
l

Interoperating MPI and Charm++ for Productivity and Performance

FrameworkIntroduction Examples and Results

Nikhil Jain1, Abhinav Bhatele2, Jae-Seung Yeom2, Mark F. Adams3, Francesco Miniati4, Chao Mei5, and Laxmikant Kale1

1University of Illinois at Urbana-Champaign, 2Lawrence Livermore National Laboratory, 3Lawrence Berkeley National Laboratory, 4ETH Zurich, 5Google Inc.

MOTIVATION
Developing multi-physics, coupled applications using one parallel
language can be challenging:
a) For optimal performance, different modules may require

features provided by distinct parallel programming languages.
b) A good match between module requirements and language

features may increase programmer's productivity if the module
is implemented in the given language.

c) Various modules may require existing software implemented in
other different languages.

INTEROPERATION

▪ Coordinated use of multiple parallel programming languages in
an application, termed interoperation, is a realistic solution to
challenges described above.

▪ We explore interoperation between these two languages:
 User-driven MPI where the programmer explicitly defines

the control flow.
 System-drivenCharm++ where a runtime drives the

execution based on the availability of data.

CHALLENGES

▪ Given the difference in control flow between Charm++ and MPI,
how is control transferred and managed between them?

▪ How are resources (such as cores and network) and data shared
between the two programming languages?

▪ How easy-to-use and scalable is the interoperation methodology
for production applications?

int main(int argc, char **argv) {
 // Initialization
 mpi_module1(data);
}

mpi_module1(data) {
 // do work
 charm_module1(data);
}

charm_module1(data) {
 // do work
}

charm_module2(data) {
 // do work
 mpi_module2(data);
}

EXIT

1

2 3

4
5

mpi_module2(data) { }

Activate
Exposed

Scheduler

Deactivate
Scheduler

MPI Charm++

P(1)

(a) Time Division

(b) Space Division

(c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.

P(1)
P(2)

P(n-1)

P(n)

.

.

P(1)
P(2)

P(n-1)

P(n)

.

.

P1-B

P1-A

P2-B

P2-A

Process 1 Process 2

Path 1

Path 2
Shared
Memory

CONTROL FLOW

• Expose Charm++ scheduler to the programmer: new
API to activate and deactivate the scheduler.

• Explicit control transfer by the programmer: begin in
MPI, switch to Charm++ by invoking its scheduler,
switch back to MPI by stopping the scheduler, and so on.

• Switching control infrequently is advisable for ease of
programming and good performance.

DATA SHARING

✓Method 1: A generic data transfer repository to which each
language module deposits (or queries) the data. Under the
hood, communication performed by the repository.

✓Method 2: Pointer-based data sharing via reserved memory
within nodes assisted by explicit communication by
programmer code.

RESOURCE SHARING

✓ Automatic shared use of low-level network resources via
distinct communication domains, e.g. create clients using
PAMI_Client_create on Blue Gene/Q.

✓ Three schemes available for sharing cores:
 1. Time Division: execute either Charm++ or MPI on all

cores at a given time during execution.
 2. Space Division: statically divide cores into subsets that

execute either Charm++ or MPI.
 3. Hybrid Division: divide cores into subsets that alternate

between MPI and Charm++ together.
✓ API for division of cores based on MPI communicators.

communicator and MPI_Finalize perform the necessary
clean up.

For Charm++, a new API has been added to perform these
tasks. CharmLibInit initializes a Charm++ instance for a
given set of processes. In order to execute a Charm++ module,
one should invoke StartCharmScheduler that transfers
the control to the Charm++ RTS. The scheduler can be stopped
either on a single processor using StopCharmScheduler
or collectively on all processes by calling ckExit. Finally,
the clean up is performed by invoking CharmLibExit.

B. Writing Interoperable MPI-Charm++ Programs

For a programmer, interoperation between independent
MPI and Charm++ modules requires minor modifications to
both the modules. Other than including the necessary headers,
following is a list of all the required additional tasks a module
must perform:

Common Tasks: Initialize MPI, create sub-communicator(s),
initialize Charm++ instance(s), destroy Charm++ instance(s),
free sub-communicator(s), finalize MPI.

MPI module: Provide an interface function callable from
Charm++ (a C/C++ function); to transfer control to Charm++
modules, call interface function provided by the Charm++
modules.

Charm++ module: Provide an interface function callable from
MPI — this interface function should initiate start up messages
to the module and activate Charm++ RTS; to transfer control
to MPI modules, call interface function provided by the MPI
modules.

The code snippet below shows an MPI program with all the
changes required to interoperate with a Charm++ module. As
usual, execution begins in main and MPI_Init is invoked
first. After that, the processes are divided into two sets by
creating sub-communicators. One set of processes continues
with MPI work while Charm++ is initialized on the other. This
second set of processes invokes the Charm++ module and on
return, the Charm++ instance is destroyed. If needed, control
can be transferred back and forth multiple times between MPI
and Charm++ modules before the instance is destroyed.

#include "mpi-interoperate.h"

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_split(MPI_COMM_WORLD, myrank%2, myrank, &

newComm);
if(myrank % 2) {
// Create Charm++ instance on subset of processes
CharmLibInit(newComm, argc, argv);
HiStart(16); // Call Charm++ library
CharmLibExit(); // Destroy Charm++ instance

} else {
// MPI work on rest of the processes

}
MPI_Finalize();

}

A standalone Charm++ program begins execution in the
constructor of a special C++ object called mainchare and exits
the program by calling ckExit. To enable interoperation,

we have modified this aspect of Charm++. When using a
Charm++ module for interoperation, execution in Charm++
begins only when it is invoked explicitly by initiating a
message to one of its objects and starting the Charm++ RTS
using StartCharmScheduler. In the code snippet below,
HiStart is an interface function that performs these tasks.
On processor 0, a message is initiated to the mainHi object
after which all processes activate the Charm++ RTS. In this
simple example, when the RTS receives this message and
schedules it, calling ckExit collectively stops the scheduler
on all processes, thus returning the control to the interface
function.

#include "mpi-interoperate.h"

// function invoked from MPI
// marks the begining of Charm++
void HiStart(int elems) {
if(CkMyPe() == 0) {
mainHi.StartHi(elems);

}
StartCharmScheduler();

}

// Charm++ function that deactivates scheduler
void MainHi::StartHi(int elems) {
ckExit();

}

V. SHARING RESOURCES AND DATA

In an interoperable environment, the presence of different
modules requires explicit coordination of certain aspects that
are otherwise handled by the language implementations. We
focus on two such important issues – 1) How are resources
shared?, and 2) How is data shared? between modules written
in different languages.

A. Resource Sharing

Execution of multiple modules written in different lan-
guages on the same physical resources is only possible through
the sharing of hardware such as cores, the memory subsys-
tem and the network. These resources can be allocated to
individual modules either explicitly by the programmer, or
implicitly by a framework based on the preferences expressed
in the application. Figure 2 presents three schemes provided in
our framework for sharing resources — time division, space
division and hybrid division.

Language 1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid Division
Time

P(2)

P(n-1)
P(n)

.

.

Fig. 2. Schemes for sharing resources between languages in an interoperable
environment.

Time Division: During the execution of an application on a
system, if all the processes switch from one language module
to another synchronously, we refer to this way of interoperation
as time division. As depicted in Figure 2(a), the execution of
an application begins in one of the languages. At some point in

/* CHARM code that prepares the input */
...
195 lines of Multi-way Merge sort in MPI
/* Computation code in CHARM*/
...

CHARM code flow with Multi-way Merge Sort

/* CHARM code that prepares the input */
...
// call to HistSort
HistSorting<key_type, std::pair<partType,

char[MAX_PART_SZ]>>(loc_s_len, dataIn,
&loc_r_len, &dataOut);

/* Computation code in CHARM*/
...

CHARM code flow with Charm++’s HistSort

// interface function for HistSort
template <class key, class value>
void HistSorting(int input_elems_, kv_pair<key,

value>* dataIn_, int * output_elems_, kv_pair<
key, value>** dataOut_) {

// store parameters to global locations
dataIn = (void*)dataIn_;
dataOut = (void**)dataOut_;
in_elems = input_elems_;
out_elems = output_elems_;
// initiate message to main object
if(CkMyPe() == 0) {
static CProxy_Main<key,value> mainProxy =

CProxy_Main<key,value>::ckNew(CkNumPes());
mainProxy.DataReady();

}
StartCharmScheduler();

}

Fig. 4. (left) Modifications required to transfer control from CHARM to Charm++’s HistSort; (right) The interface function for HistSort library that can be
called from any MPI program.

Fig. 5. CHARM using Charm++’s histogram sorting: scaling bottleneck
caused due to sorting can be resolved using Charm++’s sorting library.

the interface function instead of the default Multiway-merge
Sort implementation as shown in Figure 4 (left).

Figure 5 compares the performance of HistSort with
Multiway-merge Sort. The plot shows the global sorting time
for a strong-scaling experiment with 131, 884, 914 keys (72
bytes of data attached to each key) executed on Hopper, a Cray
XE6. HistSort, written in Charm++, outperforms the MPI-
based Multiway-merge Sort for large core counts (48⇥ speed
up on 16, 384 cores). While the performance of Multiway-
merge Sort gets worse, HistSort’s performance improves sig-
nificantly with increasing core count. The improvement in
performance resolves the scaling bottleneck of CHARM due
to sorting. In addition, replacing the sorting code in CHARM
with a call to HistSort reduces the source lines of code (SLOC)
by 195.

B. EpiSimdemics and MPI-IO

This second case study shows the coupling of the MPI-IO
library [6] with a contagion simulation code called EpiSim-
demics [2], implemented in Charm++. Use of MPI-IO enables
generation of output data at scale, enables fast writing to a
single file, and helps alleviate the performance bottleneck in
EpiSimdemics caused by I/O operations.

EpiSimdemics is an agent-based simulator used to study
the spread of contagious diseases over social contact networks.
EpiSimdemics requires three types of input files. The person
file and the location file contain the attributes of each person
and each location respectively. The schedule file contains a list
of edges, where an edge represents the visit of a person to a
location. The sizes of these files for the entire US population
are 2.1 GB, 1 GB, and 28 GB respectively.

Among the many output files of EpiSimdemics, the disease
and dendogram files are of large sizes. The disease file records
the time of every health state transition for the people. The
dendogram file records the information related to every disease
transmission event. For our simulation setup, the former is 7.7
GB and the latter is 5.5 GB in binary format. These two files, in
addition to the one recording the summary of global simulation
states, allow the scientists to understand the simulation results
in detail.

Given the large input files, the use of sequential input
is a performance bottleneck in EpiSimdemics. It impacts the
performance in two ways - time taken to read the data on one
process and time spent in a scatter operation from that process
to distribute data among all processes. Performance tests using
sequential input showed that while the actual simulation may
complete in tens of minutes, the setup including the input takes
approximately an hour!

EpiSimdemics has a custom application-specific parallel
output scheme in which the output is written by all processes
to distinct files. This scheme improves the performance but
requires post-processing of data before it is used for any
analysis. Also, due to a limitation on the number of file
descriptors per job on Blue Gene/Q, this output scheme is not
feasible at scale. A possible solution is to implement an ad-
hoc scheme to collect data on a limited number of processes,
and perform writing from these designated processes. Instead,
we propose the use of MPI-IO enabled by the interoperation
of Charm++ with MPI.

Benefits: Included in the MPI standard, MPI-IO defines an
API for parallel I/O. Most vendors provide a high-performance
implementation of MPI-IO, making it a portable solution
expected to deliver good performance on high-end parallel
computers. Scalable performance of MPI collectives helps

Left figure: basic MPI example to interoperate with Charm++; lines in red are the only additional code required.
Centre and right figures: all changes required for calling HistSorting library in Charm++ from a production MPI code.s

 0

 100

 200

 300

 400

 500

 600

 700

8k 16k 32k 64k 128k 256k

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
)

Number of cores

Time spent in simulation + output on Blue Gene/Q

Custom I/O failed
at large core counts

With Custom Parallel-IO
With MPI-IO

 2

 4

 6

 8

 10

 12

 14

512 1024 2048 4096 8192 16384

T
im

e
pe

r
ite

ra
tio

n
(m

s)

Number of cores

Strong scaling on Blue Gene/Q

NAMD with Custom FFT
NAMD with Parallel FFTW

MPI-based Chombo using Charm++-based HistSorting with time-
division: the performance of global sorting, which is the scaling

bottleneck, is improved by 48x with minimal changes to the code (as
shown in the figures at the top)

Charm++-based NAMD
using MPI-based FFTW
with space-division: similar
performance obtained

without the need to
maintain a custom FFT

library in Charm++.

Charm++-based
EpiSimdemics using MPI-IO

with hybrid-division: scaling
bottleneck due to file reading
is eliminated, while file output

is enabled at scale.

 0.1

 1

 10

 100

512 1024 2048 4096 8192 16384

T
im

e
(s

)

Number of cores

Strong scaling on Cray XE6

Multiway-Merge Sort
Charm++ HistSort

 0.1

 1

 10

 100

 1000

 10000

16k 32k 64k 128k 256k

In
pu

t
tim

e
(s

)

Number of cores

Time spent in input on Blue Gene/Q

Sequential reading of Schedule file not
done at scale to save CPU hours

Schedule/Serial
Person/Serial

Schedule/MPI-IO
Person/MPI-IO

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-662677).

Figure 1

Figure 2

Figure 3

