Blue Gene/Q

systems – Mira and Vulcan. Mira is installed at the Argonne
National Laboratory and Vulcan is hosted at the Lawrence
Livermore National Laboratory. Table 2 presents the possi-
ble sizes of the torus dimensions (A, B, C, D and E) when
partitions of 1024 and 4096 nodes are requested on BG/Q.

Nodes A B C D E

1024 4 4 4 8 2
4096 4 4 8 16 2
4096 4 8 4 16 2

Table 2: Dimensions of the allocated job partitions
on BG/Q.

4.2 Communication kernels
In our experiments, we use three benchmarks that exhibit

communication patterns that are commonly seen in HPC
applications. By running the benchmarks for four different
messages sizes, 8 bytes, 512 bytes, 16 KB and 4 MB, we are
able to cover a broad range of communication scenarios typ-
ical in large scale scientific applications. In addition, these
message sizes also cover different MPI protocols (short, ea-
ger, rendezvous), and routing protocols (deterministic and
adaptive). All the benchmarks have been implemented in
MPI and are described below.

4.2.1 Five-point 2D halo exchange
2D Halo implements the communication pattern of a two-

dimensional Jacobi relaxation, which is a common kernel in
HPC applications. MPI ranks are arranged in a 2D grid and
in each iteration, every MPI rank exchanges one message
each with its four nearest neighbors. Performance of this
benchmark is measured by taking the average execution time
over 100 iterations.

4.2.2 15-point 3D halo exchange
Our second benchmark, 3D Halo, decomposes the MPI

ranks into a three-dimensional (3D) grid. In each iteration,
every MPI rank communicates with fourteen neighbors (six
faces and eight corners) that constitute a 15-point stencil
(including itself). 3D Halo differs from 2D Halo in two im-
portant aspects: it puts more communication load on the
network, and it decomposes MPI ranks into a higher di-
mension grid. We use the average execution time for 100
iterations to measure the performance.

4.2.3 All-to-all over sub-communicators
The Sub A2A benchmark is a departure from both 2D

Halo and 3D Halo. It performs simultaneous all-to-alls
within sub-communicators, and hence is more communica-
tion intensive. MPI ranks are decomposed into a 3D grid
with sub-communicators of size 64 created along one of its
dimensions. Sub A2A has been modeled on codes that per-
form FFTs, in which every rank shares data with all other
ranks in the same Cartesian sub-grid. The average execution
time for 50 iterations is used as the benchmark performance.

4.2.4 Input Data
We use a Python mapping tool, Rubik [6, 13] to gener-

ate 84 different task mappings for each of the benchmarks

MB <= 0.4295

AB <= 0.0082 MB <= 0.4857

AB <= 0.0017 AB <= 0.0176 AB <= 0.1905 leaf

leaf AB <= 0.0021 leaf

Rest of the tree

AB - average bytesMB - maximum bytes

(a) Decision tree. Based on the training set and the
learning scheme, conditions are computed to guide pre-
diction based on features, e.g., maximum bytes and av-
erage bytes. To predict, beginning at the root, the tree
is traversed based on the features of a test case until a
leaf is reached. The leaf determines the predicted value.

0.0 0.2 0.4 0.6 0.8 1.0
Maximum bytes

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 b

y
te

s

Task mapping

Decision surfaces of a random forest

(b) Random forests. A collection of decision trees is used
to predict. Each color represent a leaf region in one of the
decision trees; regions from different decision trees over-
lap. For a test case, all decisions trees are traversed to ob-
tain local predictions, which are combined using weights
to obtain the final prediction.

Figure 3: Example decision tree and random forests generated using scikit.

and system sizes. Hardware counters data from real runs
and data generated by the analytical program for the three
benchmarks, four different message sizes, two partition sizes
and 84 different task mappings, was used as an input to the
machine learning program.

4.3 Prediction using ensemble methods
We employ supervised learning techniques used in statis-

tics and machine learning to predict the performance (exe-
cution time) of an application for different mappings using
metrics described in Section 3.3. The learning algorithm
infers a model or function by working with a training set
that consists of n samples (mappings), and one or more in-
put features (raw and/or derived such as average bytes) per
sample. Each sample has a desired output value (execution
time), also known as the target. We then use the trained
algorithm to predict the output for a testing set (new map-
pings for which we wish to predict execution time). The
values of the features and the target are normalized to ob-
tain the best results.

We tested several supervised learning techniques ranging
from statistical techniques, such as linear regression, to ma-
chine learning methods, such as support vector machines
and decision trees. The scikit-learn package provides sev-
eral of these algorithms/estimators in Python [14]. The two
steps, as described previously, are to first fit the estimator
and then to use it to predict unseen samples. For the bench-
marks presented in this paper, ensemble learning provided
the best fit. Ensemble methods use predictions from several,
often weaker models, to produce a stronger model or esti-
mator that gives better results than the individual models.

Random forests are a type of ensemble learning method
developed by Leo Breiman in 2001 [8]. The idea is to build
several decision trees and to use averaging methods on these
independently built models. In a decision tree, the goal is
to create a model that predicts the value of a target vari-
able by learning simple decision rules inferred from the data

features. These trees are simple to understand and to inter-
pret as they can be visualised easily. However, decision tree
based learners create biased trees if some patterns dominate.
Random forests attempts to avoid such a bias by adding ran-
domness in the selection of condition when splitting a node
during the creation of a decision tree. Instead of choosing
the best split among all the features, the split that is picked
is one among a random subset of the features. Further, the
averaging performed on the prediction from independently
built decision trees leads to a reduction in the variance and
hence an overall better model. We use the ExtraTreesRe-
gressor class in scikit 0.13.1.

Figure 3 (left) shows an example decision tree that was
used in one of our experiments. This tree was produced
by training performed using two features, maximum bytes
and average bytes, to predict the target, the execution time.
The tree shows that at each level, based on the conditions
derived from the training set on values of maximum bytes
and average bytes, the prediction is guided to reach a leaf
node, which determines the target value. Figure 3 (right)
presents the overlay of a number of such decision trees over
a 2D space spanned by the same two input features. Each
color in the figure is a leaf region of one of the decision trees
in the random forest generated by fitting the training set.
As expected, regions from different decision trees overlap,
and cover the entire space. The white circles are the test
set being predicted - new mappings with known maximum
bytes and average bytes. To predict, all the leaf regions, to
which a test case belong, are computed. This provides a set
of local predictions for the test case, which are combined to
provide a unique target value.

4.4 Metrics for prediction success
The goodness or success of the prediction function (also

referred to as the score) can be evaluated using different met-
rics depending on the definition of success. Our main goal
is to compare the performance of two mappings and deter-

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
(s

)

Mappings

8 bytes
512 bytes

16 KB
4 MB

(a) 2D Halo

10-5

10-4

10-3

10-2

10-1

100

101

Mappings

(b) 3D Halo

10-5

10-4

10-3

10-2

10-1

100

101

Mappings

(c) Sub A2A

Figure 4: Performance variations with different task mappings on 16,384 cores of BG/Q. As benchmarks
become more communication intensive, even for small message sizes, mapping impacts performance.

mine the correct ordering between the mappings in terms of
performance. Hence, we focus on a rank correlation metric
for determining success; we also present results for a metric
that compares absolute values for completeness.

Rank Correlation Coefficient (RCC): Let us assign
ranks to mappings based on their position in two sorted
sets (by execution time): observed and predicted perfor-
mance. RCC is defined as the ratio of the number of pairs
of task mappings whose ranks were in the same pairwise
order in both the sets to the total number of pairs. In sta-
tistical parlance, RCC equals the ratio of the number of
concordant pairs to that of all pairs (Kendall’s Tau [1]).
Formally speaking, if observed ranks of tasks mappings
are given by {x1, x2, · · · , xn}, and the predicted ranks by
{y1, y2, · · · , yn}, we define RCC as:

concord ij =


1, if xi >= xj & yi >= yj

1, if xi < xj & yi < yj

0, otherwise

RCC =
(∑

0<=i<n

∑
0<=j<i

concordij
)

/(
n(n− 1)

2
)

Absolute Correlation (R2): To predict the success for
absolute predicted values, we use the coefficient of determi-
nation from statistics, R-squared,

R2(y, ŷ) = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value, and

ȳ =
1

nsamples

∑
i

yi

5. PERFORMANCE PREDICTION OF
COMMUNICATION KERNELS

In this section, we present results on the prediction of exe-
cution times of several communication kernels (Section 4.2)

for different task mappings.

5.1 Performance variation with mapping
Figure 4 presents the execution times for the three bench-

marks for four message sizes – 8 bytes, 512 bytes, 16 KB and
4 MB. These sizes represent the amount of data exchanged
between a pair of MPI processes in each iteration. For ex-
ample, for 2D Halo, this number is the size of a message
sent by an MPI process to each of its four neighbors. For a
particular message size, a point on the plot represents the
execution time (on the y-axis) for a mapping (on the x-axis).

For 2D Halo, Figure 4(a) shows that for small messages
such as 8 and 512 bytes, mapping has an insignificant im-
pact. As the message size is increased to 16 KB, in addition
to an increase in the runtime, we observe up to a 7× dif-
ference in performance for the best mapping in comparison
to the worst mapping (note the logarithmic scale on the y-
axis). Similar variation is seen as we further increase the
message size to 4 MB. For a more communication intensive
benchmark, 3D Halo, we find that mapping impacts per-
formance even for 512-byte messages (Figure 4(b)). As we
further increase the communication in Sub A2A, the effect of
task mapping is also seen for the 8-byte messages as shown
in Figure 4(c). In the following sections, we do not present
results for the cases where the performance variations from
mapping are statistically insignificant: 8- and 512-byte re-
sults in case of 2D Halo and 8-byte results in case of 3D
Halo.

5.2 Prior features
We begin with showing prediction results using prior met-

rics/features (described in Section 2) and quantify the good-
ness of the fit or prediction using rank correlation coefficient
(RCC) and R2 (Section 4.4). Figure 5 (top) presents the
RCC values for predictions based on prior features (maxi-
mum dilation, average bytes per link and maximum bytes
on a link). In most cases, we find that the highest value
for RCC is 0.91, i.e., the pairwise ordering of 91% of map-
ping pairs was predicted correctly. For a testing set of 28
samples, an RCC of 0.91 implies incorrect prediction of the
pairwise ordering of 38 mapping pairs. A notable exception
is the 512-byte case for 3D Halo where the RCC is 0.96. In

0.6
0.7
0.8
0.9
1.0

R
C

C
Rank correlation coefficient

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

max dilation
avg bytes

max bytes
Sub A2A3D Halo2D Halo

Figure 5: Prediction success based on prior features
on 16,384 cores of BG/Q. The best RCC score is
0.91 for most cases - 38 mispredictions out of 378.

contrast, for 16 KB message size, the highest RCC is only
0.86.

In the case of 2D Halo and 3D Halo, prediction using max-
imum bytes on a link has the highest RCC while prediction
using maximum dilation performs very poorly with an RCC
close to 0.60. However, for Sub A2A, prediction using aver-
age bytes per link is better than prediction using maximum
bytes on a link for small to medium message sizes (by 4-5%).
The metric for absolute performance correlation, R2, is also
shown in Figure 5. For all benchmarks and message sizes,
maximum bytes on a link performs the best with a score of
up to 0.95 for 3D Halo and Sub A2A. These results substan-
tiate the use of maximum bytes and average bytes as simple
metrics that are roughly correlated with performance.

5.3 New features
We propose new metrics/features based on the buffer

length, delay and FIFO lengths (see Table 1) and derive
others by extracting counters and analytical data for outlier
nodes and links:

Average Outliers (AO) We define a node or link as an
average outlier if an associated value for it is greater
than the average value of the entire data set. Selection
of data points based on the average value helps elim-
inate low values that can skew derived features and
hide information that may be useful.

Top Outliers (TO) Similar to the average outlier, we can
define a node or link to be a top outlier if an associated
value for it is within 5% of the maximum value across
the entire data set.

We can use these two outlier selection criteria to de-
fine metrics that represent the features extracted from out-
liers. Among a large set of features that we explored using
prior/new metrics in combination with known/new deriva-
tion methods, we focus on prediction using the following
features that had the highest RCC: average buffer length
(avg buffer), average buffer length of TO (avg buffer TO),

sum of maximum dilation for AO (sum dilation AO), aver-
age bytes per link for AO (avg bytes AO), and the average
bytes per link for TO (avg bytes TO).

The most important point to note as we transition from
Figure 5 to Figure 6 is the general increase in RCC. For
Sub A2A in particular, we observe that RCC is consistently
0.95. The previous poor predictions in the case of 16 KB
message size for 3D Halo improve from 0.86 to 0.90 (RCC
value). For the low traffic 2D Halo, new network-related
features such as those based on the buffer length exhibit low
correlation. As traffic on the network is increased (larger
messages sizes) in 3D Halo and Sub A2A, the RCC of these
new network-related features increases, and occasionally sur-
passes the RCC of other features.

We note that the R2 value is consistently high only for
the avg bytes TO feature. For a number of features, the R2

values are either low or zero. There are two reasons that can
explain the low R2 values: 1) the features did not correlate
well with the performance, e.g. avg buffer for 2D Halo and
3D Halo, or 2) the predicted performance followed the same
trend as the observed performance but was offset by a factor,
e.g., avg buffer for large messages in 3D Halo.

5.4 Hybrid features
The previous sections have shown that up to 94% pre-

diction accuracy can be achieved using a single feature. De-
pending on the benchmark and the message size, the feature
that provides the best prediction may vary. This motivated
us to use several features together to improve the correlation
and enable better prediction.

In order to derive hybrid features that improve RCC, we
performed a comprehensive search by combining the fea-
tures that had high RCC values. In addition, the com-
binations of good features were also augmented with fea-
tures that exhibited low to moderate correlation with per-
formance. We made two important discoveries with these
experiments: 1) combining multiple good features may re-
sult in a lower accuracy of prediction, and 2) the addition
of features that had limited success on their own to good
features can boost prediction accuracy significantly.

Hybrid Features combined

H1 avg bytes, max bytes, max FIFO
H2 avg bytes, max bytes, sum dilation AO, max

FIFO
H3 avg bytes, max bytes, avg buffer, max FIFO
H4 avg bytes, max bytes, avg buffer TO
H5 avg bytes TO, avg buffer TO, avg delay AO,

sum hops AO, max FIFO
H6 avg bytes TO, avg buffer AO, avg delay TO,

avg delay AO, sum hops A0, max FIFO

Table 3: List of hybrid features that achieve strong
correlations.

Figure 7 presents results for the hybrid features that
consistently provided high prediction success with different
benchmarks and message sizes. Table 3 lists the features
that were combined to create these hybrid features. In our
experiments, we found that combining the two most com-
monly used features, max bytes and avg bytes improves the
prediction accuracy in all cases. The gain in RCC was high-
est for the 4 MB message size, where RCC increased from

0.6
0.7
0.8
0.9
1.0

R
C

C
Rank correlation coefficient

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

avg buffer
avg buffer TO

sum dilation AO
avg bytes AO

avg bytes TO
Sub A2A3D Halo2D Halo

Figure 6: Prediction success based on new features on 16,384 cores of BG/Q. We observe a general increase
in RCC, but R2 values are low in most cases resulting in empty columns.

0.6
0.7
0.8
0.9
1.0

R
C

C

Rank correlation coefficient

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

H1 H2 H3 H4 H5 H6
Sub A2A3D Halo2D Halo

Figure 7: Prediction success based on hybrid features from Table 3 on 16,384 cores of BG/Q. We obtain
RCC and R2 values exceeding 0.99 for 3D Halo and Sub A2A. Prediction success improves significantly for
2D Halo also.

0.91 (individual best) to 0.94 for all benchmarks. The ad-
dition of max FIFO, which did not show a high RCC score
as a stand alone feature, further increased the prediction
accuracy to 0.96. We denote this set as H1.

To H1, we added another low performing feature, avg
buffer to obtain H3. This improved the RCC further in
all cases with the RCC score now in the range of 0.98− 0.99
for 3D Halo and Sub A2A (Figure 7). Replacing avg buffer
is this set with avg buffer TO improved the RCC for Sub
A2A, but reduced the RCC for 2D Halo. Using a number
of such combinations, we consistently achieved RCC up to
0.995 for Sub A2A. Given a testing set of size 28, this implies
that the pairwise order of only 2 pairs was mispredicted for
Sub A2A; in the worst case for 2D Halo, pairwise order of

16 pairs was mispredicted.
Prediction using hybrid features also results in high R2

values as shown in Figure 7. For 2D Halo, the scores go up
from 0.95 and 0.93 to 0.975 and 0.955 for the 16 KB and
4 MB message sizes respectively. For the more communica-
tion intensive benchmarks, we obtained R2 values as high as
0.99 in general. Hence, the use of hybrid features not only
predicts the correct pairwise ordering of mapping pairs but
also does so with high accuracy in predicting their absolute
performance.

5.5 Results on 65,536 cores
Figure 8 shows the prediction success for the three bench-

marks on 65,536 cores of BG/Q. From all the previously pre-

0.6
0.7
0.8
0.9
1.0

R
C

C
Rank correlation coefficient

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

max bytes
 avg bytes TO

 H3
 H5

Sub A2A3D Halo2D Halo

Figure 8: Prediction success: summary for all benchmarks on 65,536 cores of BG/Q. Hybrid metrics show
high correlation with application performance.

 0.01

 0.1

 1

 0 5 10 15 20 25 30

Ex
ec

ut
io

n
T

im
e

(s
)

Mappings sorted by actual execution times

Blue Gene/Q (65,536 cores)

2D Halo Observed
2D Halo Predicted

 1

 10

 100

 0 5 10 15 20 25 30

Ex
ec

ut
io

n
T

im
e

(s
)

Mappings sorted by actual execution times

Blue Gene/Q (65,536 cores)

Sub A2A Observed
Sub A2A Predicted

3D Halo Observed
3D Halo Predicted

Figure 9: Summary of prediction results on 65,536 cores using 4 MB messages. For all benchmarks, prediction
is highly accurate both in terms of ordering and absolute values.

sented features (prior, new and hybrid), we selected the ones
with the highest RCC scores for 16,384 cores, and present
only those in this figure. Similar to results on 16,384 cores,
we obtain significant improvements in the prediction scores
using hybrid features in comparison to individual features
such as max bytes and avg bytes TO. For Sub A2A, RCC im-
proved by 14% from 0.86 to 0.98, with a RCC value of 1.00
for both 512 bytes and 4 MB message sizes. For 2D Halo
and 3D Halo, an improvement of up to 8% was observed in
the prediction success. Similar trends were observed for R2

values.
Figure 9 presents the scatter-plot of predicted perfor-

mance for the three benchmarks for the 4 MB message size.
On the x-axis are the task mappings sorted by observed
performance, while the y-axis is the predicted performance.
The feature set H5: avg bytes TO, avg buffer TO, avg delay
AO, sum hops AO, max FIFO was used for these predic-
tions. It is evident from the figure that an almost perfect
performance based ordering can be achieved using predic-
tion for all three benchmarks, as expected based on the high
RCC values. In addition, as shown in Figure 9, absolute

performance values can also be predicted accurately using
the proposed hybrid metric. In particular, for Sub A2A with
large communication volume, the predicted value curve com-
pletely overlaps with the observed value curve. These results
suggest that the same set of features correlate with the per-
formance irrespective of the system size being used.

6. COMBINING ALL TRAINING SETS
In the previous section, we presented high scores for pre-

dicting performance of the three benchmarks using hybrid
metrics. For the prediction of individual benchmarks, the
training and testing sets were generated using 84 different
mappings of the same benchmark for a particular message
size on a fixed core count. In this section, we relax these
requirements, and explore the space where the training and
testing sets are a mix of different benchmarks, message sizes
and core counts.

6.1 Combining samples from different bench-
marks

We first explore the use of training and testing sets that

0.6

0.7

0.8

0.9

1.0

R
C

C
Rank correlation coefficient

0.6

0.7

0.8

0.9

1.0

avg bytes

max bytes

sum dilation AO

avg bytes TO

avg buffer

H1 H3 H4 H5 H6

R
2

Absolute Performance Correlation

Figure 10: Prediction success using combination of
benchmarks as training and testing sets on 16,384
cores of BG/Q.

1

1e1

1e2

1e3

1e4

avg bytes

max bytes

sum dilation AO

avg bytes TO

avg buffer

H1 H3 H4 H5 H6N
um

be
r

of
 m

is
pr

ed
ic

tio
ns

Pairwise ordering misprediction

Figure 11: Ordering misprediction using combina-
tion of benchmarks as training and testing sets on
16,384 cores of BG/Q. Ordering of only 70 pairs
among 14,072 pairs is incorrect in the best case.

are a combination of all three benchmarks with 16 KB and
4 MB message sizes. It is to be noted that the training and
testing sets are now six times the size of individual sets (336
vs. 56 for the training set and 168 vs. 28 for the testing set).
Figure 10 presents the prediction success for this experiment
using prior, new and hybrid features with best correlation.

High RCC values, such as 0.97 for avg bytes, suggests that
the combination of training sets results in a better predic-
tion than the individual cases. Absolute number of mis-
predictions, presented in Figure 11, is close to the sum of
mispredictions for individual cases (that are combined to
form these sets) for a given metric. This suggests that the
presented technique was successful in classifying the sample
data from different kinds of communication patterns and
message sizes, and in making good predictions using them.

0.6

0.7

0.8

0.9

1.0

R
C

C

Rank correlation coefficient

0.6

0.7

0.8

0.9

1.0

avg bytes

max bytes

sum dilation A0

avg bytes TO

avg buffer

H1 H3 H4 H5 H6

R
2

Absolute Performance Correlation

Figure 12: Predicting performance on 65,536 cores
using 16,384 cores. RCC of up to 0.975 was achieved
- 3,200 mispredictions in 1,26,756 pairs (2.5%).

These results indicate that if a large database consisting of
different communication patterns and message sizes is cre-
ated, predicting performance of different classes of appli-
cations (possibly with unknown communication structure)
may be feasible. We leave an in-depth study of this aspect
for future work.

6.2 Predicting performance on 65,536 cores
using 16,384-core samples

We also experimented with predicting the performance on
65,536 cores using the data from runs on 16,384 cores as the
training set. The testing set consists of all the benchmarks
with message sizes as 16 KB and 4 MB on 65,536 cores,
while the training set is the same benchmarks run on 16,384
cores. As shown in Figure 12, we obtained high RCC values
for many features. The maximum RCC value of 0.975 was
observed using the hybrid feature set H3: avg bytes, max
bytes, avg buffer, max FIFO. In terms of absolute number of
pairs with incorrect predicted ordering, ordering of ∼ 3, 200
pairs were mispredicted among a full set of 1, 26, 756 pairs.

We find these results to be very encouraging since a strong
correlation for predicting performance on large node counts
using data from smaller jobs may provide a scalable method
for performance prediction. Using smaller systems to predict
performance at scale has several advantages. First, generat-
ing data sets is more feasible in this regime because it con-
sumes less resources. Second, manually generating various
mappings for large systems is impractical, but using predic-
tion based on runs on smaller node counts, a large number
of mappings can be explored with low overhead.

7. RESULTS WITH PF3D
pF3D [17] is a multi-physics code used for studying laser

plasma-interactions in the National Ignition Facility (NIF)
experiments at LLNL. pF3D is a communication-heavy ap-

plication and has been shown to benefit significantly from
task mapping on Blue Gene/P [6]. This is the first attempt
at mapping pF3D on Blue Gene/Q.

pF3D simulations consist of three distinct phases: wave
propagation and coupling, advecting light, and solving the
hydrodynamic equations. The MPI processes are arranged
in a 3D Cartesian grid and all of the MPI communication
is performed along different directions (X,Y, Z) of this grid.
Wave propagation and coupling consists of two-dimensional
(2D) Fast Fourier Transforms (FFTs) in XY -planes; the 2D
FFTs are performed via two non-overlapping 1D FFTs along
the X and Y directions using MPI_Alltoall. The advection
phase involves planar exchange of data with neighbors in
the Z-direction performed using MPI_Send and MPI_Recv.
Finally, the hydrodynamic phase consists of near-neighbor
data exchange in the positive and negative X, Y and Z direc-
tions. The FFT phase and the planar exchange in Z account
for most of the time spent in communication in pF3D. The
logical 3D grid of processes used for pF3D in this paper was
16× 8× 128.

In Figure 13, we present RCC scores for predicting the
performance of pF3D on 16,384 cores of BG/Q. While avg
bytes has a very low RCC, max bytes correctly predicts the
pairwise ordering for 91% of the task mapping pairs. Inter-
estingly, sum of dilations for messages that belong to the
average outlier set exhibits a high RCC of 0.94. Similar to
the benchmarks, the hybrid features show strong correlation
with performance, and have RCCs exceeding 0.96 for this
production application. The highest correlation achieved is
for the hybrid set H6: avg bytes TO, avg buffer AO, avg
delay TO, avg delay AO, sum hops A0, max FIFO that has
an RCC of 0.995. The R2 values are significantly lower, in
contrast with the benchmarks. For max bytes, the R2 value
is only 0.76 which increases dramatically to 0.931 for the
hybrid set H6.

Figure 14 summarizes the prediction results for pF3D on
16,384 cores using a scatter-plot of observed and predicted
values. While the ordering of mapping is correctly predicted,
the absolute values are significantly different for many map-
pings. As we scaled up to 65,536 cores, we found more irreg-
ularities between absolute values of predicted and observed
performance. Moreover, the RCC values for known met-
rics were found to be as low as 0.52 on 65,536 cores. Us-
ing the new and hybrid metrics, the RCC values increased
to 0.75 (45% improvement). These RCC values are signif-
icantly smaller in comparison to other results presented in
this paper. As part of future work, we plan to research fur-
ther on possible cause of such a divergence.

8. CONCLUSION
Significant time and effort wasted in real runs to eval-

uate the performance of different task mappings suggests
the use of simulation or metrics to predict application per-
formance offline. Metrics used previously in literature fall
short in providing strong correlation with execution time.
In this paper, we demonstrate the use of machine learning
techniques to obtain high correlation between new metrics
and performance of parallel applications for different task
mappings.

In addition to prior metrics, such as maximum bytes, we
have proposed new metrics, such as buffer length and mes-
sages in injection FIFOs, to include the effects of contention
for network resources other than links. Using a combina-

0.6

0.7

0.8

0.9

1.0

R
C

C

Rank correlation coefficient

0.6

0.7

0.8

0.9

1.0

avg bytes

max bytes

sum dilation AO

avg bytes TO

avg buffer

H1 H3 H4 H5 H6

R
2

Absolute performance correlation

Figure 13: Prediction success for pF3D using a va-
riety of prior, new, and hybrid metrics. RCC values
are very high for the hybrid metrics, as in previ-
ous examples, but are somewhat lower for prior and
new single metrics. R2 values are lower on average
overall.

 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0 5 10 15 20 25 30

Ex
ec

ut
io

n
T

im
e

(s
)

Mappings sorted by actual execution times

Blue Gene/Q (16,384 cores)

pF3D Observed
pF3D Predicted

Figure 14: Comparing predicted values with ob-
served values for pF3D on 16,384 cores. Highly ac-
curate ordering of mappings is obtained.

tion of these metrics, which includes average and maximum
bytes on links, maximum messages contending for an injec-
tion FIFO, and the average number of packets in buffers, we
show rank correlation coefficients of up to 0.99, i.e. for only
1% of pairs the pairwise ordering is predicted incorrectly.
This signifies an improvement of 14% in the prediction suc-
cess for an all-to-all over sub-communicators benchmark and
8% for 2D and 3D halo exchange. In addition, prediction
using such hybrid metrics also shows high R2 scores which
indicates good prediction in terms of absolute values. Identi-
fying these metrics is a step towards accurate offline analysis
of task mappings to find the best performing mapping. The
next step is to develop techniques to compute metrics that

are obtained via real runs in this paper, using simulation
and/or analysis.

We also successfully attempted combining of training and
testing sets from different benchmarks and still retained high
prediction accuracy. This suggests that if a large database
consisting of different communication patterns and message
sizes is created, predicting performance of different classes of
applications (possibly with unknown communication struc-
ture) may be feasible. More importantly, we show that using
training sets from small core counts, we can predict perfor-
mance at a larger count with an RCC value of 0.975. This
may provide a scalable method for performance prediction at
large scales and for future machines without having to per-
form detailed network simulations. Finally, we have demon-
strated that supervised learning and ensemble methods can
be used to predict performance not only for simple communi-
cation kernels but also for complex production applications
with several diverse communication phases.

Acknowledgments
This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This work
was funded by the Laboratory Directed Research and De-
velopment Program at LLNL under project tracking code
13-ERD-055 (LLNL-CONF-635857).

This research used computer time on Livermore Comput-
ing’s high performance computing resources, provided under
the Laboratory Directed Research and Development Pro-
gram. This research also used resources of the Argonne
Leadership Computing Facility at Argonne National Lab-
oratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357.

The authors thank W. Scott Futral (LLNL) and Kalyan
Kumaran (ANL) for their help with getting the jobs com-
pleted on time on Vulcan and Mira respectively. We also
thank Dong Chen, Phil Heidelberger, Sameer Kumar, Jeff
Parker and Bob Walkup from IBM for the numerous e-mail
exchanges and discussions to improve our understanding of
the Blue Gene networks.

9. REFERENCES
[1] Kendall tau rank correlation coefficient.

http://en.wikipedia.org/wiki/Kendall_tau_rank_
correlation_coefficient.

[2] T. Agarwal, A. Sharma, and L. V. Kalé.
Topology-aware task mapping for reducing
communication contention on large parallel machines.
In Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2006, April 2006.

[3] Aleliunas, R. and Rosenberg, A. L. On Embedding
Rectangular Grids in Square Grids. IEEE Trans.
Comput., 31(9):907–913, 1982.

[4] A. Bhatele. Automating Topology Aware Mapping for
Supercomputers. PhD thesis, Dept. of Computer
Science, University of Illinois, August 2010.
http://hdl.handle.net/2142/16578.

[5] A. Bhatele, E. Bohm, and L. V. Kale. Optimizing
communication for charm++ applications by reducing
network contention. Concurrency and Computation:
Practice and Experience, 23(2):211–222, 2011.

[6] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer,
E. W. Draeger, B. Hamann, K. E. Isaacs, A. G.
Landge, J. A. Levine, V. Pascucci, M. Schulz, and
C. H. Still. Mapping applications with collectives over
sub-communicators on torus networks. In Proceedings
of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’12. IEEE Computer Society, Nov. 2012.
LLNL-CONF-556491.

[7] A. Bhatelé, L. V. Kalé, and S. Kumar. Dynamic
topology aware load balancing algorithms for
molecular dynamics applications. In 23rd ACM
International Conference on Supercomputing, 2009.

[8] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[9] F. Ercal and J. Ramanujam and P. Sadayappan. Task
allocation onto a hypercube by recursive mincut
bipartitioning. In Proceedings of the 3rd conference on
Hypercube concurrent computers and applications,
pages 210–221. ACM Press, 1988.

[10] F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski,
J. A. Gunnels, V. Austel, J. C. Sexton, F. Franchetti,
S. Kral, C. W. Ueberhuber, and J. Lorenz. Large-scale
electronic structure calculations of high-Z metals on
the Blue Gene/L platform. In Proceedings of
Supercomputing 2006, 2006. International Conference
on High Performance Computing, Network, Sto rage,
and Analysis. 2006 Gordon Bell Prize winner (Peak
Performance).

[11] T. Hoefler and M. Snir. Generic topology mapping
strategies for large-scale parallel architectures. In
Proceedings of the international conference on
Supercomputing, ICS ’11, pages 75–84, New York, NY,
USA, 2011. ACM.

[12] S.-K. Lee and H.-A. Choi. Embedding of complete
binary trees into meshes with row-column routing.
IEEE Trans. Parallel Distrib. Syst., 7:493–497, May
1996.

[13] LLNL. Rubik, a mapping tool for n-dimensional mesh
topologies. https://scalability.llnl.gov/
performance-analysis-through-visualization,
2012.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[15] Shahid H. Bokhari. On the Mapping Problem. IEEE
Trans. Computers, 30(3):207–214, 1981.

[16] Soo-Young Lee and J. K. Aggarwal. A Mapping
Strategy for Parallel Processing. IEEE Trans.
Computers, 36(4):433–442, 1987.

[17] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel,
L. J. Suter, and E. A. Williams. Filamentation and
forward brillouin scatter of entire smoothed and
aberrated laser beams. Physics of Plasmas, 7(5):2023,
2000.

http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://hdl.handle.net/2142/16578
https://scalability.llnl.gov/performance-analysis-through-visualization
https://scalability.llnl.gov/performance-analysis-through-visualization

	Introduction
	Background and motivation
	Contention on torus networks
	Message flow and resource contention
	Collecting hardware counters data
	Indicators of resource contention

	Experimental setup
	Machines
	Communication kernels
	Five-point 2D halo exchange
	15-point 3D halo exchange
	All-to-all over sub-communicators
	Input Data

	Prediction using ensemble methods
	Metrics for prediction success

	Performance prediction of communication kernels
	Performance variation with mapping
	Prior features
	New features
	Hybrid features
	Results on 65,536 cores

	Combining all training sets
	Combining samples from different benchmarks
	Predicting performance on 65,536 cores using 16,384-core samples

	Results with pF3D
	Conclusion
	References

