Interoperating MPI and Charm++ for Productivity and Performance
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MOTIVATI ON int main(int argc, char **argv) { CONTROL FLOW

/I Initialization e Expose Charm++ scheduler to the programmer: new

Developing multi-physics, coupled applications using one parallel }mpi_module1(data)i charm_module1 (data) {

1/ do work API to activate and deactivate the scheduler.
}

language can be challenging:
G e Lxplicit control transter by the programmer: begin in

e MPI, switch to Charm++ by invoking its scheduler,

charm_module2(data) { switch back to MPI by stopping the scheduler, and so on.

b) A good match between module requirements and language /1 do work
mpi_module2(data);

features may increase programmer's productivity if the module mpi_module2(data) { } ° y e Switching control infrequently is advisable for ease of

is implemented in the given language. programming and good performance.
c) Various modules may require existing software implemented in Left tigure: basic MPI example to interoperate with Charm++; lines in red are the only additional code required.

a) For optimal performance, different modules may require ol moduied (data) {

/l do work

features provided by distinct parallel programming languages. charm. modulet (data).

other different languages. Centre and right figures: all changes required for calling HistSorting library in Charm++ from a production MPI code.s

RESOURCE SHARING Charm++-based NAMD

INTEROPERATION V' Automatic shared use of low-level network resources via using MPI-based FETW

. . . . distinct communication domains, e.g. create clients usin . L
Coordinated use of multiple parallel programming languages in > &5 S with space-division: similar

. . . . . PAMI_ Client_create on Blue Gene/Q). .
an application, termed interoperation, is a realistic solution to B - Q performance obtained
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