
Intuitive Visualizations for Analyzing Exascale Workloads

ABHINAV BHATELE | TODD GAMBLIN | MARTIN SCHULZ | PEER-TIMO BREMER

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-545412).

Collaborators: Brian T. N. Gunney, Katherine E. Isaacs, Aaditya G. Landge, Joshua A. Levine, Bernd Hamann and Valerio Pascucci

scalability.llnl.gov

The HAC model Application Domain
(Physical simulation space)

Hardware Domain
(Flops, cache misses,
network topology)

Communication
Domain

(Virtual topology)

Data Analysis
and

Visualization

The hardware domain represents the compute nodes
and physical interconnect that form the parallel ma-
chine. The application domain is the physical or
other simulation space being modeled by the ap-
plication. The communication domain is the
virtual process topology for a parallel appli-
cation. Performance data is typically col-
lected in one of these domains.
The HAC model projects data
into domains where it is most
intuitive to analyze.

Projections on the application domain

VisIt snapshots for a 1024-core run of SAMRAI
on Blue Gene/P. Instead of coloring the patches
by their physical properties, we color them by
the MPI rank of the process that owns them.
Similar colors on nearby patches indicate prox-
imity on the physical interconnect.

Floating point operations (middle) and L1 cache
misses (bottom) mapped to the application
domain (top) for multiple time steps of Miranda
running on 256 cores of an Infiniband cluster.

Projections on the hardware domain
Communication is becoming the dominant performance bottleneck as we scale to a large number of cores. It be-
comes important to analyze communication in terms of contention on specific links (hot-spots) and distribution of
network traffic on the links in various directions.

Performance analysis of parallel scientific codes is becoming increasingly difficult due to the rapidly growing complexity of applications and architectures. Existing tools fall short in providing intuitive views to reveal the root causes of performance problems. We have developed a new paradigm of projecting and
visualizing performance data obtained from one domain onto other domains for faster, more intuitive analysis of applications. We gather performance data in three domains: hardware, application, and communication. For each domain, we define projections that allow the data to be viewed in the other domains.
This framework is called the HAC model. The model not only allows us to directly compare the data across domains, but also allows us to use data visualization and analysis tools available in the other domains. Using these methodologies and visualization techniques, we demonstrate the careful unscrambling
of otherwise tangled measurements caused by adaptive systems. By attributing performance anomalies directly to their causes, we are able to visualize performance measurements in the domains most intuitive to the user, which are not necessarily those in which the measurements are collected.

Default (MPI rank ordered, left) and a double tilted mapping (right) of a structured process grid of dimensions
32x8x16 to a torus of dimensions 8x16x32 generated using the Rubik mapping tool.

Blue Gene/P network counter data for a point-to-point message (above left), all-to-all over a subset (above center)
and global all-to-all pattern (above right and below) visualized using Boxfish.

Projections on the communication domain

Times spent in the three load balancing sub-phases of SAMRAI plotted against the
MPI ranks. Phase 1 i.e., load distribution appears to lead to longer wait times in other
phases. This MPI rank view does not reveal the cause of the performance problem.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

0 256 512 768 1024

T
im

e
(s

)

Different phases of load balancing (1024 cores)

phase 1
phase 2
phase 3

MPI Rank

The timing data for phase 1 projected to the communication domain which is a
binary tree. Now, we can clearly see that a portion of the tree (in red) is significantly
delayed. Coloring the edges by the number of boxes sent down, shows a flow prob-
lem arising from the movement of load from the rest of the tree to this sub-tree.

