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Fig. 1: Logical timeline and clustered logical timeline views from Ravel, a tool for visualizing parallel execution traces. Events
are represented by boxes, colored by their wall-clock delay. The use of logical time reveals communication patterns and leverages
developers’ understanding of their program’s structure. We use the logical time structure to cluster on any metric, which allow us
to represent large-scale traces using explorable clusters while still depicting messages with full timelines for a subset of processes.

Abstract— With the continuous rise in complexity of modern supercomputers, optimizing the performance of large-scale parallel
programs is becoming increasingly challenging. Simultaneously, the growth in scale magnifies the impact of even minor inefficiencies
– potentially millions of compute hours and megawatts in power consumption can be wasted on avoidable mistakes or sub-optimal
algorithms. This makes performance analysis and optimization critical elements in the software development process. One of the
most common forms of performance analysis is to study execution traces, which record a history of per-process events and inter-
process messages in a parallel application. Trace visualizations allow users to browse this event history and search for insights into
the observed performance behavior. However, current visualizations are difficult to understand even for small process counts and do
not scale gracefully beyond a few hundred processes. Organizing events in time leads to a virtually unintelligible conglomerate of
interleaved events and moderately high process counts overtax even the largest display. As an alternative, we present a new trace
visualization approach based on transforming the event history into logical time inferred directly from happened-before relationships.
This emphasizes the code’s structural behavior, which is much more familiar to the application developer. The original timing data, or
other information, is then encoded through color, leading to a more intuitive visualization. Furthermore, we use the discrete nature of
logical timelines to cluster processes according to their local behavior leading to a scalable visualization of even long traces on large
process counts. We demonstrate our system using two case studies on large-scale parallel codes.

Index Terms—Information visualization, software visualization, timelines, traces, performance analysis.

1 INTRODUCTION

Large-scale simulations increasingly form the backbone of a wide va-
riety of science and technology fields [19, 2]. These parallel appli-
cations can utilize hundreds of thousands of processors across tens of
thousands of nodes. Understanding, let alone optimizing, the behav-
ior of a massively parallel simulation code is a significant and largely
unsolved challenge [12]. At the same time, high-end simulations mo-
nopolize supercomputers for days or weeks, so even minor runtime
improvements translate into significant energy and cost savings, in-
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creased throughput, and more science per time.
One common approach to gain more insight into the behavior of a

code is tracing, which logs events of interest during program execu-
tion, providing a detailed history for later analysis. The data can in-
clude function invocations for each process, interactions between pro-
cesses, hardware counter states, or file operations. Even when record-
ing only a subset of events or selected parts of the code, a trace of
a moderately sized run may contain gigabytes or terabytes of data.
In addition to the sheer scale, traces can be highly complex, making
automatic analysis challenging. While there exist solutions to some
problems, like identifying the critical execution path [36, 7], in many
cases the root causes of performance problems are more subtle than,
for example, a single late process. Moreover, fully automatic tech-
niques have been of limited use. Instead, application developers and
performance experts have turned to visualization in hopes of identify-
ing patterns and forming new hypotheses to be tested.

Currently, the visual analysis of trace data tends to one of two ex-
tremes: on one end, visualizations used in practice attempt to show
all of the data with little or no preprocessing [22, 31, 33], which
makes the visualization difficult to comprehend even at modest pro-



cess counts. At the other end of the spectrum are summary statistical
graphs and analysis techniques, which heavily compress or process
the data. While some analysis techniques focus exclusively on high-
level structure [18, 17, 16], others identify problematic behavior lo-
cally [43], but discard the context necessary to discover initial causes
or longer term effects. What is missing are visualization techniques
that provide productive analysis that is abstract enough to handle large
process counts but detailed enough to provide new insight.

Given the goals of performance experts — understand and optimize
the behavior of codes — and the state of the existing trace analysis
tools, we have identified three design goals for an improved trace vi-
sualization. A visualization must:

G1 Preserve and highlight event patterns and dependencies. Most
applications will exhibit regular patterns in their traces caused
by their iterative nature. Detecting these patterns is key to any
performance analysis. A visualization must clearly show such
patterns. For communication specifically, we must avoid the in-
decipherable tangle of lines common in current tools.

G2 Be effective for large numbers of processes. Many performance
problems only manifest at large process counts, so the visualiza-
tion must scale to be useful.

G3 Provide multiple levels of detail and abstraction. Analysts need
overviews when little is known about a problem, and the ability
to explore in more detail when necessary.

To meet these goals, we decided to visualize a trace in logical time
inferred from the happened-before dependencies between events. This
differs from physical time, which existing tools use, and has two main
advantages: First, logical time, by construction, corresponds more
closely to the code structure, with which a user is intimately famil-
iar, resulting in a more intuitive visual encoding. Second, the discrete
nature of logical time allows us to cluster and thus summarize chains
of events across processes leading to a scalable, multi-resolution rep-
resentation. We combine these two properties in Ravel, a new visu-
alization tool for parallel execution traces. Ravel provides multiple
linked and coordinated views of large-scale traces at different levels
of abstraction. Unlike existing tools, our primary axis is logical time
with other metrics that reflect physical time based properties, such as
lateness, encoded using color maps. This allows developers to easily
detect differences in structure between processes or different versions
of the code as well as to understand differences in, for example, timing
when comparing similar structures. In summary our contributions are:

1. A logical, rather than physical, parallel interactive timeline visu-
alization that still captures physical timing data.

2. A distance metric for clustering logical timelines based on phys-
ical time behavior.

3. Ravel, a visualization tool for parallel execution traces using
multiple coordinated views.

2 BACKGROUND AND RELATED WORK

Modern supercomputers are composed of a network of nodes, where
each node has compute cores and local memory. Large-scale parallel
applications divide computational work among individual processes
by assigning a piece of the overall work to each core. This is called
domain decomposition. For the computation to proceed, processes
typically must exchange data. A common model is to send messages
between processes. The Message Passing Interface (MPI) [35] is the
most widely used standard for this kind of programming model in high
performance computing. Under MPI, developers explicitly call rou-
tines for sending and receiving messages between processes. Each
process is assigned a unique ID for addressing messages and to de-
termine what part of the larger problem to compute. While we fo-
cus on applications using MPI here, our approach is general enough
that it could be applied to other message passing implementations and
dependency-based programming models.

Tracing is a technique that chronologically records actions taken
by an application during its execution. We call the resulting record

an execution trace. The recorded actions include entering and exit-
ing functions, as well as sending and receiving messages. Events are
timestamped. In parallel programs, the process in which each event
occurs is also recorded. We combine matching function entry and exit
actions and deem the time spent in a function an event. We also asso-
ciate messages with the functions that send and receive them. We call
these send events and receive events.

Most parallel trace visualizations plot stacked per-process event
timelines with process or thread numbers mapped to the non-time axis.
Functions are represented as rectangular bars that span their lifetime
along the time axis, a technique used in Gantt charts. Single process
trace visualizations often show the active call stack for each process
by arranging function bars similar to an icicle plot. Trumper et al. [41]
aligned multiple of these views to show threads, but targeted situa-
tions where only a few threads need to be viewed at a time. When
several processes are shown, there is not enough space for the call
stack, so only the active function is represented. Zinsight’s [13] event
flow view follows this depiction with functionality to expand process
timelines into those of the composite processing elements. However,
these traces do not include communication between processes.

Visualizations of this type that depict messages use lines between
the two communicating process timelines positioned based on their
send and receive times. Actively maintained visualization tools of this
type include Vampir [31], Paraver [33], and Projections [22], the latter
focusing on Charm++ as an alternative to the MPI model. For a more
complete survey of visualizations of various types of traces, including
the ones we discuss here, we refer the reader to [21].

As more processes are added to the parallel physical timeline view,
the message lines can become an inscrutable hairball, which makes it
impossible for users to see, let alone understand, any pattern present
in the trace. While Ravel uses the same familiar paradigm of paral-
lel timelines, events as rectangles and messages as lines between pro-
cesses, our approach uses logical timelines rather than physical ones.
This untangles the hairball and can reveal messaging patterns. Phys-
ical time information, which is still critical for performance analysis,
is added back to the plot by color coding the logical time view. We
include a traditional physical timeline view, but it is mainly for com-
parison for users familiar with existing tools as well as for detailed
exploration of local areas of interest discovered using our other views.

Ariadne [11], PVaniM [40], and Growing Squares [14] animated
message events between processes in logical time for debugging and
program comprehension purposes, but did not include physical time
information needed for performance analysis. Furthermore, these vi-
sualizations portrayed at most tens of processes.

Muelder et al. [29] tackled the issue of scale by changing the verti-
cal axis from processes to event duration and using opacity scaling to
plot the events from all processes on top of each other, visually clus-
tering similarly timed events but anonymizing all processes, thereby
omitting message dependencies between them. Sigovan et al. [38]
plotted event duration versus process ID, incorporating time through
animation. This shows individual processes, but not messages between
them. Our visualization allows users to explore communication pat-
terns at a level of detail that preserves these relationships.

Vampir includes an option for applying k-means clustering to pro-
cesses, choosing k by how many clusters can fit on screen [9]. The
clustering is done on events in physical time and messages are omit-
ted. We also use clustering, but we use temporal metrics to cluster in
logical time. Projections shows outlier timelines when it is not pos-
sible to draw all processes. Our clustering view is similar, showing a
process of interest and its messaging neighborhood.

Timeline visualizations in other domains share some similarities
with this work. An overview of time-series visualization techniques
can be in found in [1]. LifeFlow [44] aggregates and aligns numerous
event sequence records, placing groups at their mean event sequence
time. EventFlow [28] extends this visualization to durational events.
The timelines in this data do not have relationships between them.

Several techniques depict interactions between multiple timelines,
such as participation in the same event [30], marriages between per-
sons [24], or edits to the same file [32], by changing the proximity



between the timelines. In history flow [42], Wikipedia author con-
tributions to a single article were positioned vertically by the change
along the article’s text. This visualization could use either physical or
per-revision time. These techniques however do not depict multiple
separate interactions occurring concurrently, which is the case with
many messaging patterns in our traces.

3 LOGICAL TIMELINES

As time is a central element of traces, many trace visualizations rep-
resent the time data of events using position on a common scale, the
most effective visual channel [10]. While this choice gives the viewer
the most fidelity with respect to event start and end time differences,
the larger communication structure composed of those events and mes-
sages is easily lost. This structure is an important context for under-
standing the underlying application code. We prioritize this structure
by switching from a physical time scale to a logical time scale where
events are positioned based on a logical happened-before ordering de-
fined by the semantics of the communication events (e.g., a message
has to be sent before it can be received). At the same time, we re-
tain physical time, which is important to understand the overall per-
formance, by color encoding with metrics derived from physical time.
In particular, we have had success using a metric we call lateness, the
delay each event experiences relative to its logical assignment. We ex-
plain logical time in Section 3.1 and lateness in Section 3.2. Logical
time and lateness further provide a basis for handling issues of scale,
which we discuss in Section 3.3.

3.1 Logical Time
Logical time is a concept based on the order in which the events took
place with respect to each other rather than compared to physical or
wall clock time. Lamport [25] defines the happened-before relation
and the Lamport clock, which serve as an initial basis for the logical
time we use. Happened-before is a transitive relation (→) such that:
(1) for events a,b of the same process, a → b if a occurs before b and
(2) for matching send and receive events s,r, respectively, s → r. The
Lamport clock is a function C that assigns a number to each event such
that for events a,b, C(a)<C(b) if a → b.

We use a clock scheme with additional constraints designed to ex-
tract communication structures from the trace [20]. This scheme has a
happened-before relation between phases, blocks of execution com-
posing some larger sub-task of the program. Division of the trace
events into communication phases can be given by the user or deter-
mined computationally based on connected components in the event
happened-before graph. Then it enforces the condition that for any
two phases P,Q, if P → Q, then C(p)<C(q)∀ events p ∈ P and q ∈ Q.

Another feature of this scheme is that, instead of assigning the least
possible value required by the conditions thus far, it prioritizes assign-
ing the same values to send events, arguing that these are more im-
portant to the structure of the communication. As communication is
the focus, non-messaging events between each pair of communication
events in a process are aggregated into a single logical event. Follow-
ing the terminology of this scheme, we refer to logical time values as
logical steps. We also use the phases determined by the algorithm for
clustering (see Section 3.3.1).

(a) Physical timelines.

(b) Logical timelines.

Fig. 2: Portion of a four-process trace. Sends events are green. Re-
ceive events are yellow. Non-messaging events are gray. Messages are
drawn as black lines between processes. The communication pattern
is easily discernible in the logical time view.

Fig. 2a shows a portion of a four-process trace visualized using
physical time. Fig. 2b shows the the same events in logical time. In
both views, green and yellow rectangles are used to represent mes-
saging events and lines between them represent messages. Non-
messaging time is shown in gray. In the physical time view, the
width of the rectangle represents duration. In the logical time view,
the widths are kept constant to avoid obscuring the communication
structure. The communication structure is more apparent using logical
time.

3.2 Lateness
As we replace the physical time scale with a logical timeline, we must
retain the information captured by physical time data by encoding it in
a different way. We do this by coloring the events with a novel metric
that shows delays of processes compared to others.

The most straightforward metric for timing data is event exit time,
the actual time at which the event completed. Generally, event exit
time provides the most useful information since it shows when com-
putation following a communication event is delayed, though we op-
tionally enable other choices, such as enter time or duration, to allow
performance analysts to study delay times. A greater exit time value
with respect to other events around the same step indicates that the
event is behind schedule relative to the others. The greater the discon-
tinuity in color between an event and its predecessor, the greater the
duration of the event.

Discontinuities can be difficult to discern when coloring by absolute
exit time, especially when viewing a large number of steps. To further
highlight the discontinuities, we focus on a metric that represents them
using the delay of an event relative to its peers. We call this the lateness
of the event and calculate it as the difference in exit time between the
event and the earliest event sharing its timestep.

Fig. 3 shows a portion of a 16 process MG [3] trace with events col-
ored by lateness. We observe lateness beginning in the tenth process
and propagating to the other processes along message lines. Note that
because lateness is calculated relative to the other events in a timestep,
once the delay has propagated to all processes, each process’s late-
ness drops as soon as all processes are synchronized. We call this
phenomenon “resetting.” This behavior is advantageous in the visu-
alization because it prevents late events that occur at the beginning of
the trace from masking those that occur further towards the end.

Fig. 3: Logical timeline with events colored by lateness, the differ-
ence in the wall-clock exit time between the event and the earliest
event sharing the timestep. Lateness spreads starting from the tenth
process to others waiting via message dependencies until it reaches all
processes, at which point it “resets”.

3.3 Scale
The amount of screen space that can be devoted to each timeline di-
minishes as the process count increases. Logical time and lateness
provide a convenient platform with which to cluster, allowing us to
represent large numbers of processes. We discuss clustering in Sec-
tion 3.3.1. Our default cluster representations show aggregate sends
and receives at each logical time step. We include a mechanism for
detecting user-defined motifs and changing their cluster representation
to better portray them. We explain this mechanism in Section 3.3.2.

3.3.1 Clustering
We cluster to group processes according to the metric of interest (by
default, lateness). Many processes exhibit different behavior between
logical time phases, so we apply clustering on a per-phase basis.



Logical Timeline View shows 
logical steps as equally sized bars 
and messages as lines between 
them. Color encodes lateness.

Physical Timeline View shows all
events as bars with width 
proportional to wall-clock duration.
Messaging events are colored by
lateness. Other events are gray,
darker the further up the call tree. 

Clustered Logical Timeline View 
has a compressed representation
of the events in each cluster and a
representative set of process
logical timelines.

Metric Overview plots the sum of 
a metric (e.g. lateness) over all 
timesteps in the trace. 

Fig. 5: Overview of Ravel, a tool for visualizing parallel execution traces.

Logical Time

Fig. 4: Distance between two logical timelines with metrics pi, qi.
When both processes exhibit an event, we use the squared difference.
When only one process exhibits an event, we use the difference be-
tween the event and a prior event if it exists.

The distance metric for our clustering takes advantage of the dis-
crete logical timesteps, considering the phase’s span of steps as a vec-
tor of values. However, we do not calculate a pure Euclidean distance
on this vector, as not every process will have an event at every timestep
in a phase. We expect physical time-based metrics like lateness to be
fairly stable until perturbed by another event, so we use previous val-
ues to fill in gaps where applicable. At any step where one process has
an event and another does not, if the process without the event has a
previous event in the phase, we use the metric value of that event, oth-
erwise we skip the step. We also skip any steps where both processes
are inactive. As we cluster on metric and not structure, we do not want
to penalize processes for not having as many matching events. There-
fore, we take an average of the squared distances between each step
counted. A sample distance calculation is shown in Fig. 4.

In Ravel, we employ two-stage clustering. We first rapidly generate
a moderate number of clusters using CLARA (Clustering for Large
Applications) [23], a sampled k-medoids method, as implemented in
Muster [15, 16], though other clustering algorithms could be used.
In the second stage, we create a navigable cluster hierarchy of the
CLARA clusters using single linkage hierarchical clustering [37], al-
lowing users to explore different clusterings.

CLARA is O(p) where p is the number of processes. The hierar-
chical clustering algorithm is O(c2) where c is the (small) number of
CLARA clusters. Calculating per phase rather than over the length
of the trace further decreases clustering costs. Not all phases may
contain all processes and phase breaks mean not every event-less step

will have a suitable previous event to use for a value. We cluster the
entire trace using lateness during preprocessing. If the user changes
the metric later, we recalculate the clustering for phases only as they
come into view, spreading out and only incurring computation cost as
needed. The user may also elect not to perform clustering. In this case
the cluster view will not be shown.

3.3.2 Customization
We can improve the visualization by detecting patterns of interest and
customizing their cluster representation. We have developed a mod-
ular interface to support patterns in Ravel. Each module defines a
pattern, and we run pattern detection in all phases during preprocess-
ing. On successful detection, we call the module’s draw functions to
visualize the cluster of the phase containing the detected pattern.

As an example, we have implemented a module to detect ex-
changes. Exchanges are a prevalent pattern, commonly referred to as
stencils in scientific simulations and iterative solvers. An exchange oc-
curs in phases where every process sends and receives from the same
set of other processes, e.g., its neighbors within the application’s do-
main decomposition. Each process may have a different neighborhood
size, as long as the sends and receives match.

There are several common ways of performing an exchange. One
is to alternate sends and receives. Another is to have all processes
initiate all of their sends and then handle all of their receives. A third
is to have all processes initiate their receives, perform their sends, and
finally collect the incoming messages in an MPI WaitAll. We detect
all three of these flavors and develop a custom cluster visualization for
each. These are described in Section 4.2.

4 RAVEL

Our trace visualization tool, Ravel, shown in Fig. 5, is composed of
four coordinated views. The logical time view, discussed in Sec-
tions 3.3.2 and 4.1, displays the logical timelines of all processes.
This view is useful for moderate numbers of processes and overviews.
The clustered logical time view, discussed in Sections 3.3 and 4.2,
shows timeline clusters and representative timeline neighborhoods.
This view is useful for large numbers of processes. The physical time
view, discussed in Section 4.3, is similar to the main view in prevail-
ing trace visualization tools. It should be familiar to experienced users.



Once an area of interest has been found in the other views, the phys-
ical time view provides detail in wall-clock time. Finally, the metric
overview, discussed in Section 4.4, allows users to see the distribution
of a metric like lateness over the entire length of the trace and navigate
to time spans of interest. Ravel chooses which timeline windows will
be opened at the start based on the number of processes in the trace
and the clustering options.

The three timeline views, logical, clustered logical, and physical,
have linked panning and zooming through time. The selected portion
of the metric overview will also update to reflect these actions. The
logical and physical timelines also have linked panning and zooming
through processes, which are stacked on the vertical axis in both views.
Individual MPI events may be selected in one timeline view and will
be highlighted in all views in which they are visible. Hovering on
events will bring up a tooltip with more information. Users have the
option to omit the display of aggregated non-communication events in
the logical and clustered logical views.

4.1 Logical Time View
In the logical timeline view, individual process timelines are stacked in
rows, ordered by their ID in MPI. We preserve this order in all timeline
views as it likely has meaning to the developers, e.g., it is often easily
mapped to the application domain decomposition.

The horizontal axis represents logical time. Events are drawn as
equally sized boxes as the time scale is logical and not physical. This
drawing choice also emphasizes communication patterns. Messages
are drawn as lines of equal width between their send and receive event.

When small numbers of processes or timesteps are shown, events
are drawn with spacing and borders. As the number of processes or
timesteps increases, the spacing and borders are omitted to conserve
space. With large numbers of processes, message lines are omitted as
well. They may also be turned off by the user. When the number of
processes exceeds the pixel height of the view, overplotting techniques
are used so that even sparse logical timestep patterns will be visible.

4.2 Clustered Logical Time View
The clustered logical time view is split into two sections. The clusters
are shown in the bottom section, while timelines for a focus subset
of processes are shown in the top section. The latter is useful to give
viewers a hint as to the detailed pattern of communication, which the
clusters are unable to show. Fig. 6 demonstrates this feature.

Each cluster is displayed as a timeline of events matching the logi-
cal time scale of the other views. The communication events are rep-
resented by a rectangular glyph (Fig. 7) subdivided vertically into sec-
tions. The top section shows sends while the bottom shows receives.
Inactive processes are an uncolored section in the middle. The height
of each section corresponds to the portion of the cluster performing
that action at that timestep. For sparse data, the inactive section can
be removed. To further emphasize the communication, a send line is
drawn from the top and a receive line from the bottom. The thickness
of this line is determined by the portion of the cluster that is sending or
receiving. Each event is colored by the average metric of the events it

Fig. 6: Logical (top) and Cluster (middle/bottom) view of a merge
tree gather, further discussed in Section 5.1. The bottom row shows
the unopened root of the cluster hierarchy, summarizing the events in
the cluster: many processes active in the first two steps, few in the rest.
Above the cluster are individual timelines showing the communication
neighborhood of one process of interest. The focus processes show
structure which can no longer be seen in the logical view.

send processes

receive processes

inactive processes

Fig. 7: Cluster event glyphs. The top bar and line are proportional to
the number of sends and colored based on the average metric for sends.
The bottom bar and line is the same for receives. The blank area is
proportional to inactive processes. The left glyph represents the non-
communication event preceding the right. In this example, receiving
processes experience an increase in the metric value on average.

represents. Customized depictions for special communication patterns
are discussed in Section 4.2.1.

A dendrogram of the clustering of the phase in focus is displayed
in the left panel. Users can expand or contract the clustering dendro-
gram to explore clusters. The vertical space assigned to each cluster
is proportional to the number of processes in that cluster. Alternat-
ing background colors demarcate cluster boundaries. Single-process
clusters are drawn as they would be in the logical timeline view, with
message lines drawn between the leaf timeline and the cluster contain-
ing the other end of the message.

The user can select a cluster of interest. Doing so will highlight all
members of that cluster in the focus processes and in the other timeline
views. Highlighting of processes is done by decreasing the opacity of
all non-selected processes and events.

The focus process timelines are drawn similarly to the logical time-
line view, except messages between a focus process and an undrawn
process are drawn completely in the focus process’s event, starting at
the center and ending in the corner closest to where it would be drawn
in the full view, to indicate whether it is a send or a receive and com-
municating between a process with a higher or lower ID.

Initially, the process containing the event with the greatest metric
value and that process’s messaging neighborhood are chosen as focus
processes. The user can set radius of the messaging neighborhood can
be set by the user or change the focus processes to the neighborhood of
the maximum metric process or centroid process in a selected cluster.

4.2.1 Customized Cluster Drawing for Exchanges
In Section 3.3.2, we introduced a module that detects exchange com-
munications and changes the cluster drawing if the exchange falls into
one of three types. The general cluster drawing is suitable for the
type where each process posts all its sends and then handles receives
individually. For the case where all receives are collected into a sin-
gle MPI Waitall, we replace the drawing of the receive line with a
quarter pie indicating how many receives are handled at that step on
average compared to the maximum handled in that phase. We also
quantify that average with a label. This is shown in Fig. 8.

In the case of a large volley of send-receive pairs, we verify that the
majority of the messages have their receive event two steps after their
send. Then we represent the cluster as a pair of timelines, exchanging

Fig. 8: Cluster view of an exchange in SMG2000 [34], a semicoars-
ening multigrid solver, with a customized cluster representation. The
small pie charts below the communicating tasks show that the earlier
MPI Waitall calls collect fewer receives than the later ones.



Local	process

Gather	process

Msg	sources

Fig. 9: Communication pattern of the parallel merge tree algorithm for eight processes using a binary gather. The data is distributed among
the eight processes (identity indicated by the coloring) and the gather processes are overloaded onto a subset of processes. The solid shapes
highlight the processes responsible for the communication in each round. At each round of communication data is sent upwards to the root and
downward to the children in a point-to-point fashion.

messages back and forth. In some clusters, certain events in this por-
trayal may not be present in the data, e.g., a cluster of all first-senders
will not have any representative first-receivers. In that case, we depict
the unrepresented events as an empty box with a dashed border. The
send-receive pattern is maintained in this drawing, but no non-present
events are shown. This cluster representation is used in Section 5.2.

4.3 Physical Time View
The physical time view is the common visualization of traces, with
process timelines stacked in rows and physical time on the horizon-
tal axis. Events are represented as bars, their widths proportional to
duration. Messages are shown as lines between two process timelines.

If recorded as part of the trace, this view shows details of non-
communication, and possibly non-MPI, events. This can include func-
tion invocations made at any level, so some events contain others. A
gray scale is applied to non-messaging events with calls made deeper
in the tree colored lighter and drawn on top of their parent calls. If
present, the main procedure will be darkest and overlaid with other
events. Messaging events will always be at the leaves of their call tree.
These are colored as in the other timeline views.

As the horizontal scale in this view is physical time rather than log-
ical time, a mapping between steps to physical time must be made to
keep it synchronized with the other views. During preprocessing, this
view creates such a map, storing for each step the start and stop time.
The start time is the least enter time of any event occurring at that
step. The stop time is the greatest exit time of any events occurring at
that step. When mapping between steps and physical time, we assume
the largest span calculated. This causes irregular overlaps resulting in
logical timelines scrolling non-smoothly when the physical timeline
is being panned or zoomed and vice versa. However, this is neces-
sary to assure that the other views contain the entirety of messaging
information in the one being manipulated.

4.4 Metric Overview
The metric overview displays the sum of the active metric across all
processes for all timesteps in the trace. The horizontal axis is logical
time. The height of the bars are scaled by the step exhibiting the great-
est sum. Users can select time spans on the metric overview to quickly
navigate to any portion of the trace.

5 CASE STUDIES

We examine two large scale parallel codes to show the utility of Ravel.
In the first case study, we show how Ravel was used to discover a non-
optimal message ordering in an in situ analysis application and then
verify the improved implementation. We also demonstrate the cluster
view’s ability to show messaging patterns at multiple scales. In the
second case study, we use Ravel to explore messaging delay patterns
under two different run configurations of a parallel physics simulation
code at three process counts and reveal a scaling bottleneck.

5.1 Massively Parallel Merge Trees
As the gap between available memory and the effective file I/O rates
increases, many tasks that have traditionally been performed in post
processing will have to be executed in situ. This is particularly prob-
lematic for many of the common data analysis and visualization algo-
rithms, which are typically global in nature, file I/O or memory band-

width bound, and often unstructured. Parallelizing such approaches,
especially to tens or hundreds of thousands of cores utilized by today’s
simulations, is a significant challenge.

Here, we analyze a development version of a massively parallel al-
gorithm [27] to compute merge trees, a topological structure that has
recently been used to analyze some of the largest combustion simu-
lations [8, 5, 4]. The algorithm relies on a global gather-scatter ap-
proach similar to a V-cycle in a traditional multi-grid solver with the
corresponding problem of low parallel efficiency as most processes are
kept idle some of the time. Further, as with many analysis problems,
the computation is highly data dependent causing severe load imbal-
ance in some cases.

The general data flow for a merge tree using a binary gather is
shown in Fig. 9. Each process is assigned an equal portion of the data
with the decomposition typically dictated by the corresponding simu-
lation code. All processes then perform a local computation step and
send the results to their designated gather processes. These integrate
the information and send the results both upwards to the next level
merge and back downwards towards the leaves which must integrate
it. This process is repeated until all information has been globally in-
tegrated by the root of the gather. To avoid any one node sending an
excessive number of messages, e.g., the root to all leaves, the scatter-
ing is routed backwards along the gather tree using multiple hops.

Since virtually all simulation codes distribute data among all avail-
able processes, the gather tree will contain as many leaves as there are
processes in the simulation. The gather processes are therefore over-
loaded onto the processes in a straightforward modulo-k type fashion;
e.g., in a binary gather the first level of gather will be assigned to pro-
cesses 0,2,4, . . ., the level 2 gather to processes 0,4,8, . . ., and so on.

Fig. 10 shows the Vampir and Ravel visualizations of a complete 16
process, 4-ary merge tree. The logical step view is colored by lateness.
In this case, the initial step is late, meaning the lateness is due to a

(a) Vampir

(b) Ravel

Fig. 10: Complete trace of a 16 process, 4-ary merge tree rooted at
process 0. The Vampir view is dominated by the first round of re-
ceives waiting for the local compute; little other structure is readily
discernible. In contrast, the Ravel logical time view directly reveals
the communication structure expected from Fig. 9.



(a) 1,024 process merge tree, original implementation. (b) 16,384 process merge tree, original implementation.

(c) 1,024 process merge tree, improved implementation. (d) 16,384 process merge tree, improved implementation.

Fig. 11: Ravel visualizations of an 8-ary merge tree calculation using both the original and improved implementations on 1,024 and 16,384
processes, respectively. The skewed parallelograms correspond to cascading sends towards the leaves. Branching in the gather three, numbered
in (a) and (b), is clear. In the original implementation, (a) and (b), the parallelograms have a panhandle and there is a lot of white space,
indicating most processes are often waiting. After this was discovered in Ravel, the developers improved the implementation to more optimally
order messages. Traces of the new implementation, (c) and (d), show greater parallelism of the communication operations.

severe load imbalance caused by the input data characteristics. As
process 0 is imbalanced, lateness is propagated to the corresponding
gather as well as the resulting re-broadcast. Once the root of the tree is
reached in the second gather stage lateness resets – there are no other
events in the logical step with which to compare. The logical steps
clearly highlight the gather tree structure of the algorithm and provide
immediate insight into the overall behavior of the code. None of this
information is easily accessible from the traditional trace visualization
as the time-bound layout obscures the underlying structure.

Figs. 11a and 11b show two more realistic cases – a 1,024 and
16,384 process run using an 8-ary gather with the same data. There
is more lateness in the 1,024 run than the 16,384 process run. As in
the small 16 process example, the lateness is due to load imbalance
caused by the data. The 1,024 process run divides the data into larger
portions per process than the 16,384 process run. The larger data por-
tions are able to exhibit more variance in computational requirements,
which is why the 1,024 process run experiences more lateness.

Since 1,024 and 16,384 are not powers of eight, the level closest to
the root only contains two gather processes at 1,024 nodes (and thus
16 processes at the next) and 4 gather processes at 16,384 nodes. In
Fig. 11a, we can see a division in connection between the top and the
bottom half of the image, with each half containing eight parallelo-
grams, 16 groups in total. Similarly, the right side of Fig. 11b contains
four large groupings. However, the repeating motif of a parallelogram
with a panhandle results in many timesteps where few processes are
active. A closer analysis reveals a potential flaw in the algorithm. The
panhandle occurs when a process sends to its leaves, those closest in
rank space, before sending to its higher level children. Furthermore,
this means the gather processes first send the information back to the
leaves before sending it onward towards the root of the tree. This mo-
tif manifests at each level of the tree, the largest example being the
events in the middle of the logical steps on the higher half of the MPI
ranks (lower half of the visualization). The observed ordering misses
an opportunity for a more aggressive pipelining of the computation.
No process can finish until the root of the gather has been reached and
thus the gather should be prioritized over the scatter.

Upon discovering the non-optimal message ordering in Ravel, the
merge tree developers changed their implementation. Figs. 11c and
11d are traces of the improved application using the same input param-

eters, but showing significantly more overlap in the communication.
For the large examples, the logical view can no longer meaningfully

represent the messages, which are not drawn. The focus processes in
the cluster view can be used to get a sense of the communication pat-
tern. Fig. 12 features the Ravel cluster view for one phase of the im-
proved merge tree algorithm run at both 1,024 and 16,384 processes.
Though the two traces differ in scale, the messaging pattern conveyed

(a) 1,024 process merge tree, improved implementation

(b) 16,384 process merge tree, improved implementation

Fig. 12: One phase of the improved merge tree algorithm. Despite the
difference in process count, the cluster view reveals the same message
pattern. The focus processes exhibit the motif of one process sending
to three different groups of eight processes, labeled in (a). As soon as
the message is received by a child, it in turn begins sending, except in
the final group. This indicates those are the gather tree leaves and thus
the messages are ordered optimally.



(a) 1,024 processes, default mapping (b) 8,192 processes, default mapping. (c) 32,768 processes, default mapping.

(d) 1,024 processes, round-robin mapping (e) 8,192 processes, round-robin mapping. (f) 32,768 processes, round-robin mapping.

Fig. 13: Ravel visualizations of the pF3D near-neighbor exchange using both the default mapping and the round-robin mappings at 1,024, 8,192
and 32,768 processes. Timestep labels have been added at the top for clarity. The traces from the round-robin mapping runs exhibit lower
lateness throughout. These visualizations also show a curious pattern in lateness, causing a gradient in the logical view. An examining of details
in the cluster view shows this is not a drawing artifact. We hypothesize the gradients may be due to round trip behavior required by the sends
which can be completed faster by processes that only receive in a send-receive timestep pair.

is equally visible in both views.
The focus processes show the optimized messaging pattern. The

second process sends to three different groups of eight children, a
group for each level of the gather tree for which that process is ac-
tive. After the child receives the message, it in turns starts sending,
except for the last group. This indicates the final group of eight which
do not send represent the leaves, verifying the updated merge tree im-
plementation handles the leaves last.

The coloring of the cluster visualization shows that the processes
have been grouped by lateness in the aggregate non-communication
steps late in the phase.

5.2 Laser-Plasma Interaction Simulations

pF3D [39] is a highly scalable parallel application used to study laser-
plasma interactions in experiments at the National Ignition Facility at
LLNL. This code is routinely run on high-end supercomputers, such
as the IBM Blue Gene/Q and Cray XE6 at very high processor counts.
The communication-heavy nature of this application often leads to per-
formance problems at such scales.

One of the dominant communications in pF3D is a nearest-neighbor
exchange where each process communicates with six nearest neigh-
bors in a three-dimensional (3D) process grid. The default mapping
of pF3D processes to cores on some architectures can make this ex-
change inefficient due to the relatively bad placement of communi-
cating neighbors on the interconnect topology. For example, Blue
Gene/Q (BG/Q) uses a five-dimensional (5D) torus interconnect as the
network between processing nodes. Different mappings of the 3D log-
ical process grid of pF3D onto the 5D torus of BG/Q can make a sig-
nificant difference in how messages are routed on the network and in
turn, performance [6]. The effect was previously studied on a 3D torus
interconnect with the aid of a visualization specific to that interconnect
topology [26]. As such visualizations are not available for all intercon-
nects, including the BG/Q’s 5D torus, we explore performance under
different process mappings using tracing and trace visualization.

The default process mapping assigns process IDs to all 16 cores on
a node before moving onto the next node. We can also apply a different
mapping that assigns process IDs to one core on each node in a round-
robin fashion. Runs of the pF3D communication benchmark using the
round-robin mapping finished 1.25 to 2.5 times faster than those run
with the default mapping. Fig. 13 shows trace visualizations of both

mappings applied to 1,024, 8,192, and 32,768 process executions.
At each scale, the round-robin mapping exhibits much less lateness

at all steps, which is expected given its better overall performance.
The first two send-receive pairs, corresponding to timesteps 0 through
3, are an exchange in the z direction of the domain decomposition. Un-
der the default mapping, this means all processes send off-node to the
exact same neighbor node, contending for the same network link. As
such, we expected to see lateness vary among groups of 16 processes
in the default mapping and then this lateness to propagate along the
processes. We also expected the round-robin mapping would not have
as much lateness variance in groups of 16 during the z exchange, but
what small variance it did have would help alleviate contention fur-
ther along the exchange where conflicts could occur, leading to lower
lateness overall. In the 1,024 process scenario, Ravel shows behav-
ior that supports this theory during the z exchange: the first four steps
of Fig. 13a show a lot of variance in lateness between neighboring
processes, visible in both the logical and clustered view, and lateness
propagating along message lines, visible in the focus processes of the
clustered view. The first four steps of Fig. 13d show no lateness as ex-
pected. However, after the first four steps, we see unexpected gradient
patterns along the processes under both mappings. These gradients are
also present in the larger runs.

The unexpected gradients are most visible in Figs. 13b, 13c and 13f.
Also, rather than lateness propagating along a process, it inverts be-
tween the first two and the second two timesteps in these same exam-
ples. When we adjust the color map of the 8,192 process round-robin
trace (Fig. 14), we also find similar problems. We verified that these
observations were not drawing artifacts by examining focus processes
in the cluster view and zooming in on the logical view. These effects
could not be seen in a standard physical time visualization (Fig. 15).

In the first two send-receive pairs (timesteps 0 - 3), lateness starts
at the send, but is not entirely caused by contention from the mapping,
because that does not explain the gradient. We hypothesize another
contributor to this lateness. The MPI send call used can require the
receiver to acknowledge the request. In the first two steps, only the
last processes, those corresponding to the final xy plane in the domain
decomposition, do not send. This is visible as the white space at the
bottom of step 0 and the top of step 2. By not sending, those processes
are able to more promptly respond to the request. Thus, their senders
receive acknowledgement first and can complete their send. This ef-



fect cascades along the process IDs, resulting in the observed gradient.
Fig. 16 illustrates this effect. The second send-receive timestep pair
has the same problem inverted. In the 1,024 process runs, no process
both sends and receives in the first two timesteps, so no cascade effect
occurs which explains why no gradient appears.

The send-receive timestep pairs in the y and x direction have similar
boundary conditions, but are tiled in the process ID space. This leads
to the striping patterns seen in some of the later steps. However, if the
effect of the earlier delays is great enough, the effects of the later steps
may not be significant enough to show up in this view.

The developers were previously unaware of this cascading depen-
dency problem. They were able to fix the problem leading to a signif-
icant performance benefit. Fig. 17 shows the difference in time spent
in communication for the full (non-benchmark) application before and
after the change with all other parameters fixed.

(a) 8,192 processes, round-robin mapping.

(b) Zoom to show gradient in later steps.

Fig. 14: Trace for an 8,192 process, round-robin mapping pF3D
benchmark run with the lateness range relative to maximum lateness
in the step. The same striping patterns seen in the default mapping
trace in Fig. 13b are visible here as well.

(a) Vampir visualization of all 1,024 processes.

(b) Vampir visualization of subset of 1,024 processes.

Fig. 15: Vampir visualizations of the pF3D exchange as shown in
Fig. 13. Even with relatively few processes, it is difficult to under-
stand the communication structure and behavior.

Fig. 16: Sends cannot complete until the matching receive is called.
Therefore they must wait until the receiver finishes its own send. This
causes a cascading effect which shows up as gradients in Ravel.
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Fig. 17: Time pF3D spent in communication using the original and
fixed implementation. Removing the dependency issue found using
Ravel resulted in a significant reduction in time.

6 CONCLUSION

We have presented a scalable, informative visualization for parallel
execution traces that utilizes the concept of logical time. By shifting
the data from physical to logical time, we are able to maintain and
clarify communication (messaging) and dependency relationships be-
tween processes and illuminate messaging patterns among processes,
meeting our first design goal (G1). By applying metrics derived from
physical time, we depict sources, patterns, and evolution of delays in
an execution.

Another benefit of logical timelines is the way they lend themselves
to clustering, allowing us to summarize behavior at even larger scales.
We created a representation for clusters that includes messaging infor-
mation along with structural cues from focus process neighborhoods
to meet our second design goal (G2), efficacy at scale, without aban-
doning the first.

We combined our logical timelines and clusters with a traditional
physical time visualization and an overview, coordinated across a sin-
gle logical time scale, giving users a range of detail from the coarse
full timeline overview to the highly detailed physical timeline, with
the logical timelines and clusters existing in the middle. By coordi-
nating these views, we achieve our final design goal (G3) of providing
exploration at several levels of abstraction. We demonstrated the ef-
fectiveness of this visualization through two case studies, discovering
and explaining performance issues in a parallel analysis application
and a large-scale scientific simulation.
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