Session on HPC and Parallel Simulation

SIGSIM-PADS ’19, June 3-5, 2019, Chicago, IL, USA

Analyzing Cost-Performance Tradeoffs of HPC Network Designs
under Different Constraints using Simulations

Abhinav Bhatele
bhatele@llnl.gov
Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory
Livermore, California, USA

Misbah Mubarak

mmubarak@anl.gov
Mathematics and Computer Science Division,
Argonne National Laboratory
Lemont, Illinois, USA

ABSTRACT

Identifying a suitable network topology and deciding its optimal
configuration parameters are critical aspects of the overall HPC
system design, procurement and installation process. Typically,
multiple network topology choices are compared under the bal-
anced injection-to-global bandwidth criterion to identify the best
candidate. However, deviating from this balanced criterion may
not impact application performance adversely and is often done in
practice due to other considerations such as monetary cost. In this
paper, we identify different practical constraints that determine the
number of nodes, routers, and links, and in turn, influence dollar
costs and impact network design. We design network topologies un-
der one or more such constraints which represent different design
points (iso-{*} analysis). We then perform a comprehensive, compar-
ative evaluation of three scalable network topologies — dragonfly,
express mesh, and fat-tree — enabled by parallel discrete-event sim-
ulations (PDES) of relevant HPC workloads. We identify network
topologies that perform best under different iso-{*} configurations
and compare their performance per dollar based on market data.
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1 MOTIVATION

High-speed interconnection networks are an integral part of high
performance computing (HPC) systems, and determine the perfor-
mance of many communication-heavy HPC applications. Hence,
designing and/or identifying a suitable network topology and its
optimal configuration parameters are critical aspects of HPC sys-
tem design, procurement and deployment. Network designers, cus-
tomers, and system administrators work under different constraints
to decide the most suitable network topology and configuration
for a specific deployment. Various factors such as monetary costs,
system size (number of nodes), latency and/or bandwidth require-
ments come into play for different stakeholders. Customers may
have a specific budget that they can spend on the entire system, a
significant fraction of which is used to determine the number of
nodes in the system. This might dictate the budget available for the
network, which can become a constraint for network designers. On
the other hand, end users are most concerned with the performance
of their applications on the system. Together, these factors make a
fair evaluation of different network topologies challenging.

Typically, networks are evaluated and compared under the bal-
anced injection-to-global bandwidth constraint [9, 20]. A balanced
configuration ensures a balance between injection bandwidth and
global network bandwidth. Enforcement of the balanced criterion
can put certain network topologies at a disadvantage when other
practical constraints are also applied. However, in practice, devi-
ating from a balanced configuration may not impact application
performance adversely. For example, customers might not care for
a balanced system because of budget constraints or their workloads
might not require it. Network designers may not be able to build a
balanced system due to a constraint on the number of nodes or to
throttle injection bandwidth to mitigate congestion. Thus, in order
to do a fair and practical comparison of different HPC networks,
and to identify the strengths of different topologies under certain
constraints, we approach the network design and configuration
problem differently as described below.
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Table 1: Assignment of router ports (radix = k) to nodes and links in order to ensure balance between injection and global
network bandwidth. This also determines the maximum possible system size in terms of the number of nodes. Note: L refers
to local links, and G refers to global links in a dragonfly topology.

Network topology #nodes/router  #links/router =~ Maximum system size (#nodes)
All-to-all (A2A) dragonfly k/4 k/2 (L), k/4 (G) (k/2+ 1) x (k/4+1)xk/4
Row-column (RC) dragonfly k/6 2k/3 (L), k/6 (G) (k/3+1)* x (k/6 +1)x k/6
Express mesh (3D, gap=1) k/4 3k/4 (k/4+1)3 xk/4
Fat-tree (three-level) k/2 k/2 k/2xk/2xk

We identify different constraints that are typically applied when
designing networks in practice, and describe these constraints in
terms of the choices a network designer would make for the num-
ber of nodes, routers and links in the system. Each constraint fixes
one or more quantities that define the system — number of nodes,
routers, and/or links. We then build systems that use one of three
scalable HPC network topologies — dragonfly [24] (two variations),
express mesh [19] (a dense mesh-based network), and fat-tree [25],
and apply the same constraints to them (we refer to this method-
ology as iso-{*} analysis in the rest of the paper). Note that we
study two variations of the dragonfly topology — one has all-to-all
links connecting all the routers in a group, implemented in the
IBM PERCS system [6] and the Cray Slingshot network [2], and the
other has all-to-all links connecting routers in each row/column in
a group, implemented in the Cray Cascade (XC) system [15].

Each network and the corresponding system is constructed using
five different iso-X configurations which results in twenty systems
in total. Predicted performance on these systems is then compared
using parallel discrete-event simulations (PDES) of the network
models and replay of relevant HPC workloads composed of execu-
tion traces from different parallel application motifs. We find that
different network topologies emerge as the best performers under
different iso-X constraints. We also compare the performance per
dollar of different systems using relative costs for the routers and
links, derived from market data.

Most previous work [9, 19, 20, 28, 32] assume a balanced injection-
to-global bandwidth constraint and then evaluate systems for that
particular scenario. To the best of our knowledge, this is the first
study that undertakes a comprehensive evaluation of network
topologies across many practically relevant iso-{*} scenarios (Ta-
ble 2). The novel contributions of this work are:

o Identifying different constraints that are applied when design-
ing networks in practice, and describing these constraints in
terms of the number of nodes, routers and/or links in the sys-
tem (iso-{*} configurations).

o Design and analysis of HPC systems based on four different
network topologies in each of five iso-X configurations using
discrete-event simulations of relevant HPC workloads.

o Study of cost-performance tradeoffs of the designed systems
and configurations using relative costs for routers and links,
derived from market data.

2 HIGH-PERFORMANCE NETWORKS

In this section, for completeness, we describe three scalable, high-
speed interconnection network topologies that have been proposed

for use in HPC systems. For each network topology, we also de-
scribe the construction of a balanced configuration of the system. A
balanced configuration ensures a balance between injection band-
width and global network bandwidth.

Dragonfly: The dragonfly topology was proposed by Kim et al. [24],
motivated by the arrival of high-radix routers in the market. This
topology uses a set of high-radix routers to create a logical group
which then connects with other groups giving the impression of a
densely connected network. There are two ways in which routers
within a group can be connected and we refer to them by different
names in this paper. In an “all-to-all” (A2A) dragonfly, within a
group, each router is connected to every other router by a direct
link. In a “row-column” (RC) dragonfly, within a group, routers
are arranged in logical rows and columns, and routers within each
row and column are connected in an all-to-all fashion. The A2A
dragonfly has been implemented by IBM in the PERCS system [6],
and by Cray in the Shasta system (Slingshot network [2]). The
RC dragonfly has been implemented by Cray in the Cascade (XC)
systems [15]. The dragonfly topology is known to be highly scalable,
i.e. very large systems can be constructed given a fixed router
radix, without increasing the network diameter. However, especially
for large systems, the need for adaptive non-minimal routing to
tackle congestion and lack of shortest-path diversity can impact
the observed performance on this network.

In a dragonfly network, some ports on each router are assigned
to compute nodes, local links (connections to other routers in the
same logical group), and global links (connections to routers in other
groups). Assuming the radix of each router to be k, we can derive the
optimal division of ports between compute nodes and network links
(local and global) such that the network load is balanced. In the A2A
dragonfly, in the shortest path between a source-destination pair,
the maximum number of local links traversed is two for each global
link and injection port (to which a compute node is connected).
Hence, k/4 ports each should be assigned to compute nodes and
global links, and k/2 ports should be assigned to local links to
achieve a balanced configuration. This determines the maximum
system size which is derived in the third column in Table 1. In the
RC dragonfly, for each global link and injection port, a maximum
of four local links are traversed when using shortest-path routing.
Hence, k/6 ports each should be assigned to compute nodes and
global links, and 2k/3 ports should be assigned to local links to
achieve a balanced configuration.

Express mesh: Express mesh is derived from an n-dimensional
mesh topology by adding links within each dimension to reduce
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the network diameter [19]. It is inspired by and a generalization of
express cubes proposed by Dally [13]. In an n-dimensional mesh,
each router is connected to 2 X n other routers, two in each di-
mension. In an express mesh, within each dimension, additional
links are used to connect a router to some or all routers (whose
coordinates differ only in the specific dimension). The number of
additional connections depends on a gap parameter, g. When g = 1,
there are all-to-all connections between all routers that only differ
in one mesh coordinate; in this case express mesh is the same as
the HyperX topology [5].

A balanced construction of a three-dimensional (3D) express
mesh with g = 1 necessitates assigning k/4 ports to compute nodes
and the remaining 3k/4 ports to network links (divided equally
among all dimensions in a cuboidal shape). This is because the
maximum number of hops in a 3D express mesh with g = 1 is three.
Similar to n-dimensional mesh, express mesh is suitable for near-
neighbor communication, but also provides high global bandwidth
using the additional links. However, like dragonfly, lack of shortest-
path diversity can negatively impact performance in express mesh
networks also.

Fat-tree: The fat-tree topology was proposed by Leiserson in 1985
to connect parallel machines [25], and has been widely used in
HPC systems of different sizes in the last three decades. The logical
network represents an n-ary tree where the bandwidth between
nodes of the tree increases as we get closer to the root. Since, com-
modity network routers have a fixed number of ports, the idea
is implemented by grouping many routers together at the higher
levels to give the impression of a large router with “fat” or high
bandwidth links. These top-level routers in the fat-tree are typically
referred to as core or director-class switches. This implementation
of the fat-tree topology is also referred to as a Clos network.

In a balanced construction of this network, each leaf-level router
assigns k/2 ports to compute nodes and the remaining k/2 ports are
used to connect to routers at the next higher level. While fat-tree
provides high bisection bandwidth, it requires additional routers as
compared to other topologies, and thus, is typically more expensive.
Further, it is not as scalable as the dragonfly network, i.e. for a
given router radix, the largest system that can be constructed with
a fat-tree is noticeably smaller than the dragonfly topology.

The balanced construction of each network determines the maxi-
mum possible system size in terms of the number of compute nodes
or end-points that can be constructed using routers with a given
radix (equations provided in the fourth column in Table 1). Figure 1
presents the largest system that can be constructed using routers
with a certain number of ports and different network topologies. It
is clear that dragonfly networks can support the highest number
of nodes. At lower router radix, fat-tree and 3D express mesh can
be used to build similar-sized systems but beyond a certain router
radix, express mesh has an advantage.

3 DEFINING THE DESIGN SPACE

As described in Section 1, networks are typically evaluated and
compared under the balanced injection-to-global bandwidth con-
straint [9, 19, 20, 28, 32]. In this work, we identify additional con-
straints that are often applied when designing and configuring
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Figure 1: Plot showing the largest systems that can be built
using different network topologies with increase in the
number of ports per router.

networks in practice. We describe these constraint scenarios in
terms of the choices network designers make with respect to the
number of nodes, routers and links in the system.

When selecting and configuring an interconnection network for
an HPC system, there is a large space of configurable parameters
that includes the number of routers, number of links, number of
nodes connected to a router, ratio of injection to link bandwidth,
number of ports on each router etc. In this study, we choose number
of nodes, routers and links as the three primary configurable pa-
rameters since they determine the system size. We fix the number
of ports per router or the router radix to 40 (commodity hardware
available in the market at the time of publication). We fix the router
radix because it is typically constrained by the technology avail-
able at the time of designing the machine. We assume that each
system uses the same type of nodes, routers and links. Below, we
describe five iso-X configurations, and provide practical motivations
for them. X represents the quantities or parameters (nodes, routers
and links) kept constant across the different network topologies.

Iso-nodes (Iso-N): It is common for network designers to be pro-
vided with a target system size in terms of the number of nodes,
with flexibility to choose the number of routers and links. This is be-
cause researchers and customers are often interested in comparing
different systems with the same peak floating point performance
(which essentially translates to having the same number of nodes).
Hence, in this configuration, we fix the number of nodes at 12,000 —
anumber we expect to see in systems leading up to exascale. With a
50 Tflop/s node, a 12,000-node system will have a peak performance
of 600 Pflop/s. With even more powerful nodes, the same system
could easily provide an Exaflop/s of peak performance. We call this
configuration iso-nodes, and since the number of routers and links
can be chosen for each network topology independently, we try to
balance the injection versus global system bandwidth.

Using a 40-port network router, we design four systems, each
using one of the four network topologies under consideration —
A2A dragonfly, RC dragonfly, express mesh or fat-tree (rows 1-4 in
Table 2). To ensure balance, an A2A dragonfly built using 40-port
routers uses 10 ports for compute nodes, 20 ports for local links,
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Table 2: Design space of iso-{*} configurations: twenty systems are designed/configured in total, four each for the five iso-X

configurations. Note: #N/#R refers to the number of nodes per router.
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Configuration Network Topology #Nodes #Routers #Links #N/#R Balance Other information

A2A Dragonfly 12,000 1,200 17,400 10 0.97 60 groups w/ 20 routers each

RC Dragontfly 12,250 1,750 28,875 7 0.94 35 groups w/ 10 X 5 routers each
Iso- Iso-
so-nodes (Iso-N) Express mesh 12,000 1,200 17,400 10 0.97 12 x 10 X 10 (gap=1)

Fat-tree 12,000 1,500 24,000 20 1.0  3-level fat-tree, 30 pods

A2A Dragonfly 12,000 1,200 15,000 10 0.83 60 groups w/ 20 routers each
Iso-nodes & routers RC Dragonfly 12,000 1,200 16,200 10 0.54 30 groups w/ 10 X 4 routers each
(Iso-NR) Express mesh 12,000 1,200 15,000 10 0.42 12 x 10 x 10 (gap=2)

Fat-tree 12,012 1,100 16,000 24 0.67 3-level tapered fat-tree, 25 pods

A2A Dragonfly 12,000 1,200 18,000 10 1.0 60 groups w/ 20 routers each
Iso-nodes & links RC Dragonfly 12,096 1,512 18,144 8 0.6 42 groups w/ 6 X 6 routers each
(Iso-NL) Express mesh 12,000 1,200 17,400 10 0.97 12 x 10 x 10 (gap=1)

Fat-tree 12,012 1,100 16,000 24 0.67 3-level tapered fat-tree, 25 pods

A2A Dragonfly 12,000 1,500 24,000 8 1.33 75 groups w/ 20 routers each
Iso-nodes, routers & RC Dragonfly 12,000 1,500 24,000 8 0.8 30 groups w/ 10 X 5 routers each
links (Iso-NRL) Express mesh 12,000 1,500 24,000 8 1.33 15X 10 X 10 (gap=1)

Fat-tree 12,000 1,500 24,000 20 1.0  3-level fat-tree, 30 pods

A2A Dragonfly 13,500 1,500 22,500 9 1.11 75 groups w/ 20 routers each
Iso-routers & links RC Dragonfly 10,500 1,500 24,000 7 0.91 30 groups w/ 10 X 5 routers each
(Iso-RL) Express mesh 12,000 1,500 24,000 8 0.67 15 x 10 X 10 (gap=2)

Fat-tree 12,000 1,500 24,000 24 1.0 3-level fat-tree, 30 pods

and 10 ports for global links. Accordingly, we choose the number
of routers in a group to be 20 which leads to 60 groups to support
12,000 nodes. Since the system is smaller than the maximum system
size possible, all 10 global links are used to provide 3 global links
between a pair of groups. The construction of the RC dragonfly
is similar. Seven ports are used for compute nodes which requires
many more routers in this case — 12000/7 ~ 1715. Since there
are 26 ports dedicated to local links, we put 10 X 5 = 50 routers
in each group with 2 local links per router-pair in the rows and
columns. Accordingly, we choose an integer number of groups =
35, and recalculate the total number of routers and links to be 1,750
and 12,250 respectively. Because of the high router count, the RC
dragonfly has the highest number of links.

In the case of express mesh, for balance, we assign 10 compute
nodes to each router and the remaining 30 are used for the three
dimensions. We create a 12 X 10 X 10 mesh and provide g = 1
connections since we have enough network ports. Express mesh
and A2A dragonfly require the smallest number of routers and links
for building this system. A full bisection, three-level fat-tree built
using 40-port routers can have 40 pods (800 routers at the leaf level)
and 16,000 nodes. Since our system size is only 12,000 nodes, we
need 30 pods and 600 routers at the leaf level. Each router has 20
nodes attached to it. That leads to a total of 600 + 600 + 300 = 1, 500
routers. We do not count the links connecting routers to compute
nodes, which gives a total link count of 600 X 40 = 24, 000 links.

In the next four iso-X configurations, we put additional con-
straints on the design by keeping the number of routers or links
or both constant in addition to the number of nodes. In the last

configuration, we keep the number of routers and links constant
but not nodes. The construction of systems in each configuration
is similar to the details provided above for Iso-N and we omit de-
tailed descriptions of the construction. The summary of the design
space is provided in Table 2. The balance column in the table shows
how far does each configuration deviate from the balanced crite-
rion. Balance (diameter-normalized links per node) is calculated as
follows:

Niinks X 2

balance =
N nodes X d

where Njj,xs is the total number of bi-directional links (multiplied
by two to obtain the number of uni-directional links), Ny,o4es is the
total number of nodes, and d is the network diameter.

Iso-nodes & routers (Iso-NR): Keeping the number of nodes and
routers constant allows us to do a fair comparison of network
designs with the same number of nodes per router. In addition, by
not putting links on all available ports on each router, we can study
the impact of the total number of links on system performance,
and the potential monetary savings. We fix the number of nodes at
12,000 and that of routers at 1,200 (each network has 10 nodes/router,
rows 5-8 in Table 2). In this configuration, for the A2A dragonfly we
only use two global links per group pair instead of three, and in the
case of RC dragonfly, four global links instead of 10. Compared to the
Iso-N system, the RC dragonfly system in this case has fewer groups
of smaller size (10 X 4). With cost savings as a motivation, we build
a 12 X 10 X 10 mesh with gap=2 and to satisfy the router constraint,
we build a 25-pod 3:2 leaf tapered fat-tree. By construction, the
fat-tree system only has 1100 nodes.
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Iso-nodes & links (Iso-NL): Keeping the total number of links
constant across the different systems can allow us to compare per-
formance in the case of constant global network bandwidth. In this
case, each network can use a different number of routers depending
on its balance criteria. We fix the number of nodes at 12,000 and
number of links around 18,000 (rows 9-12 in Table 2). A2A dragon-
fly and express mesh have 10 nodes per router. The RC dragonfly
has 8 nodes/router and the fat-tree has 24 nodes/router to stay
within the link constraint. In order to satisfy the link constraint,
the RC dragonfly is constructed with 42 groups of size 6 X 6 and
can only have three global links per group pair. The express mesh
is organized as a 12 X 10 X 10 mesh and the fat-tree is a 25-pod 3:2
leaf tapered system.

Iso-nodes, routers & links (Iso-NRL): Often times, customers or
network designers work under a budget constraint. Iso-monetary
cost analysis is difficult due to fluctuating market prices and due
to the potential differences between real market prices and list
prices provided to customers. Hence, we do not attempt to derive
the number of nodes, routers and links based on a fixed budget
amount but fix the number of all these network components across
the different networks. In this case, we start with 12,000 nodes and
1,500 routers (these are the smallest numbers needed to build a full
bisection fat-tree); we can easily build the other three systems well
within their respective limits of nodes/router. All three networks
other than fat-tree have 8 nodes/router and all the systems have
24,000 links (rows 13-16 in Table 2).

Iso-routers & links (Iso-RL): Finally, we also look at a configu-
ration in which the number of routers and links is kept constant
and each network can have the maximum number of nodes it can
support with the remaining ports. We fix the number of routers at
1,500 and links at 24,000 (rows 17-20 in Table 2). In this case, each
network has a different number of nodes/router (see Table 2) which
results in a different number of nodes in each system. Express mesh
and fat-tree have 12,000 nodes whereas A2A and RC dragonfly have
13,500 and 10,500 nodes respectively.

The following network parameters are kept constant across all
configurations and designs: router radix, bandwidth of each link,
injection bandwidth, packet size, virtual channel size, and several
overheads such as router delay, NIC delay, RDMA delay etc. The
values of these parameters are provided in Section 4.

4 SIMULATION SOFTWARE AND SETUP

We briefly describe our simulation suite, network parameters that
are kept constant across different network models, and the proxy
applications used for generating traces for the simulations.

4.1 Network Simulation Suite

Our simulation framework is comprised of the ROSS parallel discrete-
event simulation (PDES) engine, CODES simulation suite and TraceR
trace replay tool. We briefly discuss the capabilities provided by

each of these components of the simulation framework.

PDES in ROSS: ROSS (Rensselaer Optimistic Simulation System) [7]
provides the parallel discrete-event simulation capability that drives
network models in CODES. ROSS simulations comprise of logical
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processes (LPs) that represent individual components of the system
being modeled. For example, a router is an LP in the network model.
ROSS uses optimistic PDES, which enables faster simulations than
the traditional conservative event processing protocols [27].

Network models in CODES: The CODES simulation suite is in-
tended to accelerate the HPC interconnect system co-design by pro-
viding detailed, packet-level models of popular high-performance
interconnects such as fat-tree [25], dragonfly [24], express mesh [19],
torus [26] and other networks. The dragonfly network model can
simulate both the A2A and RC dragonfly configurations. The fat
tree network model supports multiple network planes and taper-
ing of the network as options. The express mesh network model
provides different gap configurations. All network models use a
credit-based flow control scheme in which the upstream routers
track the number of packets sent to the downstream routers. Once
a packet leaves the downstream router, it sends a credit to the
upstream router asking it to send another packet.

Trace replay in TraceR: TraceR simulates the execution of appli-
cations by replaying their control and communication flow on top
of CODES [4]. Execution traces are used as input to simulate the
control flow of an application. Traces generated using Score-P [3] in
the Open Trace Format (OTF) [1, 14] and using Adaptive MPI [18]
in the BigSim trace format [33] are supported.

TraceR emulates the functionality provided by MPI implemen-
tations when simulating messages in an execution trace. Point-to-
point messages are simulated using either the eager or rendezvous
protocol [10]. Collective operations are simulated using different
algorithms based on the size of messages and communicators [31].
CODES is used to simulate the flow of traffic initiated by TraceR on
the network. For multi-job workloads, the network is shared among
concurrently simulated jobs and a user-defined job placement is
used to assign nodes to the jobs.

4.2 Fixed Network Parameters

We keep values of the following parameters constant across all
configurations and designs: bandwidth of each link (25 GB/s), injec-
tion bandwidth (25 GB/s), packet size (4,096 bytes), virtual channel
buffer size (65,536 bytes) and several overheads such as router de-
lay, NIC delay, RDMA delay etc. Link bandwidth of 25 GB/s is
chosen because it corresponds to Infiniband HDR cables and the
injection bandwidth is fixed at the same value to match it. We simu-
late one MPI process per node — the communication volume in the
generated traces is assumed to represent the entire off-node commu-
nication volume irrespective of the number of MPI processes versus
threads. We use the following network-specific routing schemes for
the respective networks: UGAL (dragonfly), shortest-path adaptive
(express mesh), and static ftree (fat-tree). These routing schemes
were found to perform best for the respective networks in previous
studies [20, 29].

4.3 HPC Workloads

We use six proxy applications that mimic commonly occurring
communication patterns in parallel simulation codes from different
science domains. Each proxy application is described below and
summarized in Table 3.
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Table 3: Details of the proxy applications used for generat-
ing execution traces for experiments in this paper.

Proxy app. No. of neighbors  Msg. size (MB)
Pairs 1 4
Spread ~23 2
UMesh ~9 2
MILC-comm 8 2
pF3D-comm 20, 10 2,1
Qbox-comm 100, 5-40 1,8,2

Pairs: In this proxy application, each process is paired with exactly
one other process with which it exchanges one 4 MB message.
The pairing of processes is done arbitrarily. This pattern is based
on the communication in a matrix transpose operation, which is
commonly used in linear algebra libraries.

Spread: This proxy application generalizes Pairs by assigning sev-
eral (16 to 32) communicating partners to every process. Each pro-
cess communicates with all of these partners by exchanging 2 MB
messages. Partners for each process are selected arbitrarily.

UMesh: In UMesh, each process exchanges 2 MB messages with a
carefully selected set of 6-20 partners. The partner processes for a
given process are “nearby” in MPI rank space. This communication
is representative of an unstructured mesh computation. In applica-
tions that perform computations over unstructured meshes, each
MPI process has an arbitrary but small number of neighbors that
are assigned neighboring sub-domains of the mesh.

MILC-comm: MILC-comm arranges MPI processes in a four-dime-
nsional (4D) Cartesian grid. Each process communicates 2 MB mes-
sages with its eight immediate neighbors in the grid. This is rep-
resentative of the communication pattern in applications that use
structured grids, e.g. MILC [8]. MILC is used for studying quantum
chromodynamics and in one of its executables, su3_rmd, messages
are exchanged with nearest neighbors in a 4D grid of MPI processes.

pF3D-comm: MPI processes are arranged in a three-dimensional
Cartesian grid of size 20 X 10 X n in pF3D-comm. Value of n is
determined based on the total number of processes. MPI_Alltoall
operations of message sizes 2 MB and 1 MB per pair are performed
consecutively in sub-communicators defined along the first two
dimensions as is done in pF3D [30]. pF3D is a laser-plasma interac-
tion code used at the National Ignition Facility at LLNL. In one of
its phases (wave propagation), 2D FFTs in each plane are broken
down into 1D FFTs along the X and Y directions.

Qbox-comm: Three collective operations are performed consecu-
tively in Qbox-comm: MPI_Alltoallv, MPI_Bcast, and MPI_Allr-
educe. MPI processes are arranged in a two-dimensional Cartesian
grid of size 100 X n. All-to-all operations of message size 1 MB
per pair are performed in a sub-communicator defined along the
first dimension. The other two operations are invoked in the sub-
communicators defined along the second dimension. This proxy
application represents the communications patterns in Qbox [17],
a quantum chemistry code.
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Each application is run on 500, 1,000, 2,000 and 4,000 MPI pro-
cesses, and execution traces in OTF2 format for each application
are generated using Score-P [3]. These traces are then used to cre-
ate two kinds of workloads for 12,000 nodes — one consisting only
of small-sized jobs (500-2,000 MPI processes, referred to as Small
Jjobs) and another with jobs of all sizes (500-4,000 MPI processes,
referred to as All jobs). The workloads are generated by randomly
selecting jobs of different proxy applications and sizes from the
available pool. For each kind of workload (Small jobs and All jobs),
we generate three sets — Set 1, Set 2, and Set 3, which contain dif-
ferent combinations of jobs. Within each set, we run two different
placements of the jobs on each system — linear and random. In the
linear placement, nodes are assigned to jobs in a blocked/linear
fashion. In the random placement, nodes are randomly assigned to
jobs. As a result, each job might be scattered over the entire system.

The same randomly generated workloads are simulated for all
designs within each iso-X configuration and even across iso-{*}
configurations other than Iso-RL. In the case of Iso-RL, each network
may have a different number of nodes and the randomly generated
workloads are tweaked by hand to add or subtract jobs to match
the node count of the system under consideration.

5 EXPLORING THE DESIGN SPACE

We now compare the performance of the four network topology
designs within each iso-X configuration using the simulation re-
sults. Each simulation outputs the predicted execution time of each
job in the multi-job workload. We use the total communication
volume, Vj, of job j, and its predicted execution time, T}, to define a
communication rate for the entire workload:

4
comm. rate = Z -
- Tj

J

This gives us an indication of the effective bandwidth achieved for a
given workload in a particular placement and network design. The
simulation also outputs the bytes sent on each network port, which
we use to calculate the average and maximum traffic (load) per link.
These details about the network traffic can help us in understanding
the performance prediction results.

As described in Section 4, within each iso-X configuration, for
every network topology, we ran three different sets of Small jobs
and All jobs multi-job workloads under two placements — linear
and random. This amounts to 48 simulations within each iso-X
configuration, and 240 simulations in total. Figures 2—6 present the
results of all these simulations.

Iso-nodes (Iso-N): In this configuration, each network design may
have different number of routers and links depending on its bal-
anced criterion. This is the typical setup used in most previous
work for comparing networks. In this case, each topology can make
the best use of its links and routers to provide balanced injection-
to-global network bandwidth. For a fixed node count, the fat-tree
network has the highest bisection bandwidth of all the networks
compared in the paper. This is reflected in the communication rate
achieved by the fat-tree system for the linear placement (Figure 2).
The A2A dragonfly system delivers the second highest communica-
tion rate in the case of linear placement. Performance of the fat-tree
and A2A dragonfly systems drops in the case of random placement
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Figure 2: Performance comparison of iso-nodes (Iso-N) configurations: In the linear placement, the fat-tree topology has the
highest predicted communication rate followed by the A2A dragonfly. In the random placement, express mesh has the highest

predicted communication rate followed by the fat-tree topology.

Iso-NR (Small jobs)

Iso-NR (All jobs)

120 120
] A2A Dragonfly B4 Express mesh
g 100 100 RC Dragonfly =1 Fat-tree
= R ]
9 80 |- .. 80 |-
e
c 2
g 60 [ 60
«
S _
g 40 —eeeeee ol 40 R YNTE Do IUTITThTN g NN T BN )V SIS )V AN T N @) TR SRR
20 feeeee < 20 e D b el OB L ON RS
O
N :
N 5 E
0 0

Linear Random Linear Random
Set | Set 2 Set 3

Linear Random

Linear Random Linear Random Linear Random
Set | Set 2 Set 3

Figure 3: Performance comparison of iso-nodes & routers (Iso-NR) configurations: In this case, for both placements, the A2A
dragonfly has the highest predicted communication rate followed by the fat-tree topology.

due to increased inter-job interference. This is confirmed by the
76% increase in the average and 16% increase in maximum traffic
per link in the fat-tree system for the random placement (Set 2).
The express mesh system is the clear winner in the case of random
placement due to its performance improvements which result from
a significant drop in the maximum traffic over all links.

Iso-nodes & routers (Iso-NR): In this configuration, we fix the
number of routers in addition to the number of nodes, which re-
duces the number of links on all networks compared to the respec-
tive Iso-N configurations. This can help us evaluate the impact
of cost-saving measures such as using fewer links. The commu-
nication rate drops for all networks compared to the respective
Iso-N configurations as expected (Figure 3). Tapering the fat-tree
and changing the gap on the express mesh network has a more
adverse effect than reducing the number of global links on the drag-
onfly networks. As a result, the performance of fat-tree and express
mesh systems drops significantly compared to their respective Iso-
N designs. The performance of the A2A dragonfly does not change
significantly as compared to the Iso-N design, and it emerges as the

best performing one in Iso-NR configuration (for both placements).
This suggests that when procuring machines, customers have the
flexibility to reduce the number of optical links without noticing
a huge impact on performance. The smaller group size and fewer
number of groups in the case of RC dragonfly as compared to the
Iso-N design leads to better performance for some workloads even
with fewer global links. The fat-tree system delivers the second
best performance for most workloads in both placements.

Iso-nodes & links (Iso-NL): In this configuration, the A2A drag-
onfly and express mesh systems are able to use all their network
ports to connect routers via links. However, the fat-tree system is
3:2 leaf tapered as in the Iso-NR configuration, and the RC dragonfly
has only three global links per group pair. As in the previous config-
uration, tapering impacts the predicted performance of the fat-tree
system significantly and it is able to performs only as well as the
express mesh system in the case of linear placement (Figure 4). The
A2A dragonfly outperforms all other network topologies except
in the case of Small Jobs’ Set 3 where fat-tree is slightly better. It
turns out that for some workloads in this configuration, fat-tree
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Figure 4: Performance comparison of iso-nodes & links (Iso-NL) configurations: In the linear placement, the A2A dragonfly has
the highest predicted communication rate in most cases except Set 3 where fat-tree is slightly better. In the random placement,
express mesh has the highest predicted communication rate followed by the A2A dragonfly topology.
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Figure 5: Performance comparison of iso-nodes, routers & links (Iso-NRL) configurations: In the linear placement, fat-tree has
the highest predicted communication rate. In the random placement, express mesh has the highest predicted communication

rate followed by the fat-tree topology in most cases.

has a lower average and maximum traffic per link as compared to
the A2A dragonfly design. Similar to the Iso-N configuration, in the
case of random placement, express mesh again outperforms other
networks significantly.

Iso-nodes, routers & links (Iso-NRL): This configuration pro-
vides a fair comparison between all four network topologies since
the number of nodes, routers and links is fixed. This configuration
is also interesting due to the fact that all system designs have the
same number of nodes per router. The results in this case, shown
in Figure 5, are very similar to those in the Iso-N configuration
(balanced criterion, see Figure 2). Referring back to Table 2, this
suggests that in the case of express mesh and A2A dragonfly, we
can build the systems with fewer routers without compromising
performance significantly. As was observed in the Iso-N case, in
this configuration also, the fat-tree system performs the best for
linear placement, whereas the express mesh system is the best in
the case of random placement followed by fat-tree.

Iso-routers & links (Iso-RL): This configuration is different from
the rest because it allows each network design to have a different
number of nodes. Fat-tree and express mesh have 12,000 nodes
each, RC dragonfly has 10,500 nodes and A2A dragonfly has 13,500
nodes. In this case, the same workloads as in the previous iso-{*}
configurations are run on the fat-tree and express mesh systems.
However, in the case of RC dragonfly, we remove some jobs to fit
within 10,500 nodes and in the case of A2A dragonfly, we add some
jobs to fill the entire machine. Hence, we have to be careful when
we compare the communication rates for this configuration since
the rate is now a summation over different number of jobs for each
network. It may not make sense to compare this configuration with
the other iso-{*} configurations. We observe that since the number
of routers and links are fixed for all networks, the results in this
configuration (Figure 6) are also similar to the Iso-N and Iso-NRL
configurations (Figures 2 and 5 respectively).

We summarize the predicted performance of different iso-{*}
configurations except Iso-RL for the two placements (linear and
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Figure 6: Performance comparison of iso-routers & links (Iso-RL) configurations: Fat-tree has the highest predicted commu-
nication rate for linear placement, and express mesh has the highest predicted communication rate for random placement.
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Figure 7: Predicted network performance (TB/s) of different network designs under different iso-{*} constraints. The commu-
nication rate shown is the average rate for each network design across all six workloads sets. Linear placement is shown in

the left plot and random placement in the right.

random) in Figure 7. The numbers are obtained by calculating
the average communication rate for each network design across
all six sets of workloads (small and all). The high-level finding is
that in absence of tapering, the fat-tree topology provides the best
network performance in the case of linear placement, but suffers
from congestion in the case of random placement. On the other
hand, random placement benefits express mesh by allowing the
use of more links and spreading the traffic in different dimensions.
In the configurations where the fat-tree is tapered and express
mesh uses gap=2, the A2A dragonfly topology performs the best.
The RC dragonfly topology has the worst performance among all
the networks compared in this paper for the multi-job workloads
simulated here.

6 SLICING THE DESIGN SPACE

Purchasers of HPC systems attempt to optimize application perfor-
mance and workload throughput under a budget constraint. Hence,
understanding tradeoffs between monetary cost and application
performance is important. In this section, we attempt to slice the

design space by bringing monetary costs into the equation and
comparing performance per dollar for different network designs.

Market prices of network components fluctuate and list prices
provided by manufacturers to customers are not public. Hence,
instead of using actual dollar costs of different network components,
we look at their relative costs. Let us assume that the average cost
of an optical cable of length 10-30 meters is x. We then say that
the average cost of a copper cable of length 1-3 meters is ¢ X x and
the cost of a 40-port router is r X x. Given the number of optical
cables, copper cables and routers used in the system, Ny, N, and
N, respectively, we can calculate the total network cost as:

cost =Ny Xx+NeXecXx+ NpXrXx

where ¢ and r are parameters that can be varied depending on the
manufacturer, technology or the current market prices. In order to
look at relative costs, we set the cost of an optical cable, x = $1 and
then find reasonable numbers for the parameters c and r. In this
paper, we use ¢ = 0.16, and r = 20. These numbers were obtained by
looking at the current market prices for different manufacturers and
consulting with people often involved in procurement decisions.
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Figure 8: Understanding monetary cost versus application performance tradeoffs. The plots show the predicted network per-
formance per dollar (GB/s/$) of different network designs under different iso-{*} constraints obtained by using relative costs
of links and routers. Linear placement is shown in the left plot and random placement in the right.

Plugging in these values, the cost equation reduces to,
cost = Ny + 0.16 X N + 20 X N,

In order to ascertain the number of links that are installed using
copper cables versus optical cables, we make some assumptions for
each network topology. In the case of dragonfly, we assume that all
links within a group are copper cables. For fat-tree, we assume that
all links within director class switches are copper cables. For express
mesh, we assume that a small neighborhood around each router is
connected using copper cables. Based on these assumptions and the
numbers in Table 2, we derive the cost of each network (Table 4).

Table 4: Monetary costs of different network designs based
on costs of copper cables and 40-port routers, calculated rel-
ative to the cost of a 10-30 meters optical cable ($1).

A2A RC express
Config.  dragonfly dragonfly —mesh fat-tree
Iso-N 31920 44765 36360 43920
Iso-NR 29308 28104 34968 31280
Iso-NL 31920 35683 36360 31280
Iso-NRL 41400 37620 47700 43920
Iso-RL 40916 37620 47700 43920

Focusing on the Iso-NRL and Iso-RL rows first, we observe that
the RC dragonfly is typically the least expensive network followed
by the A2A dragonfly and fat-tree. Express mesh is the most expen-
sive. However, by comparing Iso-NRL and Iso-N, we can make the
same observation as in the previous section: we can reduce the cost
of A2A dragonfly and express mesh by using fewer routers without
compromising performance significantly. Finally, by using gap=2
for express mesh and tapering for fat-tree, we can bring the cost of
these two networks closer to the dragonfly networks.

Using the performance summary data in Figure 7 and the cost
numbers for each design in Table 4, we now calculate performance
per dollar numbers for each design under different iso-{*} configu-
rations. These are presented in Figure 8. Based on these plots, we
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conclude that the fat-tree and A2A dragonfly systems deliver the
highest performance per dollar in the case of linear placements.
Fat-tree performs better in its full bisection configuration whereas
A2A dragonfly performs better when the fat-tree is tapered.

Linear job placements are often not used in practice on produc-
tion supercomputers. Typically, a new job in the queue is allocated
whichever nodes are currently available without any regard to the
network topology. Hence, a random placement is more represen-
tative of the scenarios in practice. In this case, we notice that the
express mesh system delivers the best performance among all four
networks except one configuration. In the Iso-NR configuration,
where we use an express mesh with gap=2, A2A dragonfly and
fat-tree perform better than the express mesh system.

Performance per dollar vs. balance

3.5
Iso-N a
5 3 Iso-NR o]
g 25 Iso-NL O
. Iso-NRL o
[
=% 2 o
o X m]
g s ~
E |
§ 6
Y os
0 1 1 1 1 1 1 |
0 0.2 0.4 0.6 0.8 | 1.2 1.4
Balance

Figure 9: Predicted performance (communication rate per
dollar) as a function of the balance property of the sys-
tem (diameter-normalized links per node). The colors of
the points on the plot represent different network topolo-
gies (red: A2A dragonfly, green: RC dragonfly, blue: express
mesh, gold: fat-tree).

Finally in Figure 9, we summarize the trends of the predicted
performance per dollar of most system configurations simulated in
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this paper as a function of how balanced the networks are (diameter-
normalized links per node). Each point represents a different config-
uration from Table 2 (Iso-RL configurations are omitted from this
plot). The point shapes represent different iso-{*} configurations and
the colors signify different network topologies. We can make sev-
eral important observations from this plot. First, having a surplus
of links in the network does not lead to the best performance per
dollar (points on the extreme right). The best performance per dol-
lar is obtained around balance = 1. However, several configurations
that are not balanced (between 0.8 and 1) have better performance
per dollar. They are systems built using the A2A dragonfly network
or the express mesh network. It is also evident that RC dragonfly
systems do not lead to high performance per dollar irrespective of
the balance criterion.

7 RELATED WORK

There are several previous studies that focus on comparing HPC
networks by using performance, cost, energy consumption and net-
work properties as metrics. Publications that propose new network
designs often compare the new topology with existing network
topologies with respect to several metrics. In [23, 24], the authors
compare the dragonfly topology against flattened butterfly, folded
Clos and 3D torus networks. The metrics used are cost, cable length
and network diameter.

Pan et al. [28] propose the Firefly network topology, which con-
sists of clusters of compute nodes with intra-group communication
performed through electrical cables, and inter-group communica-
tion performed using nanophotonics. They compare the proposed
firefly network topology to a concentrated mesh, an optical cross-
bar and a dragonfly topology. The evaluation of various topolo-
gies is performed by extending the Booksim cycle accurate simula-
tor [12, 21] with single job executions of synthetic traffic patterns
and MineBench benchmarks. The comparison focuses on energy
consumption of various network topologies, and the energy delay
product (EDP) is used to compare the alternative topologies.

Besta et al. [9] propose the Slim Fly network topology and com-
pare its performance against alternative topologies such as flattened
butterfly, fat-tree, torus, hypercube and dragonfly networks. The
radix of dragonfly, fat-tree and flattened butterfly network topolo-
gies is adjusted to give full global bandwidth and a balanced con-
figuration. Low-radix network topologies such as torus, hypercube
and long-hop use a radix of one. Single job execution is simulated
by using synthetic traffic patterns such as uniform random, bit
permutation and worst-case traffic. They use the Booksim cycle
accurate simulator for the evaluation.

Fujiwara et al. [16] propose the Skywalk topology, which uses
randomness to achieve low latency while aiming to reduce cable
lengths. This work uses graph analysis and discrete-event simu-
lations to compare the new design against hypercube, dragonfly,
HyperX, and fully random topologies. The metrics used for com-
parison are latency, cable length and throughput.

More recently, researchers have performed comparative evalu-
ations of popular interconnect topologies with respect to several
metrics. In [20], the authors perform a comparison of the torus,
fat-tree and dragonfly network topologies by using the TraceR-
CODES packet-level simulation framework on network sizes with
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up to 730K endpoints. The performance comparison is done by
simulating multi-job workloads coming from four benchmarks and
two proxy applications that are representative of a variety of HPC
communication patterns.

In [22], the authors perform a comprehensive evaluation of
ten high-performance and data center network topologies: BCube,
DCell, dragonfly, fat-tree, flattened butterfly, hypercube, HyperX,
jellyfish, Long Hop and Slim Fly. They compare the throughput of
different topologies using a variety of synthetic and empirically
gathered traffic matrices, and by generating near worst-case traffic
patterns for each topology. Chen et al. [11] also compare network
topologies (fat-tree, dragonfly, dragonfly+, HyperX, Slim Fly) using
synthetic patterns and proxy applications. The metrics used for
evaluation are throughput, bandwidth per node and time.

Most previous work described above assume a balanced injection-
to-global bandwidth constraint and then evaluate systems for that
particular scenario. We identify different constraints that are typ-
ically applied when designing networks in practice, and describe
these constraints in terms of the choices a network designer would
make for the number of nodes, routers and links in the system. To
the best of our knowledge, this is the first study that undertakes
such a comprehensive evaluation of network topologies across
many practically relevant iso-{*} scenarios.

8 SUMMARY

HPC system design in general and network design in particular
is challenging due to multiple, sometimes conflicting constraints
imposed on the design. Network designers often look for elegant so-
lutions to network design challenges such as balancing the injection-
to-global network bandwidth. However, customers might have to
adhere to other constraints such as monetary costs or peak perfor-
mance, while still trying to maximize performance of applications
running on the system or improve overall system throughput.

In this paper, we described three important axes which define a
design space for HPC systems — number of nodes, routers and links.
We can vary each one independently or apply constraints on one
or more quantities when designing an HPC system. We looked at
five configurations that keep nodes, routers and/or links constant
across the different network topologies (iso-{*} configurations). For
these configurations, we compared four scalable network topologies
using discrete-event simulations of relevant HPC workloads. We
observed that full-bisection fat-tree systems are the best performers
when jobs are placed linearly. However, when comparing against
tapered fat-trees, A2A dragonfly performs better. When jobs are
placed randomly, express mesh with gap=1 (i.e. HyperX) performs
best. When using an express mesh with gap=2, A2A dragonfly
performs better.

We also compared performance per dollar for the different net-
works by using relative costs of routers and links, derived from
market data. We see similar trends in results for performance per
dollar as in the performance results. Since dragonfly systems are
less expensive, performance per dollar for the A2A dragonfly comes
close to that of the fat-tree when linear placement is used. When
comparing performance per dollar against how balanced the sys-
tems are, we observe two things — a perfectly balanced system
or even surplus network bandwidth does not guarantee the best
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performance per dollar. Second, we can sacrifice perfect balance
and achieve better performance per dollar for some A2A dragonfly
and express mesh systems.
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