
Data-driven Performance Modeling
of Linear Solvers for Sparse Matrices

Jae-Seung Yeom†, Jayaraman J. Thiagarajan†, Abhinav Bhatele†, Greg Bronevetsky∗, Tzanio Kolev†

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
∗Google, Inc., Mountain View, California 94043 USA

Email: †{yeom2, jayaramanthi1, bhatele, kolev1}@llnl.gov, ∗bronevet@google.com

Abstract—Performance of scientific codes is increasingly de-
pendent on the input problem, its data representation and the
underlying hardware with the increase in code and architectural
complexity. This makes the task of identifying the fastest algo-
rithm for solving a problem more challenging. In this paper,
we focus on modeling the performance of numerical libraries
used to solve a sparse linear system. We use machine learning
to develop data-driven models of performance of linear solver
implementations. These models can be used by a novice user
to identify the fastest preconditioner and solver for a given
input matrix. We use a variety of features that represent the
matrix structure, numerical properties of the matrix and the
underlying mesh or input problem as input to the model.
We model the performance of nine linear solvers and thirteen
preconditioners available in Trilinos using 1240 sparse matrices
obtained from two different sources. Our prediction models
perform significantly better than a blind classifier and black-box
SVM and k-NN classifiers.

I. INTRODUCTION

Linear algebra and specifically, sparse linear systems of
equations are used in a variety of computational science and
engineering (CSE) codes. The sparse linear solve typically
accounts for a majority of the execution time in such codes
making it crucial to optimize its performance. In addition,
performance of a linear solver and thus, its parent CSE code,
is increasingly dependent on the input problem, its matrix
representation and the underlying hardware. This makes the
task of identifying the fastest algorithm for solving a linear
system more challenging. Several preconditioners and solvers
have been designed and implemented in many numerical
libraries and packages [1], [2], [3], [4], which also adds
complexity to the challenge.

In this paper, we use machine learning techniques to help a
novice user in identifying the fastest preconditioner and linear
solver (PC-LS) for a given input problem or matrix. In order to
do this, we create performance models of the implementations
of different numerical algorithms for solving sparse linear
systems. The models are used to predict the fastest PC-LS
combination for a matrix not seen by the model before. Data-
driven models refer to the use of matrix properties as input
features. These features describe different characteristics of
the input problem or formulated matrix: 1. matrix structure,
2. numerical properties of the matrix, and 3. the underlying
mesh or problem from which the matrix was generated.

We have developed a three-step approach to understanding
sparse matrices and predicting the best PC-LS choice for
different matrices. The first two steps are used to train the
prediction model. First, we use regression analysis to find
a subset of features that are useful for predicting execution
time. There are two benefits of identifying a subset of critical
features: 1. a reduced feature set will control the model
complexity during model learning, and 2. it is computationally
efficient to calculate only a subset of features for the test
cases. The second step is to build a performance vector space
which is similar to building dense vectors for words in natural
language modeling [5]. This is better than using a black box
classifier because of the limited size of training data and the
highly unbalanced distribution of labels. In the third step, when
testing the model, we use the performance vector space from
the second step and project the unseen test sample onto it.
Then, we employ a k-Nearest Neighbor (k-NN) classifier for
predicting the best PC-LS choice.

The study is performed in the context of the Trilinos frame-
work [1]. However, the approach can be easily applied to other
numerical packages and libraries. We model the performance
of nine linear solvers and thirteen preconditioners available
in Trilinos. Sparse matrices used for training and testing
the model are obtained from two sources: a finite element
discretization library called MFEM [6] and the University of
Florida (UFL) sparse matrix collection [7]. The MFEM dataset
consists of 879 sparse matrices that approximate solutions of
four arbitrarily chosen physics problems using 31 mesh ge-
ometries at various discretization orders and mesh refinement
levels. We use 361 sparse matrices from the UFL dataset. In
summary, we make the following novel contributions:
• A three-step approach to understand sparse matrices and

develop data-driven performance prediction models that
can identify the best preconditioner and linear solver for
an unseen input matrix.

• Identify and explore 35 input features in the prediction
model and use regression analysis to identify those that
are useful in predicting the execution time of linear solvers
for sparse matrices.

• Combining tools from statistical learning and natural lan-
guage processing, build a performance vector space and
use it with a k-NN classifier to identify the best choice of
PC-LS for a test matrix.

• Evaluate the generated model on two datasets of 1240
sparse matrices and show that our prediction model has
significantly higher prediction accuracy than a blind clas-
sifier and black-box support vector machine (SVM) and
k-NN classifiers.

II. RELATED WORK

Prior work on modeling the performance of high perfor-
mance computing (HPC) applications has focused on general
modeling techniques and application-specific models. Ker-
byson, Hoisie et al. developed application-specific perfor-
mance models for complex applications, such as the Monte
Carlo N-Particle (MCNP) simulation [8] and SAIC’s Adaptive
Grid Eulerian (SAGE) hydrocode [9], [10]. More recently,
Tallent and Hoisie built upon this work to create the Palm
model generation tool that helps developers model their own
applications [11]. Their work has demonstrated the promise of
application-specific modeling and the importance of including
basic properties of the input problem (e.g. matrix size or the
number of non-zeroes) in the model. Our work is complemen-
tary to these efforts and demonstrates the potential of models
that capture application behavior and its dependence on input
problems more comprehensively.

Gahvari et al. have developed performance models [12],
[13], [14] of the algebraic multigrid implementation in the
Hypre library [15]. Since their focus is on parallel perfor-
mance, their models take into account factors such as the
number of processes and threads being used, and metrics
that capture CPU and data transfer cost (e.g. the number of
unknowns in the linear system). Bhatele et al. have developed
performance prediction models for several application classes
and used them to predict performance on future exascale
platforms [16].

In [17], the authors adopt a variety of classification tech-
niques to select the optimal solver for a given linear system and
study their generalization behavior. The importance of feature
selection in such formulations is analyzed in [18]. In order
to reduce the programming burden of developing numerical
software, the Lighthouse taxonomy system recommends ap-
propriate methods for users’ needs from existing linear algebra
libraries, such as LAPACK [2], PETSc [3], and SLEPc [4],
and provides usage examples [19]. For instance, it helps users
to identify well-performing eigensolver algorithms for their
problem types via guided searches using a web-interface or
by direct analysis on problems represented as matrix data. In
addition, it offers implementation templates in Fortran or C for
the identified algorithms. In case of a dense linear problem, it
further takes advantage of an existing optimization technique
for code generation [20].

To incorporate PETSc and SLEPc into the framework,
Norris et al. evaluate the performance of various Krylov
subspace methods in PETSc and eigensolvers in SLEPc on
a subset of sparse matrices from the University of Florida
collection [19], [21]. This work is closest to our research in
that they rely on machine learning to build prediction models
using support vector machine [22] and decision trees. Jain

and Bhatele have also used supervised learning to model
communication performance of parallel applications based on
network hardware counters data [23], [24].

Existing approaches to select the optimal solver for a given
linear system employ blackbox classification algorithms on a
predetermined set of features characterizing the properties of
the linear system. There are two crucial shortcomings with
these approaches. First, the model training does not take into
account the relative performance of different solver choices,
and hence the problem of distinguishing a large number of
classes becomes extremely challenging due to the limited
dataset sizes and the highly unbalanced distribution of labels.
We address this issue by constructing a performance vector
space, which effectively incorporates the relative importances
of solver choices, for prediction tasks. Second, the metrics
typically used to evaluate the model, such as the Receiver Op-
erating Characteristic (ROC) curves, can be highly misleading
since they do not clearly indicate how suboptimal the chosen
solver is when the prediction is wrong. In contrast, our metric
is the actual runtime of the chosen solver for a particular linear
system. As we demonstrate in our results, standard classifiers
such as the SVM perform significantly poorly (high runtime)
in few of the cases where their predicted label is not the
optimal one. Surprisingly, blindly choosing the solver that is
optimal for most of the training data samples performs better
than the trained classifiers under our new metric.

III. PROBLEM DOMAIN

Many CSE problems consist of compute kernels that solve
sparse linear systems repeatedly. In this study, we concentrate
on understanding the dependence of performance of sparse
linear solver kernels on the input matrix data. In particular,
our focus is on execution time rather than convergence be-
havior, which has been studied extensively in the mathematics
community. In this section, we describe the sparse matrices
used in this paper and the input features that we derive from
these matrices for studying and modeling the behavior of
preconditioner and linear solver (PC-LS) choices. We also
describe the setup for collecting empirical data for this study.

A. Sparse matrix data

We use sparse matrices from two sources: a finite element
discretization library called MFEM [6] and the University of
Florida sparse matrix collection [7]. We label the former set
of matrices as MFEM and the latter as UFL in the rest of
this paper. We produce the MFEM dataset by varying the
discretization order and refinement level for each of four
arbitrarily chosen problems. These problems correspond to
discretizations in the H1 (nodal), vector H1, H(curl) (edge)
and H(div) (face) finite element spaces, which are the building
blocks for a wide variety of PDE-based CSE applications. The
specific problems we consider are:

P1 Laplace equation, ∆u = f
P2 the elasticity problem, −div(σ(u)) = f
P3 electromagnetic diffusion problem, curl curl E+E = f
P4 the flux-based diffusion system, −grad(divF)+F = f

The MFEM dataset consists of 879 symmetric positive-
definite matrices that exhibit the typical challenges with matri-
ces in PDE-based simulations. The matrices that we consider
are representative of practical scenarios that appear in the
modeling of heat transfer, structural mechanics, accelerator
design, radiation diffusion flow, and other simulations.

In the case of symmetric positive-definite matrices, the
condition number is the ratio of the maximal to minimal
eigenvalue of the matrix. While for all problems in MFEM
this ratio grows at the same rate (e.g. with respect to N),
the other eigenvalues in the spectrum of the matrix can also
play an important role in determining the performance of the
linear solver. From that perspective, P1 is the simplest problem
since it is “near-nullspace”, the eigenvectors corresponding to
almost zero eigenvalues, and consists of only one vector. P2,
on the other hand, has four vectors in 2D and six vectors in
3D. The problems P3 and P4 have much larger near-nullspace
of dimension comparable to the global size of the problem,
which is usually a major challenge to linear solvers.

The UFL dataset consists of various types of matrices
collected from diverse fields in science and engineering. We
use 361 square non-Hermitian matrices that are small enough
to fit in memory of a single compute node for this study. This
set includes both symmetric and non-symmetric matrices, and
both positive/negative definite and non-definite ones.

B. Candidate input features

Table I shows the candidate features that can be derived
from input matrices and used as input to the prediction model.
The features are categorized by their generality and by the
computational cost to derive them. Features color-coded green
are referred to as Basic features and computing them has a low
to medium time complexity – O(Nrow) for many, O(Nrow

2)
for computing ||A||F , and O(NNZ) for others.

The second group, called Advanced features and color-
coded red, has features that are significantly expensive to
compute and not practical as inputs to the model. However, we
still use them in the paper to understand how we can improve
the prediction by exposing information that is crucial but
potentially missing in simpler features. Discovery of a highly
useful but computationally expensive feature can encourage us
to investigate methods to obtain a reasonable approximation
in less time. For instance, we take advantage of domain-
specific knowledge to compute inexpensive alternatives to the
condition number for the MFEM dataset.

The third group consists of Domain-specific features (color-
coded blue) as opposed to the generic Basic and Advanced
features. Domain-specific features are derived from mesh
properties and the CSE problems being solved. The addition
of these features does not cost much more than simply reading
the problem-specific parameters which is O(1).

Some of the generic features are only useful or meaningful
under certain circumstances. For example, the distinction
between lower and upper triangle as well as the symmetry
metrics are not meaningful for matrices that are known to be
symmetric a priori such as those in MFEM. Similarly, we only

Feature Meaning

Nrow number of rows
NNZ number of non-zeros, nnz (A)
NNZL number of non-zeros in lower triangle
NNZU number of non-zeros in upper triangle
NNZmax maximum number of non-zeros per row
NNZavg average number of non-zeros per row
DEmax largest element in magnitude along diagonal
DEmin smallest non-zero element in magnitude along diagonal
bwL bandwidth of lower triangle
bwU bandwidth of upper triangle
NO number of ones
NDDrow number of rows that are strictly diagonally dominant,

i.e., satisfying 2 ∗ |aj,j | −
∑

j |ai,j | > 0
spreadL normalized sum of distances from diagonal of non-zero

elements in lower triangle
∑

(i− j)/S where i > j,
ai,j 6= 0, and S =

∑Nrow−1
i=1 i ∗ (Nrow − i)

spreadU normalized sum of distances from diagonal of non-zero
elements in upper triangle

∑
(j − i)/S where j > i,

ai,j 6= 0, and S =
∑Nrow−1

i=1 i ∗ (Nrow − i)
symm property showing how symmetric the matrix is as 1−

nnz(A − A.T)/(nnz(A) − nnzd(A)) where A.T
is a non-conjugate transpose of A and nnzd(A) is
number of non-zeros on diagonal of A

symms property showing how skew-symmetric the matrix is
as 1 − (nnz(A + A.T) − nnzd(A))/(nnz(A) −
nnzd(A))

symmp property showing how symmetric the non-zero pattern
of matrix is as 1 − nnz(P − P.T)/(nnz(P) −
nnzd(P)) where pi,j = 1 if ai,j 6= 0, 0 otherwise

||A||1 1-norm
||A||F Frobenius norm

ρ(A) spectral radius
λ2 second largest absolute eigenvalue
λmin non-zero smallest absolute eigenvalue√
λ1/λ2 where λ1 = ρ(A)√
peak peak = λ1/

((∑
i λi
)
− λ1

)
√
κ where κ is the condition number computed by Matlab

s90 portion of
√
σ > 0.9×(√σmax−

√
σmin)+

√
σmin,

where σ is a singular value
smid 1− (s90 + s10)
s10 portion of

√
σ ≤ 0.1×(√σmax−

√
σmin)+

√
σmin

Ndim number of spatial dimensions (from the mesh)
N ′row Nrow/Ndim if P2, Nrow otherwise
Meshdo finite element discretization order
Meshrl mesh refinement level√
κ′ approximation to condition number term

√
κ, where

κ′ = (N ′row)2/Ndim√
κ′hmin approximation to condition number term

√
κ, where

κ′hmin = (1/min(h))2√
κ′hmax approximation to condition number term

√
κ, where

κ′hmax = (1/max(h))2

TABLE I: List of candidate input features for a prediction
model. We organize the features into three groups – readily
computable or Basic, expensive to compute or Advanced, and
Domain-specific (color-coded by group).

define features based on singular values for MFEM in which
all the matrices are positive-definite.

One of the challenges with matrices in the MFEM dataset is
that the condition number κ, a measure of how difficult it is to
solve a system with the matrix, is proportional to h−2 where
h is a measure of the size of the mesh elements used. On a
uniform grid in Ndim dimensions, the number of unknowns in
each dimension is on the order of h−1. Thus, the total number

of unknowns N in the problem is proportional to h−Ndim , and
κ is proportional to h−2 or N

2
Ndim .

For the MFEM dataset, we can put an upper bound on the
number of iterations required for a preconditioned conjugate
gradient method as follows:

NPCG
iter ≤ 1

2
×
√
κ× log

2

ε
+ 1

where κ is the condition number and proportional to N
2

Ndim ,
and ε is the convergence tolerance. N is the total number of
unknowns in the problem and grows as,

N ∝ Meshdo × 2Ndim×Meshrl

where Meshdo is the discretization order and Meshrl is the
refinement level. Given a matrix, N is equivalent to the number
of rows of the matrix, Nrow except for the problem P2, which
is a vector problem. In P2, there are Ndim unknowns at each
mesh point. Thus, NP2 = Ndim × NP1 on the same mesh.
Since h is the mesh size, we divide Nrow by Ndim to obtain N ,
which we label as N ′row in Table I. We include a cost-effective
approximation, N ′row

1/Ndim , as an input feature in place of the
condition number term

√
κ.

C. Experimental setup

As we formulate a linear problem out of a CSE problem, we
obtain a matrix A. For each matrix A in the MFEM and UFL
datasets, we construct a linear problem Ax = b by initializing
the solution vector x to 0 and randomly assigning an RHS vec-
tor b. We set each element in the RHS to a randomly chosen
number between 0 and ‖A‖∞. We define “convergence” as
the case where the relative residual ‖r‖2/‖b‖2 becomes less
than 10−9 within a specified number of solver iteration steps.
We terminate the solver when it reaches 10,000 iterations
and consider the case as non-converging. We also mark a
case as non-converging if the algorithm terminates prematurely
because it determines that the problem is not solvable due to
loss of precision.

There exist a number of algorithms for an end user to
solve a linear system. While domain experts are likely to
be aware of optimal choices for their problems, novice users
are left with a large optimization space to explore, especially
when dealing with new problems not encountered before. In
addition, the theoretical knowledge on convergence behaviors
of certain solvers on a certain category of problems may not
correlate with memory access costs or the extent of SIMD
optimization in a numerical library. Hence, it may not be
sufficient to predict the performance of a solver in a software
stack for a particular input matrix running on a particular
machine platform. We consider nine linear solvers and thirteen
preconditioners available in Trilinos as listed in Table II to
mimic such an environment. We use Trilinos version 11.12.1
and compile the code using icc version 14.0.3 and MKL
version 11.1.3. We perform our experiments on a single core
of an Intel Xeon E5-2670 node with 32 GB of memory,
and use the high-precision function clock gettime() in the
CLOCK MONOTONIC RAW mode for recording runtime.

Preconditioners Solvers

NONE, JACOBI, NEUMANN, LS,
DOM DECOMP, ILU, ILUT, IC, ICT,
CHEBYSHEV, POINT RELAXATION,
BLOCK RELAXATION, AMESOS,
SORA, IHSS

GMRES, GMRES CONDNUM,
GMRESR, CG, CG CONDNUM,
CGS, BICGSTAB, TFQMR,
FIXED PT

TABLE II: Choices of preconditioners and solvers available
in Trilinos and experimented with in this study.

Each matrix is solved using each PC-LS combination for ten
different RHS vectors and each run is repeated eleven times.
We discard the first out of eleven runs to mitigate cold cache
effects and this leaves us with 100 execution times for a given
matrix and PC-LS choice. We use the median execution time
from these 100 executions for the prediction model. Using
the median value can suppress the effects of system noise
and prevent misleading the instance-based learning. We do
not include multiple samples of an identical setup in the same
training data subset as it would make the cross-validation less
effective. There remains a further challenge with the UFL
dataset as matrices collected from the same source tend to
exhibit high similarity in terms of both the features and the
prediction target.

IV. APPROACH

We have developed a three-step approach to understanding
sparse matrices and predicting the best preconditioner and
linear solver (PC-LS) choice for different matrices. Below,
we present the algorithmic details of the proposed modeling
framework. Further, we illustrate each step of the algorithm
using the MFEM dataset as an example, and present discus-
sions on feature influences in predicting runtime performance.

Figure 1 provides an overview of the three-step approach,
which consists of a training phase followed by a testing
phase. The training phase involves two independent steps:
1. identifying a subset of features that are useful for predicting
the runtime, 2. building a performance vector space that
reveals the relationships between matrices in terms of perfor-
mance. For the testing phase, we develop a novel technique
that projects the features of an unseen test sample onto the
performance vector space, and employ a k-Nearest Neighbor
(k-NN) classifier for predicting the best preconditioner and
linear solver choice.

A. Step I: Feature selection

The first step in the pipeline is to identify a set of features
that are crucial in predicting performance. In particular, we aim
to select features that are useful to predict the fastest runtime
using the best PC-LS for solving each input matrix. The benefit
of this feature selection process is two-fold: (a) a reduced
feature set will control the model complexity during model
learning, and (b) it is computationally efficient to calculate
only a subset of features for the test cases. Further, building a
regression model enables sensitivity analysis of the response
variable (runtime) to the different input variables (features).

Fig. 1: An overview of the proposed modeling approach to
predict the fastest preconditioner and linear solver for a new
matrix provided by the end user.

We use gradient boosted trees to build the regression mod-
els, taking advantage of their ability to approximate complex
functions using an ensemble of simple models [25]. Gradient
boosted machine (GBM) is a machine learning paradigm
where the key idea is to assume that the unknown function
f is a linear combination of several base learners. The base
learners are greedily trained by setting their target response to
be the negative gradient of the loss with respect to the current
prediction. The base learner can be imagined to be the “basis
function” for the negative gradient. Concretely, let us assume
the function of interest,

y ≈ f(x) =

m∑
j=1

βjψj(x|zj) (1)

where ψj(x|zj) is the base learner parameterized by zj and m
is the number of learners (or iterations). The GBM proceeds
by performing a stage-wise greedy fit,

(βj , zj) = argmin
β,z

n∑
i=1

L(yi, fj−1(xi) + βψi(xi|z)) (2)

where L is the loss function, n is the number of data samples
and fj−1 is the estimate of the function obtained at the
previous iteration,

fj−1(x) =

j−1∑
t=1

βtψt(x|zt) (3)

The estimate of base learner parameters at iteration j is
obtained by setting its response ỹ to be the negative gradient

ỹi = −
[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=fj−1(x)

(4)

for all i = {1, . . . , n}. The parameter zj is updated using

zj = argmin
γ,z

n∑
i=1

(ỹi − γψi(xi|z))2 (5)

The base learner coefficient βj is updated using Equation 2.
In our implementation, we consider the Huber loss function,
and use simple decision trees as the base learner. Since
GBM sequentially adds models by directly optimizing for the
negative gradient of the loss function, the final approximation
is often superior to several other strategies. Further, it is typical
to compute relative feature importances in regression methods
such as decision trees, and it is straightforward to extend that
idea with GBM [25].

Illustration with the MFEM dataset: Our assumption is that
the performance of PC-LS in serial execution can be attributed
to two main components. The numerical properties of the input
problem determine the number of iterations while the floating
point operations and memory accesses determine the time per
iteration. To understand the importance of features as well
as the behavior of the prediction framework under various
scenarios of feature availability, we consider the following sets
of features for our analysis based on the Basic, Advanced and
Domain-specific categories described in Table I:

F1: Basic only
F2: Basic and Advanced
F3: Basic and Domain-specific
F4: Basic, Advanced and Domain-specific
We build regression models using GBM (Huber loss func-

tion), with the number of estimators fixed at 1000, and the
learning rate fixed at 0.05. Figure 2 shows the relative feature
importances for the four scenarios. We observe that a few
Basic features are influential in all cases, such as NNZ ,
||A||F , DEmax , and NNZavg . NNZ is directly relevant to
the number of floating point operations, while NNZavg is
likely to be associated with memory access costs. Advanced
features such as

√
κ, λmin , and smid , are important in both

cases in which they are included. These features capture the
numerical properties of the problem and hence can be crucial
in predicting the number of iterations for convergence.

Domain-specific features, such as
√
κ′, and N ′rows , can

potentially provide inexpensive alternatives to the Advanced
features based on full eigen decomposition of the matrix,
which is evidenced by the high prediction power of the feature
set F3. The R2 measures shown in Figure 2 increase as we add
more features to the Basic set. Interestingly, R2 of F2 is lower
than that of F3, indicating that domain-specific knowledge can
provide better insights into the convergence behavior of linear
systems. We only choose features whose relative importance
score is higher than 0.03 for subsequent analysis. Note that
in all cases, the set of dominantly important features is small
and hence it reduces the computational burden of extracting
all the features for unseen test examples.

B. Step II: Building a performance vector space

Existing approaches in the literature [19], [21] build a black-
box classifier with the features directly by using the best
performing PC-LS choice as the label and build a classifier for
determining class evidences. In these approaches, the number
of classes is NC = NP ×NS , where NP is the total number

(a) F1: Basic only (R2 = 0.71) (b) F2: Basic and Advanced (R2 = 0.79)

(c) F3: Basic and Domain-specific (R2 = 0.86) (d) F4: Basic, Advanced and Domain-specific (R2 = 0.88)

Fig. 2: Feature selection for the MFEM dataset using the gradient boosted tree regressor under various feature availability
scenarios. In each case, the subset of influential features, which are used for subsequent analysis, are marked in solid color.
In all cases, only a small subset of features are picked, thereby reducing the burden on feature extraction for the test matrices.

of preconditioner choices and NS is the total number of
linear solvers considered. However, without considering the
relative performance of other PC-LS choices, the problem of
distinguishing a large number of classes becomes extremely
challenging due to the limited size of training datasets and
the highly unbalanced distribution of labels, leading to severe
model overfitting. In contrast, we project sample features onto
a new vector space in which spatial proximity of samples
(matrices) will directly depend on their similarity in the set
of appropriate PC-LS choices. This enables us to make more
robust decisions. We refer to it as a performance vector space
(PVS). In particular, we adopt ideas from recent advances in
natural language modeling that attempt to represent words as
dense vectors using neural networks [5]. The PVS approach
radically differs from the traditional dimensionality reduction
methods such as the singular vector decomposition (SVD)

in that samples are treated as atomic symbols and thus the
relationship is not identified based on the input’s property.
Note that we build a PVS utilizing the word2vec algorithm
independent of matrix feature representation [26]. Each matrix
is merely treated as a symbol or a word.

word2vec offers two modes of applications: continuous bag
of words (CBOW) and skip-gram. Our approach is similar to
the latter as we predict the multiple PC-LS choices (context
words) with good performance for a given matrix (an input
word). We produce the training samples (pairs of the input
and the output of the network) based on the matrix-label
association encoded in the co-occurrence matrix. We associate
a label c to a training matrix m, if the runtime for that
particular PC-LS setting, Rmc ≤ τRmo , where Rmo is the lowest
observed execution time (also referred to as the oracle), and
τ is a user-defined threshold for quantifying the performance

(a) (b)

Fig. 3: 3D visualization of the vector spaces for the MFEM dataset. The axes of this visualization correspond to the three
embedding dimensions from the word2vec algorithm. (a) The performance vector space obtained by applying word2vec, a
neural vector embedding technique, on the matrix-label association, (b) Applying word2vec on the transpose of the matrix-
label association enables us to determine groups of PC-LS that are effective for the dataset.

to be acceptable. In our experiments, we set τ = 1.05, i.e.,
within 5% of the execution time for the oracle case.

word2vec relies on a neural network with only one hidden
layer. An input to the network is encoded as a one-hot vector.
As both matrices and PC-LS choices belong to the same
vocabulary space, the size of a one-hot vector NI equals to the
sum of the number of matrices (NM) and the number of PC-
LS choices (NC). The activation function at the hidden layer
is simply the linear identity function while the output layer
uses the softmax function. A training results in two weight
matrices learned, W and W ′. W transforms the input layer to
the hidden layer, and W ′ transforms the hidden layer to the
output layer. We use the former for mapping a matrix onto
the PVS. The dimension of W is NI ×NV and that of W ′ is
NV ×NI , where we empirically set NV , the dimension of the
vector space, to be far smaller than NI , the dimension of the
input. A row of W is a vector corresponding to a particular
matrix, and a column of W ′ to a particular label.

This problem can be solved more efficiently using the
following formulation. Let us consider a matrix-label pair,
(m, c), and we denote the probability P (D = 1|m, c) that
this pair came from the observed data D, and equivalently
define P (D = 0|m, c). The distribution is modeled as

P (D = 1|m, c) = σ(xm.xc) =
1

1 + exp(−xm.xc)
(6)

where xm,xc are the vector representations for the matrix and
the class label to be learned, . denotes the dot product, and σ is
the sigmoid function. The word2vec algorithm in [26] attempts
to maximize P (D = 1|m, c) for observed samples, while
maximizing P (D = 0|m, c) for randomly sampled “negative”
examples, as given by:

log(σ(xm.xc)) + kEcN [log(σ(−xm.xcN))] (7)

where k is the number of negative examples, and cN indicates

a randomly sampled class for the matrix m. The objective
is optimized in an online fashion using stochastic gradient
descent over the observed data, and we obtain vector repre-
sentations for all training matrices.

Illustration with the MFEM dataset: Applying the proposed
embedding technique with τ fixed at 1.05 yields the vector
representation shown in Figure 3(a). Note that though the
dimension of the vector space was fixed at 20, for visualization
purposes, we apply PCA to create 3D embeddings. Though the
axes of this visualization are not directly interpretable since
they are learned factors of the embedding, they can reveal
interesting insights about the relationships between different
matrices in terms of performance.

Surprisingly, we observe two reasonably tight clusters of
matrices in the resulting vector space, indicating that a clas-
sifier based only on the best PC-LS choice can lead to
highly sub-optimal predictions. Hence, we propose to perform
classification in this performance vector space. Alternately, we
can visualize the embedding using the vectors for the class
labels (xc) to identify similarity between PC-LS settings, with
respect to the types of matrices for which they are effective
(Figure 3(b)). As expected, we find that a set of PC-LS choices
(DOM DECOMP + GMRES CONDNUM, DOM DECOMP
+ GMRESR, DOM DECOMP + GMRES) lies along a linear
plane, indicating that they are similarly effective in solving
the MFEM matrices. In addition there is another cluster of
methods (colored in magenta) that is found to be highly sub-
optimal for the MFEM matrices.

C. Step III: Classification in the PVS

In the testing phase, we predict the most effective PC-
LS combination for an unseen/test sample. Our approach is
to project the unseen matrix into the PVS, to identify the
nearest neighbors in the space, and to find out which PC-LS

(a) F1: Basic only (b) F2: Basic and Advanced

(c) F3: Basic and Domain-specific (d) F4: Basic, Advanced and Domain-specific

Fig. 4: PC-LS prediction accuracy for the MFEM dataset: (a)–(d) Comparison of the execution time obtained using the predicted
PC-LS setting with respect to the oracle case. (shown in log scale)

choice is the most useful among the neighbors. Unfortunately,
we cannot directly map an unseen matrix onto the PVS as
the arbitrary one-hot representation of the matrix cannot be
constructed using the vocabulary. We propose a novel out-of-
sample extension scheme based on sparse linear modeling. We
begin by establishing the representation of the matrix in terms
of the matrices used in training. For this, we rely on the matrix
features determined during the training phase. Given the test
feature vector, fte, and a collection of T training features, Ftr,
the coefficients, α, for sparse linear modeling can be obtained
using the equation:

min
α
‖fte − Ftrα‖22 s.t. ‖α‖1 ≤ δ, ∀i, αi ≥ 0 (8)

where ‖.‖1 denotes the `1 norm that measures the sparsity
of a vector, ‖.‖2 is the `2 norm, and δ is the desired level
of sparsity. The second constraint imposes non-negativity on
the solution and results in an additive model that is easy to

interpret. In the proposed approach, we assume that the feature
space and the performance vector space are consistent, i.e.,
if two matrices have similar properties they can be solved
efficiently by similar PC-LS choices, and hence use a common
linear model to represent a test sample in both the spaces. In
other words, we compute the vector representation for the test
sample in the performance vector space as gte = Gtrα, where
Gtr is the collection of training samples in that space. The
final step in the pipeline is to perform classification in the
performance vector space and determine the suitable PC-LS
setting for the linear system. We propose to use the k-NN
classifier with majority voting to determine the class label.

V. RESULTS

In this section, we evaluate the proposed prediction frame-
work on the MFEM and UFL datasets, which comprise of 879
and 361 matrices respectively. We randomly select 75% ma-
trices for training and the rest for testing. We discard matrices

Fig. 5: MFEM dataset: Prediction error, |yp−yo|yo
, computed at different quantiles of the test set (ordered by the error |yp− yo|)

using different classifiers. The results reported are averaged over 20 different random train-test split choices for cross-validation.

that do not converge for at least 30% of the runs using any
of the PC-LS choices. To explore the behavioral differences
with existing classification techniques that cover a significant
spectrum of behaviors, we apply two well-understood but very
different methods, SVM and k-NN, directly to the matrix
features. We report the results averaged over twenty indepen-
dent train-test split (cross-validation) choices. For evaluating
prediction quality, we define the metric Absolute Relative
Error (ARE) as

ARE =
|yp − yo|

yo
(9)

where yp is the execution time for the predicted PC-LS choice,
and yo is the oracle execution time for a test matrix. The oracle
value is the median execution time for the best performing PC-
LS choice for the particular matrix of a test sample.This metric
is user-oriented since it captures the impact of inaccurate
prediction rather than the prediction accuracy itself.

For the SVM classifier, we employ the linear kernel with
the regularization parameter C = 0.1, and assign uniform
cost weight for all classes. For the baseline k-NN classifier,
the number of neighbors, k, is set to 8. We also rely on k-
NN for the classification on the performance vector space
in our framework, but with a smaller k = 5. We have
not put thorough effort into optimizing these parameters as
our goal is primarily to understand the impact by behavioral
differences. We suspect that SVM with an RBF kernel would
have performed better than with a linear kernel, behaving
closer toward k-NN.

We evaluate the prediction accuracy of each of the classifiers
using all four feature sets (F1, F2, F3 and F4). Finally, we
include a naive baseline approach for comparison, wherein the
the most effective PC-LS choice for the entire training data is
blindly assigned for any test sample. We refer to this scheme
as Blind Selection.

Figures 4 (a)–(d) illustrate the prediction using the three
classifiers, for the four feature sets respectively, on the MFEM
dataset. We plot the predicted runtime for all test samples
against the oracle runtime values. Note that when the clas-

sification technique succeeds, all predictions would lie along
the diagonal of the plot. The results show that the proposed
approach is far more robust than the other blackbox classifiers,
under all feature set scenarios. Domain-specific features are
useful to improve predictions in the absence of the computa-
tionally intensive Advanced features.

Further, we evaluate the prediction error (ARE) for each
of the test samples, and collect statistics including the mean
and the error values at {0.7, 0.8, 0.9, 0.95} quantiles. Figure 5
compares the prediction statistics for the different classification
approaches. Though all approaches produce reasonably low
errors at the 0.8 quantile, the SVM and k-NN classifiers
produce highly inaccurate predictions on the remaining 20% of
the worst samples in terms of ARE, thereby resulting in a high
mean error. Especially, the linear kernel of SVM is not effec-
tive in learning the complex pattern in multi-dimensional data.
In comparison, the proposed approach consistently produces
high quality predictions, especially for challenging samples.
The worst case ARE of the method (at 0.95 quantile) is less
than 0.2 while it does not perform as good as k-NN at 0.90
quantile using F1 and F2 and at 0.80 using F3.

Method\Data F1 F2 F3 F4 Blind

SVM 1.58 2.08 3.42 2.06
0.14k-NN 3.66 1.68 0.39 1.76

Ours 0.18 0.025 0.03 0.025

TABLE III: MFEM dataset: Prediction error in ARE using
three different classification techniques on the four feature sets.
In addition, we report the performance obtained by blindly
applying the most commonly identified optimal PC-LS setting.

Table III shows the mean ARE values. Similar to the
regression experiments, the feature set F1 works poorly in
comparison to the other three feature sets. This suggests that
the information conveyed in the set of Basic features is not
sufficient. An important challenge with the MFEM dataset is
that the label distribution is highly skewed. Interestingly, the
Blind Selection strategy outperforms the traditional classifier-

(a) F1: Basic only (b) F2: Basic and Advanced (c) Prediction Error

Fig. 6: PC-LS prediction accuracy for the UFL dataset.

based methods in terms of ARE. This is due to the fact that
the classifiers optimize the classification error rather than the
impact of misprediction, which is the increased execution time
by choosing non-optimal PC-LS in our case.

Table IV shows that the mean classification accuracies of
the classifiers are still higher for all of the feature sets than
those of the blind selection, and also higher than those of
the proposed method except for k-NN on F3. Surprisingly,
the classification accuracies of SVM with the linear kernel
are better than those of k-NN while it is mostly the opposite
for ARE. Our approach effectively handles the skewness in the
label distribution by classifying in a robust performance vector
space. Another interesting observation is that the different
baseline classifiers make inaccurate predictions on different
matrices, and qualitative analysis of this can provide insights
into the dataset, which we reserve for future work.

Method\Data F1 F2 F3 F4 Blind

SVM 73.4 75.8 76.0 80.1
69k-NN 72.8 75.1 74.6 79.6

Proposed 70.1 74.2 75.2 77.9

TABLE IV: MFEM dataset: Classification accuracy (%) using
three different classification techniques on the four feature sets.

We carried out a similar evaluation on the UFL dataset and
Figure 6 presents the prediction performance obtained with
feature sets F1 and F2 respectively (there are no Domain-
specific features for the UFL dataset and hence no F3 and
F4 feature sets). Table V shows the mean ARE performance.
When compared to the MFEM dataset, the label distribution
is more diverse, though the sample size is much smaller.
Consequently, this dataset is more challenging and the naive
Blind Selection strategy does not perform as good as with
the MFEM case. Further, the improvement in performance by
employing the Advanced features is more apparent. Similar
to the previous case, the proposed approach outperforms all
other strategies.

Method\Data F1 F2 Blind

SVM 3.52 2.93
2.19k-NN 3.41 2.69

Ours 2.13 0.8

TABLE V: UFL dataset: Prediction error in ARE using three
different classification techniques on the two feature sets.

VI. CONCLUSION

The use of machine learning and statistical modeling tech-
niques for predictive analysis of high dimensional data has
had a profound impact in a variety of scientific applications.
The recent surge in the interest to adopt such tools within
the HPC community presents a huge potential to solve several
challenging problems. In this work, we address the problem
of identifying the best performing pair of preconditioner and
linear solver for sparse linear systems.

The effectiveness of a particular solver for a problem is
often dependent on several numerical aspects of the linear
system. Hence, we employ a data-driven approach, wherein we
exploit the underlying characteristics of the linear system for
predicting the best solver. The problem presents an extensive
set of challenges including limited training data sizes, skewed
label distributions, feature availabilities, noise and outliers. By
proposing a novel combination of tools from statistical learn-
ing and natural language processing, we demonstrate that our
approach can be highly effective especially in minimizing the
impact of misprediction beyond optimizing the classification
performance. In summary, our proposed data-driven approach
provides new insights into these complex datasets and enables
us to provide end-users with enhanced guidance for solving
linear systems efficiently.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
704087). This research used computer time on Livermore
Computing’s high performance computing resources, provided
under the ASC Program.

REFERENCES

[1] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the Trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[2] “LAPACK - Linear Algebra PACKage,” http://www.netlib.org/lapack.
[3] “Portable, Extensible Toolkit for Scientific Computation (PETSc),” http:

//www.mcs.anl.gov/petsc.
[4] “Scalable Library for Eigenvalue Problem Computations (SLEPc),” http:

//www.grycap.upv.es/slepc.
[5] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix

factorization,” in Advances in Neural Information Processing Systems
27, 2014, pp. 2177–2185.

[6] “MFEM: Modular finite element methods,” mfem.org.
[7] T. A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[8] M. M. Mathis, D. J. Kerbyson, and A. Hoisie, “A performance model
of non-deterministic particle transport on large-scale systems,” Future
Generation Comp. Syst., vol. 22, no. 3, pp. 324–335, 2006.

[9] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and
M. Gittings, “Predictive performance and scalability modeling of a large-
scale application,” in Proceedings of the 2001 ACM/IEEE conference on
Supercomputing, November 2001, p. 37.

[10] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman, “Use of predictive
performance modeling during large-scale system installation,” Parallel
Processing Letters, vol. 15, no. 4, pp. 387–396, 2005.

[11] N. R. Tallent and A. Hoisie, “Palm: easing the burden of analytical
performance modeling,” in 2014 International Conference on Super-
computing, June 2014, pp. 221–230.

[12] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp, “Modeling the performance of an algebraic multigrid cycle
on HPC platforms,” in Proceedings of the 25th International Conference
on Supercomputing, June 2011, pp. 172–181.

[13] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang,
“Modeling the performance of an algebraic multigrid cycle using hybrid
mpi/openmp,” in 41st International Conference on Parallel Processing,
ICPP 2012, September 2012, pp. 128–137.

[14] H. Gahvari and W. Gropp, “An introductory exascale feasibility study
for ffts and multigrid,” in Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, April 2010, pp. 1–9.

[15] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in International Conference on Computational Science,
April 2002, pp. 632–641.

[16] A. Bhatele, P. Jetley, H. Gahvari, L. Wesolowski, W. D. Gropp,
and L. Kale, “Architectural constraints to attain 1 Exaflop/s for
three scientific application classes,” in Proceedings of the IEEE
International Parallel & Distributed Processing Symposium, ser.
IPDPS ’11. IEEE Computer Society, May 2011. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2011.18

[17] S. Bhowmick, V. Eijkhouta, Y. Freund, E. Fuentes, and D. Keye,
“Application of machine learning to the selection of sparse linear
solvers,” Int. J. High Perf. Comput. Appl, 2006.

[18] S. Bhowmick, B. Toth, and P. Raghavan, “Towards low-cost, high-
accuracy classifiers for linear solver selection,” in Computational
Science–ICCS 2009, 2009, pp. 463–472.

[19] R. Nair, S. Bernstein, E. R. Jessup, and B. Norris, “Generating cus-
tomized sparse eigenvalue solutions with lighthouse,” in Proceedings of
the Ninth International Multi-Conference on Computing in the Global
Information Technology, June 2014.

[20] G. Belter, E. R. Jessup, I. Karlin, and J. G. Siek, “Automating the
generation of composed linear algebra kernels,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, ser. SC ’09, Nov 2009.

[21] B. Norris, S. Bernstein, R. Nair, and E. R. Jessup, “Lighthouse: A
user-centered web service for linear algebra software,” CoRR, vol.
abs/1408.1363, 2014. [Online]. Available: http://arxiv.org/abs/1408.1363

[22] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, September 1995.

[23] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale,
“Predicting application performance using supervised learning on com-
munication features,” in ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13.
IEEE Computer Society, Nov. 2013, LLNL-CONF-635857.

[24] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T. Gamblin, P.-T.
Bremer, M. Schulz, and L. V. Kale, “Identifying the culprits behind
network congestion,” in Proceedings of the IEEE International Parallel
& Distributed Processing Symposium, ser. IPDPS ’15. IEEE Computer
Society, May 2015, LLNL-CONF-663150.

[25] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” The Annals of Statistics, vol. 29, no. 5, pp. pp. 1189–1232,
2001.

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems 26,
2013, pp. 3111–3119.

