Optimizing the performance of parallel applications on a SD torus via task mapping

Abhinav BhateleT, Nikhil Jain*>T, Katherine E. Isaacs§’T, Ronak Buch*, Todd GamblinT,
Steven H. LangerT, Laxmikant V. Kale*

tLawrence Livermore National Laboratory, Livermore, California 94551 USA
*Department of Computer Science, University of lllinois at Urbana-Champaign, Urbana, Illinois 61801 USA
§Department of Computer Science, University of California, Davis, California 95616 USA
E-mail: T{bhatele, tgamblin, langerl} @linl.gov, *{nikhil, rabuch2, kale}@illinois.edu, Skeisaacs @ucdavis.edu

Abstract—Six of the ten fastest supercomputers in the world
in 2014 use a torus interconnection network for message
passing between compute nodes. Torus networks provide high
bandwidth links to near-neighbors and low latencies over
multiple hops on the network. However, large diameters of such
networks necessitate a careful placement of parallel tasks on
the compute nodes to minimize network congestion. This paper
presents a methodological study of optimizing application per-
formance on a five-dimensional torus network via the technique
of topology-aware task mapping. Task mapping refers to the
placement of processes on compute nodes while carefully
considering the network topology between the nodes and the
communication behavior of the application. We focus on the
IBM Blue Gene/Q machine and two production applications —
a laser-plasma interaction code called pF3D and a lattice QCD
application called MILC. Optimizations presented in the paper
improve the communication performance of pF3D by 90% and
that of MILC by up to 47%.

Keywords-task mapping, 5D torus, performance, congestion

1. MOTIVATION

The scale of large parallel machines at the disposal of
computational scientists is unprecedented. The top five ma-
chines on the Top500 list [1] have over half a million cores.
These machines have complex on-node architectures and
their compute nodes are connected together by high-speed
interconnection networks. The rapid increase of on-node
computational power in proportion to network speeds sug-
gests that optimizing communication is important to ensure
high efficiency and optimal scaling of parallel applications.

Task mapping is a technique to optimize communica-
tion of parallel applications on the interconnection network
without having to modify the source code [2]. The tech-
nique places tasks or processes on compute nodes based
on a careful consideration of the interconnection topology
between the nodes and the communication behavior of the
application. This is especially important on torus networks
because their large diameters can require messages to travel
multiple hops to reach their destination, thereby increasing
the burden on the shared links. A torus or mesh network
topology has been commonly used to connect compute
nodes since the Cray T3D machine was developed twenty
years ago. Six of the ten fastest supercomputers in 2014

use a torus network for message passing between compute
nodes. The K computer uses the Tofu interconnect which is
a six-dimensional (6D) mesh/torus. The IBM Blue Gene/P
architecture uses a three-dimensional torus and its successor,
the IBM Blue Gene/Q, uses a five-dimensional (5D) torus.
Several generations of Cray machines (T3D, T3E, XT3/4/5,
XE6, XK7) from 1993 to the present have used a three-
dimensional torus as their communication backbone.

In this paper, we focus on the 5D torus network de-
ployed in the IBM Blue Gene/Q (BG/Q) machines. Task
mapping is an NP-hard problem [3]. The complexity of
conceptualizing a 5D torus (as opposed to a 3D one) makes
it even more challenging to develop near-optimal mapping
heuristics. We use Rubik, a tool developed at LLNL to
map applications with structured/Cartesian process grids to
arbitrary n-dimensional meshes/tori [4]. We present a step-
by-step methodology to improve application performance
using topology-aware task mapping, based on our experience
with optimizing production codes on BG/Q.

There are three steps involved in improving application
performance using topology-aware task mapping: 1) Perfor-
mance debugging via profiling, 2) Performance optimization
via task mapping, and 3) Performance analysis via profiling
and visualization. We present our experience of applying
task mapping to improve the performance of two highly
scalable, production applications — pF3D, a laser-plasma
interaction code, and MILC, a lattice quantum chromody-
namics (QCD) application.

We provide a detailed analysis of the cases in which task
mapping improves application performance and the reasons
for the performance benefits. We compare the improvements
to the change in the average number of hops traveled by
messages and the maximum load/congestion on the network
links. Task mapping improves the communication perfor-
mance of pF3D by 2.8x on 131,072 processes and that of
MILC by 47% on 65,536 processes. An easily correctable
performance bug found when profiling pF3D for this study
gives an additional 3.9x improvement. We believe that the
methodology presented here will be useful for improving the
performance of a broad class of computational science and
engineering applications on torus architectures.

II. BACKGROUND

Task mapping of an HPC application requires generating
an assignment of MPI task IDs or ranks to the cores and
nodes in the torus network. Traditionally, programmers have
written custom scripts to generate such assignments from
scratch. This process is tedious and error-prone, especially
with many tasks and high-dimensional networks. We de-
veloped Rubik [4], a tool that abstracts several common
mapping operations into a concise syntax. Rubik allows
complex mappings to be generated using only a few lines
of Python code. It supports a wide range of permutation
operations for optimizing latency or bandwidth, and we
only describe a relevant subset here. The full range of
transformations possible with Rubik is covered in [4].

Partitioning: Figure 1 shows a Rubik script that describes
the application’s process grid (a 9 x 3 x 8 cuboid) and a
Cartesian network (a 6 x 6 x 6 cube) by creating a “box”
for each. Each box is divided into sub-partitions using the
tile function, resulting in eight 9 x 3 x 1 planes in the
application and eight 3 x 3 x 3 sub-cubes in the network.
Rubik provides many operations like tile for partitioning
boxes, allowing users to group communicating tasks. These
partitioning operations can also be applied hierarchically.

»-99

3D Torus Application ranks mapped
to the 3D torus

Application

app = box([9,3,8]) # Create application grid
app.tile([9,3,1]) # Create eight sub-planes

network = box([6,6,6]) # Create network topology
network.tile([3,3,3]) # Create eight sub-cubes

network.map (app) # Map app. planes to proc. cubes

Figure 1: Mapping 2D sub-partitions to 3D shapes in Rubik

Mapping: The map operation assigns tasks from each
sub-partition in the application box to corresponding sub-
partitions in the network box. Partitions can be mapped to
one another if they have the same size, regardless of their
dimensions. This means we can easily map low-dimensional
planes to high-dimensional cuboids, changing the way in
which communicating tasks use the network. Thus, the user
is able to convert high-diameter shapes of the application,
like planes, into compact, high-bandwidth shapes on the
network, like boxes.

Permutation: In addition to partitioning and mapping oper-
ations, Rubik supports permutation operations that reorder
ranks within partitions. The tilt operation takes hyper-
planes in a Cartesian partition and maps them to diagonals.

Tilting is a bandwidth-optimizing operation — if tasks are laid
out initially so that neighbors communicate with one another
(e.g., in a stencil or halo), tilting increases the number of
routes between communicating peers. Successive tilting in
multiple directions adds routes in additional dimensions.
Tilting can be applied at any level of the partition hierarchy
— to specific partitions or to an entire application grid.

III. MAPPING, CONGESTION AND PERFORMANCE

We present a step-by-step methodology to improve appli-
cation performance using task mapping based on our expe-
rience with optimizing production applications on the IBM
Blue Gene/Q architecture. There are three steps involved
in this process: 1) Performance debugging via profiling, 2)
Performance optimization via task mapping, and 3) Perfor-
mance analysis via profiling and visualization. Each of these
steps is broken down further and explained in detail below.

A. Performance debugging

Application scientists are often unaware of the reason(s)
for performance issues with their codes. It is important
to determine if communication between parallel tasks is
a scaling bottleneck. Performance analysis tools such as
mpiP [5], HPCToolkit [6], and IBM’s MPI trace library [7]
can provide a breakdown of the time spent in computation
and in communication. They also output times spent, mes-
sage counts and sizes for different MPI routines invoked in
the code. Some advanced tools can also calculate the number
of network hops traveled by messages between different
pairs of tasks. The first step is to collect performance data
for representative input problems (weak or strong scaling)
on the architecture in question.

Performance data obtained from profiling tools can be
used to determine if communication is a scaling bottleneck.
As a rule of thumb, if an application spends less than 5%
of its time in communication when using a large number
of tasks, there is little room for improving the messaging
performance. If this is not the case, we can attempt to
use topology-aware task mapping to improve performance
and the scaling behavior. As we will see in the application
examples, task mapping can even be used to reduce the time
spent in collective operations over all processes.

B. Performance optimization

There are several tools and libraries that provide utilities
for mapping an application to torus and other networks [4],
[8], [9], [10], [11], [12]. We use Rubik, described in Sec-
tion II, to generate mappings for pF3D and MILC. Since
the solution space for mappings is so large, there are several
factors to consider when trying out different mappings:

o Are there multiple phases in the application with con-
flicting communication patterns?

o Is the goal to optimize point-to-point operations or
collectives or both?

o Is the goal to optimize network latency or bandwidth?

o Is it beneficial to consolidate communication on-node
or spread communication on the network?

The previous performance debugging step can provide
answers to the questions above and guide us in pruning the
space of all possible mappings. Once we have identified a
few mappings that lead to significant improvements, it is
crucial to understand the cause of the performance improve-
ments, which is the next step in the process.

C. Performance analysis

Performance analysis tools can also be used to dissect the
communication behavior of the application under different
mapping scenarios. Several metrics have been used in the
literature to evaluate task mappings and correlate them with
the network behavior — dilation [13], [14], hop-bytes [15],
[16] and maximum load or congestion on the network [11].
A more detailed analysis on correlating different task map-
pings with different metrics can be found here [17].

Comparing the communication and network behavior un-
der different mappings can enable us to understand the root
cause of performance benefits and help us in finding near-
optimal mappings. In this work, we explore three different
metrics that influence communication performance:

o Time spent in different MPI routines

o The average and maximum number of hops traveled
over the network

o The average and maximum number of packets passing
through different links on the network

All three metrics reflect the state of the network and
congestion to different extents and correlate, to differing
degrees, with the messaging performance of the application.
An iterative process of trying different mappings and ana-
lyzing the resulting performance can bring us closer to the
optimal performance attainable on a given architecture.

IV. EXPERIMENTAL SETUP

We use Vulcan, a 24,576-node, five Petaflop/s IBM Blue
Gene/Q installation on the unclassified (OCF) Collaboration
Zone network at Lawrence Livermore National Laboratory
(LLNL) for all the runs in this paper. The BG/Q architecture
uses 1.6 GHz IBM PowerPC A2 processors with 16 cores
each, 1 GB of memory per core, and the option to run 1 to
4 hardware threads per core. The nodes are connected by a
proprietary 5D torus interconnect with latencies of less than
a microsecond and unidirectional link bandwidth of 2 GB/s.
Ten links, two in each direction (A, B, C, D, and E), connect
a node to ten other nodes on the system. The E dimension
has length two, so the bandwidth between a pair of nodes
in E is twice the bandwidth available in other directions.
When running on Vulcan, the shape of the torus and the
connectivity for a given node count can change from one job
allocation to another. The jobs shapes that were allocated for
most of the runs in this paper are summarized in Table I.

#nodes A B C D E Torus or Mesh
128 1 4 4 4 2 Torus in all directions
256 4 4 4 4 1 Torus in all directions
512 4 4 4 4 2 Torus in all directions
1,024 4 4 4 8 2 Mesh in D, Torus in rest
2048 4 4 4 16 2 Torus in all directions
406 4 8 4 16 2 Torus in all directions

Table I: Shape and connectivity of the partitions allocated
on Vulcan (Blue Gene/Q) for different node counts

Both pF3D and MILC were run on 128 to 4,096 nodes.
Based on our previous experience with the two applications,
the performance sweet spot for hardware threads is at 2
threads per core for pF3D and 4 threads per core for MILC.
Both applications were run in an MPI-only weak scaling
mode, keeping the problem size per MPI task constant. We
used mpiP [5] to obtain the times spent in computation
and communication in different MPI routines. We used a
tracing library by IBM designed specifically for the BG/Q
to obtain the average and maximum number of hops traveled
by all messages. An in-house library for accessing network
hardware counters was used to collect the packet counts for
different torus links.

We compare different partitioning and permutation oper-
ations from Rubik with two system provided mappings on
BG/Q. ABCDET is the default mapping on BG/Q in which
MPI ranks are placed along T (hardware thread ID) first,
then E, D, and so on. This mapping fills the cores on a node
first before moving on to the next node. In the TABCDE
mapping, T grows slowest which is similar to a round-robin
mapping. MPI ranks are assigned to a single core of each
node before moving onto the next core of each node.

V. MAPPING STUDY OF PF3D

pF3D [18] is a scalable multi-physics code used for sim-
ulating laser-plasma interactions in experiments conducted
at the National Ignition Facility (NIF) at LLNL. It solves
wave equations for laser light and backscattered light. With
respect to communication, the two main phases are: 1) wave
propagation and coupling and 2) light propagation. The
former is solved using fast Fourier transforms (FFTs) and
the latter is solved using a 6th order advection scheme.

A 3D Cartesian grid is used for decomposing pF3D’s
domain among MPI processes. For the input problem that we
used in this paper, the X and Y dimensions of the process
grid are fixed at 32 and 16, respectively. As we scale the
application from 4,096 to 131,072 processes, the number of
planes in Z increases from 8 to 256. In the wave propagation
and coupling phase, the 2D FFT is broken down into several
1D FFTs, one set involving processes with the same X and
Z coordinate and another involving processes with the same
Y and Z coordinate. The advection messages are exchanged
in the Z direction between corresponding processes of the
XY planes. MPI_Alltoalls over sub-communicators of

size 32 and 16 are used for the FFT phase and MPI_Send
and MPI_Recv are used for the advection phase.

A. Performance debugging: Baseline performance

We start with profiling pF3D using mpiP to understand
the relative importance of the two phases described above
and the contribution of communication to the overall time.
Figure 2 shows the average, minimum, and maximum time
spent in messaging by MPI processes on different node
counts. The percentage labels on top of each vertical bar
denote the contribution of communication to the overall
runtime of the application. For a weak scaling study, we
would expect the communication time to be constant, but it
continues to grow, especially beyond 1,024 nodes, and adds
up to 46% of the total time at 4,096 nodes.

pF3D:Time spent in communication
180 -
160
140 =
120 36%
100 I

46%

Time (s)

80 - 23%
60 |-

o o 13%
40 L 2% 11%

» [o

128 256 512 1024 2048 4096

Number of nodes

Figure 2: Average, minimum, and maximum time spent in
communication by pF3D for weak scaling on Blue Gene/Q

A careful look at the breakdown of this time into dif-
ferent MPI routines (Figure 3) shows that the messag-
ing performance is dominated by three MPI routines —
MPI_Alltoall from the FFT phase, MPI_Send from
the advection phase and MPI_Barrier. The all-to-alls are
over sub-communicators of size 32 and 16 and the message
sizes between each pair of processes are 4 and 8 KB,
respectively. The advection send messages are of size 256
and 384 KB. We spend ~200 ms in each send, which is
much higher than expected. At 4,096 nodes, we also spend
a significant amount of time in an MPI_Barrier. We
believe communication imbalance due to network congestion
manifests itself as processes waiting at the barrier. We hope
that an intelligent mapping can reduce this time as well.

B. Performance optimization: Mapping techniques

We now know that for pF3D, the all-to-all and send
messages are a scaling bottleneck and any mappings that
we develop should try to optimize these two operations. The
first two mappings that we tried are ABCDET and TABCDE.
ABCDET keeps the all-to-alls in the X direction within
the node. However, this mapping is very inefficient for the
Sends because 32 tasks on one node try to send messages

pF3D: Time spent in MPI routines

180
160 Alltoall I

Send N
140 = Barrier mmm—m
120 Recv I
100
80
60
40

20

Time (s)

128 256 512 1024 2048 4096

Number of nodes

Figure 3: Average time spent in different MPI routines by
pF3D for weak scaling on Blue Gene/Q

to corresponding tasks on a neighboring node over a single
link. The TABCDE mapping spreads the pF3D XY planes
on the torus thereby reducing the congestion and time spent
in both the all-to-all and the send. The first and second bar
in the plots of Figure 5 show the reduction in time of those
two operations, 78% and 52% respectively on 4,096 nodes
(ABCDET is referred to as Default and TABCDE is referred
to as RR for round-robin in all the figures).

from rubik import =«

processor topology —— A x B x C x D x E x T
torus = autobox (tasks_per_node=32)
numpes = torus.size

application topology -- mp_r X mp_g X mp_p
mp_r = torus.size / (16x32)
app = box([mp_r, 16, 321])

ttile = [int(sys.argv[i]) for i in range(l, 7)]
torus.tile(ttile) # tile the torus

atile = [int(sys.argv([i]) for i in range (7, 10)]
app.tile(atile) # tile the application

map MPI ranks to their destinations
torus.map (app)

f = open('mapfile’, ’"w’) # write out the mapfile
torus.write_map_file (£f)
f.close ()

Figure 4: A Rubik script to generate tiled mappings for pF3D

The next mapping operation that we try with pF3D is
tiling which can help group communicating tasks together
on the torus. The entire code for doing this is shown
in Figure 4. Rubik obtains the torus dimensions for the
allocated partition automatically at runtime (we only need to
specify the number of MPI tasks per node). Then we tile the
torus and the application and finally call the map operation.

The various tile sizes that we tried for pF3D at different
node counts can be handled as inputs by the same script. We
tried four different combinations of tile sizes for the torus

pF3D: Time spent in MPI calls on 1,024 nodes
100

Alltoall
Send 80
Barrier N 60

Recv T
40

20

Time (s)
3
Time (s)

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

pF3D: Time spent in MPI calls on 2,048 nodes

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

pF3D: Time spent in MPI calls on 4,096 nodes
160

Alltoall Alltoall mmm—
Send N 120 Send N
Barrier NN Barrier NI

Recv 0 80 Recv T

Time (s)

40

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

Figure 5: Reduction of time spent in different MPI routines by using various task mappings for pF3D running on 1,024,
2,048 and 4,096 nodes of Blue Gene/Q (Note: y-axis has a different range in each plot)

pF3D: Network hops (1,024 nodes)
14 20 40

12
10 15
10

MPI Send time(s)
No. of hops
MPI Send time(s)
)

S

8
6
4 Max. hops —@—
) Send time —#&—
0

pF3D: Network hops (2,048 nodes)

pF3D: Network hops (4,096 nodes)

=)

No. of hops
MPI Send time(s)
=)

No. of hops

=)

30
10 Max. hops —@— 5 20 Max. hops —@— 5
Send time —&— Send time —&—
Y/'\?/\‘Avg. hops —e— Avg. hops —— Avg. hops ——
L Il 4 4 0 0 Il Il Il ¥- < 7' 0 0 L L L 'S 'Y 0

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

pF3D: Load on links (1,024 nodes)

MPI time —&—
Max. packets —@—
Avg. packets —e—

MPI time (s)
w
o

MPI time (s)

No. of packets (in billions)

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

pF3D: Load on links (2,048 nodes)

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

pF3D: Load on links (4,096 nodes)

MPItme —4— | € MPItme —4— | €
Max. packets —@— | ; = 120 Max. packets —@— | ; =
Avg. packets —e— 2 = Avg. packets —e— 2

< ° <

Py Py

2 g E 80 2 g

=

| 2 = 40 | 2

s s

e — N —— °

| | | 0 % 0 L L L f L L L 0 %

Default RR Tilel Tile2 Tile3 Tile4 Tilc

Different mappings

Default RR Tilel Tile2 Tile3 Tile4 Tilc

Different mappings

Default RR Tilel Tile2 Tile3 Tile4 Tilt

Different mappings

Figure 6: pF3D plots comparing the time spent in point-to-point operations with average and maximum hops (top) and the
MPI time with average and maximum load on network links (bottom) (Note: y-axis has a different range in each plot)

and the application which are listed in Table II. Tilel/ and
Tile3 use as few dimensions of the torus as possible. Tile2
and Tile4 use as many torus dimensions as possible which
results in a4 x4 x4 x4 x 2 x 1 tile. In Tilel and Tile2, we
make cubic tiles out of the pF3D process grid and in Tile3
and Tile4, we tile by XY planes in the application.

Mapping Torus tile (A X BXx C x D x E xT) pF3D tile
Tilel Use fewest possible dimensions 8x8x%x8
Tile2 4x4x4x4x2x1 8x8x8
Tile3 Use fewest possible dimensions 32x16x1
Tile4 4x4x4x4x2x1 32x16x1

Table II: Tile sizes used for the Blue Gene/Q 5D torus and
pF3D in different mappings

C. Performance analysis: Comparative evaluation

We now compare the performance of various mappings
across different node counts with respect to the reduction in
time spent in MPI routines and the amount of network traffic
that they generate. Figure 5 shows the MPI time breakdown
for seven different mappings on 1,024, 2,048 and 4,096
nodes. The first six mappings have already been described
above; in the 7ilt mapping, we create 3D tiles in the 5D

torus partition and tilt BC planes in the 3D sub-tori along
B. This operation led to significant performance benefits on
Blue Gene/P [4] but does not seem to help on BG/Q.

We can make several observations from these scaling
plots. The first trend we notice is that an intelligent tiling of
the application on to the torus reduces the time in both the
all-to-all and the send operation. We also see a reduction in
the time spent in the barrier which suggests reduced conges-
tion on the network and/or less communication imbalance.
In the case of pF3D, torus tiles that use all the dimensions of
the torus perform better than cubic tiles. This is because the
messages, especially the all-to-alls, can use more directions
to send their traffic. Finally, the time for sends decreases
with better mappings but levels off after a certain point —
more analysis on this is described in Section V-D. Overall,
Tile4 gives the best performance by reducing the time spent
in communication by 52% on 1,024 nodes and 64% on 4,096
nodes as compared to the default ABCDET mapping.

In Figure 6, we use the output from the IBM MPI profiling
tool and the network hardware counters library to understand
the traffic distribution on the network for different mappings.
In the top figures, we see that the maximum number of
hops traveled is constant for different mappings (it is also

higher as compared to MILC as we will see in Figure 10).
The time spent in the MPI_Send calls closely follows the
average number of hops. This suggests that if the application
primarily does point-to-point messaging, then reducing the
average number of hops is a good idea. The bottom figures
plot the average and maximum number of packets passing
through any link on the torus network. We notice that the
trends for the total MPI time and the maximum load are
similar which suggests that it is important to minimize hot-
spots or links with heavy traffic on the network.

D. Performance refinement: Iterative process

The plateau in the MPI_Send time reduction (Figure 5)
prompted us to look further into the problem. We looked
at the stack trace to find the origin of these calls in the
source code. These calls are made in the syncforward
and syncbackward functions which are a part of the
advection phase.

A closer look at the MPI standard and BG/Q’s implemen-
tation of large sends revealed that the use of MPI_ Send fol-
lowed by MPI_Recv resulted in an unintended serialization
of the advection messages. For large messages, MPI_Send
uses a direct copy to the receive buffer and returns after the
data is transferred to the destination. However, the location
of the receive buffer is known only when an associated
MPI_Recv is posted. Hence, when the MPI processes in the
rightmost XY plane (which do not have to send any data)
post their receives, actual transfer of data begins from the
MPI processes in the XY plane penultimate to it. When this
transfer is completed, the sends posted by the MPI processes
in the penultimate plane return and their receives are posted.
At this point, the data transfer from the processes in the plane
to its left begins. Such inefficient serialized transfer of data
continues till we reach the leftmost XY plane.

pF3D: MPI Isend optimization on 4,096 nodes

70

Alltoall I
60 - Barrier NN
50 |- Recv

Wait
40

Time (s)

30
20
10

Default RR Tilel Tile2 Tile3 Tile4 Tile

Different mappings

Figure 7: Average time spent in different MPI routines by
pF3D on 4,096 nodes (includes MPI_TIsend optimization)

The solution is simple — use a non-blocking send, post
receives, and then wait on completion of posted sends.
We replaced the MPI_Send calls with MPI_TIsend and
observed significant improvement in the rates for advection

messages. Figure 7 shows the new distribution of the time
spent in different MPI routines and we can see that most of
the time spent in MPI_Send has been eliminated. This also
has a positive effect on mapping — the same mappings now
lead to higher performance benefits compared to the default.
For example, Tile4 reduces the communication time by 77%
w.r.t the default mapping as compared to 64% before.

VI. MAPPING STUDY OF MILC

MILC [19], developed by the MIMD Lattice Computation
collaboration, is a widely used parallel application suite for
studying quantum chromodynamics (QCD), the theory of
strong interactions of subatomic physics. It simulates four di-
mensional SU(3) lattice gauge theory in which strong inter-
actions are responsible for binding quarks into protons/neu-
trons and holding them together in the atomic nucleus. We
use the MILC application su3_rmd, distributed as part of
the NERSC-8 Trinity Benchmark suite [20]. In su3_rmd,
the quark fields are defined on a four-dimensional (4D) grid
of space time points. This grid is mapped onto a 4D grid of
MPI processes. In every simulation step, each MPI process
exchanges information related to its quarks with its nearest
neighbors in all four dimensions. Thereafter, computation
(primarily a conjugate gradient solver) is performed to up-
date the associated states of the quarks. Global summations
are also required by the conjugate gradient solver.

In order to obtain the best performance, MILC was
executed on BG/Q using 4 hardware threads per core. As a
result, when running from 128 to 4,096 nodes, the number
of MPI processes ranges from 8,192 to 262,144 respectively.
The grid size per MPI process is kept constant at 4 x4 x 8 x 8,
which leads to a weak scaling of the global grid as the node
count increases. The dimensions of the MPI process grid for
different node counts are decided by the application.

A. Performance debugging: Baseline performance

As stated in Section III-A, the first step in our method-
ology is to evaluate the communication characteristics of
the application. Figure 8a shows that MILC spends between
22% and 30% of its execution time performing commu-
nication. As the node count increases from 128 to 4,096,
the overhead of communication increases by 83% (from 92
to 168 seconds). Given the weak-scaling nature of these
experiments, this increase in MPI time is unexpected and
has a negative impact on the overall performance.

The next step is to obtain a detailed profile of MILC to
find the predominant MPI routines. Figure 8b reveals that
MPI_Wait (following an MPI_TIsend/MPI_Irecv pair)
and MPI_Allreduce over all processes are the key MPI
calls. These results are not very encouraging w.r.t using
task mapping for performance optimization. While mapping
may help reduce the wait time, it is typically not useful
for improving the performance of global collectives (over
MPI_COMM_WORLD).

MILC: Time spent in communication

200 200 30% 30% 200 Wait I

° Allreduce

150 26% 150 Isend I

=z o o = Irecv 2
E 100 2% 2% g 100

= =
50 50
0 1 1 1 = 0
128 256 512 1024 2048 4096 128 256 512

Number of nodes

(a) Average time spent in communication

MILC: Time spent in MPI routines

Number of nodes

(b) Time spent in different MPI routines

MILC: Effect of adding a barrier on 1,024 nodes
200

Wait
Barrier C—J
Allreduce
Isend .
Irecv 0

150

100

Time (s)

50

1024 2048 4096 0

Default

With barrier

(c) Imbalance appears as all-reduce time

Figure 8: Evaluation of the baseline performance of MILC with the default mapping (ABCDET) on Blue Gene/Q

MILC: Time spent in MPI calls on 1,024 nodes

300
250
200
150
100
50

300

Isend —— Wait .
Irecv 20 Allreduce
200
150
100
50

Time (s)
Time (s)

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

MILC: Time spent in MPI calls on 2,048 nodes

Isend —
250 Irecv EE20 Allreduce Emmm

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

MILC: Time spent in MPI calls on 4,096 nodes
500
400
300
200
100

Wait - Wait

Allreduce
Isend
Irecv

Time (s)

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

Figure 9: Reduction of time spent in different MPI routines by using various task mappings for MILC running on 1,024,
2,048 and 4,096 nodes of Blue Gene/Q (Note: y-axis has a different range in each plot)

Reason for the apparently slow all-reduce: While the
MPI profiles show that a significant time is spent in the all-
reduce, the data exchanged per all-reduce per process is only
8 bytes. The long time spent in the all-reduce is puzzling
because a typical 8-byte all-reduce on 1,024 nodes of BG/Q
takes only 77 microseconds. A possible explanation is that
MILC suffers from either computational or communication
imbalance which leads to an increased time spent in the all-
reduce, a blocking call that causes global synchronization
as a side effect. In order to verify this hypothesis, we did
multiple runs in which an MPI_Barrier was inserted just
before the all-reduce call.

Figure 8c compares the profile for the default case with
an execution that has a barrier inserted before the all-reduce
on 1,024 nodes. Most of the reported all-reduce time in the
former case shifts to the barrier time in the latter version.
This is also observed on other node counts, which supports
our hypothesis. Further, since MILC does not have dynamic
computational load imbalance and the all-reduce time of all
processes is high (as confirmed by per process profiling),
we can confidently attribute the high all-reduce time to
communication-induced variations. This is possibly due to
imbalanced or congested point-to-point communication, and
can probably be reduced via task mapping.

B. Performance optimization: Mapping techniques

As described in the previous section, MILC spends a
significant fraction of its execution time in point-to-point
communication which can possibly be reduced by mapping
its tasks carefully. The simplest variation to try is the
TABCDE mapping. Figure 9 presents the comparison of
the communication time for the default ABCDET mapping

(Default) and TABCDE (RR). Depending on the node count,
we observe contrasting effects — for 1,024 and 4,096 nodes,
TABCDE reduces the communication time by 20%, whereas
for 2,048 nodes, it increases the communication time by
80%. The difference shows up in the time spent in wait and
all-reduce, both of which can be attributed to point-to-point
communication (Section VI-A).

Another mapping which we called the Node mapping
blocks communicating MPI processes into sub-grids and
places them on hardware nodes (64 MPI processes per node).
This is a natural choice for mapping of structured applica-
tions such as MILC. Surprisingly though, such blocking does
not improve the performance; for most cases, Node mapping
increases the communication time. As a result, we avoid
blocking and instead, scatter nearby ranks (as in TABCDE)
when generating tile-based mappings with Rubik.

For the tile-based mappings, we attempt to map sub-
grids of MILC to similar sub-grids on the BG/Q torus. For
example, Tilel maps a 4 X 4 x 4 x 4 sub-grid of MILC to a
4 x4 x4 x4 sub-grid of BG/Q along its first four dimensions
(A, B, C, D). Other mappings (Tile2, Tile3 and Tile4) per-
form similar tilings on different symmetric and asymmetric
sub-grid sizes. Most of these choices were guided by the
observed performance and profiling information for these
experiments (summarized in Figure 9).

In a manner similar to RR and Node mappings, we
observe significant variations in the impact of tile-based
mappings on the communication time. 7ile! and Tile2 reduce
the communication time significantly on 1,024 nodes, but
increase the communication time on other node counts.
Similar observations about other mappings can be made.

MILC: Network hops (1,024 nodes)

250 16 250
Max. hops —@—
200 Wait time —&—
Avg. hops ——

150

100

MPI Wait time (s)
©
No. of hops
MPI Wait time (s)

50

0 1 i I I I 0 0 I 1

MILC: Network hops (2,048 nodes)

MILC: Network hops (4,096 nodes)

Max. hops —@—
Wait time —&—
200 - Avg. hops —e—

©

No. of hops
©

No. of hops

MPI Wait time (s)

I I I) 0 I I I I I I 0

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

MILC: Load on links (1,024 nodes)

300 25 300

MPI time —&—
250 Max. packets —@—
200 |- Avg. packets

150
100

MPI time (s)
No. of packets (in billions)
MPI time (s)
@
S

Default RR Node Tilel Tile2 Tile3 Tile4
Different mappings

MILC: Load on links (2,048 nodes)

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

MILC: Load on links (4,096 nodes)

25 500 25

MPI time —&—
Max. packets —@—
Avg. packets —o—

Now A
S o o
S & o

MPI time (s)

=)
3

No. of packets (in billions)
No. of packets (in billions)

o
o
o

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

Default RR Node Tilel Tile2 Tile3 Tile4
Different mappings

Default RR Node Tilel Tile2 Tile3 Tile4

Different mappings

Figure 10: MILC plots comparing the time spent in point-to-point operations with average and maximum hops (top) and
the MPI time with average and maximum load on network links (bottom) (Note: y-axis has a different range in each plot)

None of the tile-based mapping we attempted were able to
reduce the communication time on 4,096 nodes.

C. Performance analysis: Comparative evaluation

In this section, we attempt to find the cause for varying
impact of different mappings on various node counts pre-
sented in Section VI-B. Figure 10 (top) shows the time spent
in MPI_Wait and the average and maximum number of
hops traveled by point-to-point messages. The average and
maximum number of 512-byte packets on the network links
and the total MPI time are shown in Figure 10 (bottom).
For MILC, since most of the communication volume is due
to the point-to-point communication, the average hop curves
are very similar to the average packet curves.

Overall, no correlation is observed between the wait times
and maximum #hops. This is expected since the messages
in MILC are a few KBs in size and hence, not latency
bound. It also suggests that maximum #hops is not a good
indicator of network congestion. However, the average #hops
and maximum #packets follow trends similar to the wait
time and MPI time respectively, with a few aberrations.
These observations are in line with our previous results on
correlating performance and metrics [17].

For the default mapping, similar values for average #hops
and maximum #packets are observed on 1,024 and 2,048
nodes which translates into similar wait and MPI times. At
4,096 nodes, the average #hops doubles which results in
increased wait time. However, the MPI time remains the
same due to reduced all-reduce time, indicating a better
communication balance. In contrast, for TABCDE, both
the average #hops and maximum #packets are significantly
higher on 2,048 nodes. As a result, TABCDE has a very
high wait time and MPI time on 2,048 nodes. On other node
counts, use of TABCDE halves the maximum #packets in

comparison to the default mapping, and hence also reduces
communication time.

On 2,048 and 4,096 nodes, the Node mapping provides
higher average and maximum #packets in comparison to the
default mapping. As a result, it also shows higher wait time
and MPI time. At 1,024 nodes, we do not see similar trends.
This needs a more detailed study, along the lines of [17]. The
four tile-based mappings follow similar trends: a mapping
that provides lower average hops and maximum packets on
a node count shows lower wait and MPI times.

20,259,108,096

768

Figure 11: Four sub-tori showing the D (blue), C (red, long),
and B (red, short, diagonal) links for the same E on BG/Q

D. Network visualization of packets

We explore network traffic in more detail using the BG/Q
visualization module in Boxfish [21]. Boxfish projects the
links of an n-dimensional torus into 2D planes to reduce
occlusion. By changing which torus directions compose the
planes, the links of different directions can be examined.
Figure 11 shows an example focusing on the C and D torus

b= ddd A b= oo dXa— ¢

] [O 0

o R

dv|[b A a— di¥|[d a—> bi|la b= cl|b S a— ci a— bé
M HiNEnn.
|

|

L

- = o TATTTETTOON) < (CTTTORNCNNNY - (RNONITTICT

A T A g m i

“a— d

—

1
[
(]
L

1
2]
2]

2]

b di|ld b cllla N » d

L] L]

o Wlalalala e o Balilalnn "/f[ﬂ!ﬂEL-iTllll‘ bre !m;[-ﬂllll oo [llign N

b= di|lbMa— di|[d M a— bl|la b= b a— cd T a— by

=1 0] [O

o OTTIN v CECTRTIINED - IR

Dy [W (R TAR

Figure 12: MILC on Blue Gene/Q: Minimaps showing aggregated network traffic along various directions for the TABCDE
(left) and Tile3 mapping (right, the colors represent aggregated traffic flowing in different directions)

pF3D: Time spent in MPI routines

160 160

Alltoall mmm— Alltoall
120 Send 120 Send
Barrier NN Barrier NN
80 Recv 0 80 Recv 0

Time (s)
Time (s)

0 0 44% 45%

128

256 512 1024 2048 4096

128

256

Number of nodes

pF3D: Time spent in MPI routines (Best mapping)

52%

512

Number of nodes

pF3D: Time spent in MPI routines (Using Isends)

160

Alltoall mmm—

Barrier N
Recv 3
Wait

120

80

Time (s)

64%

o 10% 40
61% 7% 53% 77% 88% 90%

63%

1024 2048 4096 128 256 512 1024 2048 4096

Number of nodes

Figure 13: pF3D on Blue Gene/Q: A scaling comparison of the time spent in different MPI routines with the default mapping
(left), best mapping discovered (center) and with the best mapping using the Isend optimization (right)

directions for the TABCDE mapping using 2,048 nodes.
The displayed traffic is the network hardware counters data
(number of packets) obtained from MILC runs.

We first look at previews of the planes (‘minimaps’) which
are colored by aggregated packets taken across all but two
torus dimensions. This provides an overview of link behavior
in all directions. As each minimap shows two directions
aggregated along a third (and the short E direction), they
are twelve in total. Figure 12 shows the minimaps for the
TABCDE and Tile3 mappings of MILC on 2,048 nodes.
Traffic in the D direction for the TABCDE mapping is high
while traffic in all other directions is low. This holds for all
minimaps showing the D direction, indicating that this is true
for all D links and is not affected by other directions. We
also examined the individual links (Figure 11) and verified
that there is no significant variation. In comparison, while
the Tile3 mapping has heavier traffic in the D direction, it
is still relatively low. These observations are consistent with
our findings in Figure 10, which shows higher maximum
traffic for the TABCDE mapping than the Tile3 mapping.
Further, the visualization reveals that the maximum traffic
is not due to outliers, but is caused by uniformly heavy use
of a single torus direction.

VII. DISCUSSION AND SUMMARY

This paper presents a step-by-step methodology to op-
timize application performance on 5D torus architectures
through the technique of topology-aware task mapping. We
have learned several lessons in the process of performance

analysis and optimization of pF3D and MILC on IBM Blue
Gene/Q using this methodology. These are some interesting
observations that might be useful to others scientists opti-
mizing their codes on BG/Q:

o The default mapping (ABCDET), which blocks MPI
tasks on the compute node may not yield the best
performance even for near-neighbor codes.

« Mappings that spread traffic all over the network such
as TABCDE may lead to better performance for some
bandwidth-bound parallel applications.

o Also, for such applications, using all directions to dis-
tribute network traffic may provide better performance
rather than confining traffic to a few directions.

o Sometimes, computational or communication imbal-
ance or delays due to network congestion can manifest
themselves as wait time or time spent in a global
collective. Careful mappings can reduce this time.

« It can take several iterations to improve the performance
of a parallel code. Sometimes, when the scaling bottle-
neck is elsewhere, it may appear that intuitive mappings
are not leading to expected performance gains.

Finally, in the process of analyzing different mappings
and the corresponding network behavior, we were able to
improve the performance of pF3D and MILC significantly.
Plots in Figure 13 show the time spent by pF3D in different
MPI routines for the default mapping, the best mappings
we found, and the best mappings combined with the Isend
optimization. The labels in the center and right plot denote

the percentage reduction in communication time compared
to the default ABCDET mapping. The center plot shows that
the best mappings can reduce the time spent in all-to-all,
sends and barrier. Tiled mappings improve the communica-
tion performance of pF3D by 2.8 on 4,096 nodes and the
Isend modification improves it further by 3.9x. Figure 14
shows the performance improvements obtained with the best
mappings for a scaling run of MILC (21% reduction in MPI
time at 4,096 nodes).

MILC: Time spent in MPI routines (Best mapping)

180
" Wait
160
Allreduce 21%
140 |- Isend I 24%
120 Irecy
100 - 7% 47%

80 | 14% 38%

60
40
20

Time (s)

128 256 512

1024 2048 4096

Number of nodes

Figure 14: A scaling comparison of the benefits of task
mapping for MILC on Blue Gene/Q

ACKNOWLEDGMENT

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.
This work was funded by the Laboratory Directed Research
and Development Program at LLNL under project tracking
code 13-ERD-055 (LLNL-CONF-655465).

REFERENCES

[1] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. (2009)
“Top500 Supercomputer Sites”. http://www.top500.org.

[2] A. Bhatele, “Automating Topology Aware Mapping
for Supercomputers,” Ph.D. dissertation, Dept. of
Computer Science, University of Illinois, August 2010,
http://hdl.handle.net/2142/16578.

[3] Shahid H. Bokhari, “On the Mapping Problem,” IEEE Trans.
Computers, vol. 30, no. 3, pp. 207-214, 1981.

[4] A. Bhatele, T. Gamblin, S. H. Langer, P-T. Bremer, E. W.
Draeger, B. Hamann, K. E. Isaacs, A. G. Landge, J. A.
Levine, V. Pascucci, M. Schulz, and C. H. Still, “Mapping
applications with collectives over sub-communicators on torus
networks,” in Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC 12. IEEE Computer Society,
Nov. 2012, LLNL-CONF-556491.

[5] J. Vetter and C. Chambreau, “mpiP: Lightweight, Scalable
MPI Profiling,” http://mpip.sourceforge.net.

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “Hpctoolkit: Tools
for performance analysis of optimized parallel programs,”
Concurrency and Computation: Practice and Experience,
vol. 22, no. 6, pp. 685-701, 2010.

[7] L-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu, “Mpi
performance analysis tools on blue gene/l,” in Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, ser. SC
’06. New York, NY, USA: ACM, 2006.

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

H. Yu, I.-H. Chung, and J. Moreira, “Topology mapping for
Blue Gene/L supercomputer,” in SC '06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing. New York,
NY, USA: ACM, 2006, p. 116.

A. Bhatele, G. Gupta, L. V. Kale, and L.-H. Chung, “Auto-
mated Mapping of Regular Communication Graphs on Mesh
Interconnects,” in Proceedings of International Conference on
High Performance Computing (HiPC), 2010.

A. Bhatele and L. V. Kale, “Heuristic-based techniques for
mapping irregular communication graphs to mesh topologies,”
in Proceedings of the Workshop on Extreme Scale Computing
APplication Enablement - Modeling and Tools, ser. ESCAPE
’11, Sep. 2011, LLNL-CONF-491311.

T. Hoefler and M. Snir, “Generic topology mapping strategies
for large-scale parallel architectures,” in Proceedings of the
international conference on Supercomputing, ser. ICS ’11.
New York, NY, USA: ACM, 2011, pp. 75-84.

M. Deveci, S. Rajamanickam, V. J. Leung, K. Pedretti, S. L.
Olivier, D. P. Bunde, U. V. Catalyiirek, and K. Devine, “Ex-
ploiting geometric partitioning in task mapping for parallel
computers,” in Proceedings of the IEEE International Parallel
& Distributed Processing Symposium, ser. IPDPS *14. 1EEE
Computer Society, May 2014.

Aleliunas, R. and Rosenberg, A. L., “On Embedding Rectan-
gular Grids in Square Grids,” IEEE Trans. Comput., vol. 31,
no. 9, pp. 907-913, 1982.

S.-K. Lee and H.-A. Choi, “Embedding of complete binary
trees into meshes with row-column routing,” IEEE Trans.
Parallel Distrib. Syst., vol. 7, pp. 493-497, May 1996.

F. Ercal and J. Ramanujam and P. Sadayappan, “Task alloca-
tion onto a hypercube by recursive mincut bipartitioning,” in
Proceedings of the 3rd conference on Hypercube concurrent
computers and applications. ACM Press, 1988, pp. 210-221.
T. Agarwal, A. Sharma, and L. V. Kalé, “Topology-aware
task mapping for reducing communication contention on large
parallel machines,” in Proceedings of IEEE International
Parallel and Distributed Processing Symposium, April 2006.
N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale,
“Predicting application performance using supervised learn-
ing on communication features,” in ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC *13. IEEE Computer Society,
Nov. 2013, LLNL-CONF-635857.

S. Langer, B. Still, T. Bremer, D. Hinkel, B. Langdon, and
E. A. Williams, “Cielo full-system simulations of multi-
beam laser-plasma interaction in nif experiments,” CUG 2011
proceedings, 2011.

C. Bernard, T. Burch, T. A. DeGrand, C. DeTar, S. Gottlieb,
U. M. Heller, J. E. Hetrick, K. Orginos, B. Sugar, and
D. Toussaint, “Scaling tests of the improved Kogut-Susskind
quark action,” Physical Review D, no. 61, 2000.

“NERSC-8: Trinity Benchmarks.” [Online]. Available:
http://www.nersc.gov/users/computational-systems/nersc-8-
system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-
trinity-benchmarks

A. G. Landge, J. A. Levine, K. E. Isaacs, A. Bhatele,
T. Gamblin, M. Schulz, S. H. Langer, P.-T. Bremer, and
V. Pascucci, “Visualizing network traffic to understand the
performance of massively parallel simulations,” in IEEE Sym-
posium on Information Visualization (INFOVIS’12), Seattle,
WA, October 14-19 2012, LLNL-CONF-543359.

