Interoperating MPI and Charm++ for Productivity and Performance

2 J 4 5] /

Nikhil Jain / s Abbhinay B/mfe/eZ, Jae-Seung Yeons~, Mark F. Adams™, Francesco Miniati™, Chao Mei~, and 1.axmikant Kale
ETH Zurich, 5Goog/e Ine.

Z 4

7 Lawrence 1 avermore National 1 .aboratory, L awrence Berkeley National 1 .aboratory,

Unaversity of lilinois at Urbana-Champaign,

MOTIVATI ON int main(int argc, char **argv) { CONTROL FLOW

/I Initialization e Expose Charm++ scheduler to the programmer: new

Developing multi-physics, coupled applications using one parallel }mpi_module1(data)i charm_module1 (data) {

1/ do work API to activate and deactivate the scheduler.
}

language can be challenging:
G e Lxplicit control transter by the programmer: begin in

e MPI, switch to Charm++ by invoking its scheduler,

charm_module2(data) { switch back to MPI by stopping the scheduler, and so on.

b) A good match between module requirements and language /1 do work
mpi_module2(data);

features may increase programmer's productivity if the module mpi_module2(data) { } ° y e Switching control infrequently is advisable for ease of

is implemented in the given language. programming and good performance.
c) Various modules may require existing software implemented in Left tigure: basic MPI example to interoperate with Charm++; lines in red are the only additional code required.

a) For optimal performance, different modules may require ol moduied (data) {

/l do work

features provided by distinct parallel programming languages. charm. modulet (data).

other different languages. Centre and right figures: all changes required for calling HistSorting library in Charm++ from a production MPI code.s

RESOURCE SHARING Charm++-based NAMD

INTEROPERATION V' Automatic shared use of low-level network resources via using MPI-based FETW

. . . . distinct communication domains, e.g. create clients usin . L
Coordinated use of multiple parallel programming languages in > &5 S with space-division: similar

. PAMI_ Client_create on Blue Gene/Q). .
an application, termed interoperation, is a realistic solution to B - Q performance obtained

challenges described above. v Three schemes available for sharing cores: without the need to

. . 1. Tzme Davision: execute either Charm-++ or MPI on all A N T o R SR
We explore interoperation between these two languages: | o | | | | | F i . ' maintain a custom FET
. . P(2) cores at a given time during execution. 0.1 2 Kiremer o Clhgrasaoeas.
» User-driven MPI where the programmer explicitly defines ' L . - . 512 1024 2048 4096 8192 16384 512 1024 2048 4096 8192 16384 Y
' 2. Space Division: statically divide cores into subsets that
the control flow. iR(n:i) Number of cores Number of cores

P(n) execute either Charm++ or MPI.

» System-drivenCharm++ where a runtime drives the MPI-based Chombo using Charm++-based HistSorting with #ze-

3. Hybrid Division: divide cores into subsets that alternate
division: the performance of global sorting, which is the scaling

execution based on the availability of data.
between MPI and Charm++ together.

P(1)] L. | . bottleneck. is improved by 48x with minimal chanoes to the code (as
P2) I v API for division of cores based on MPI communicatorts. ’ P Y | S (
- shown in the figures at the top)
P(n-1) 1] 1
P(n) 1] 1
. Time spent in input on Blue Gene/Q Time spent in simulation + output on Blue Gene/Q
CHALLENGES Figure 2 i : P P Charm++-based
. . . DATA SHARING 10000 :Seuent|a|read|nofScheduIeﬁIenot TIOO) [oo rereee et L arm -DAasScC
m (Given the difference in control flow between Charm-—++ and MPI : o = 5 © B With Custom Parallel-|O s EpiSimdemi inoc MPI-TIO
’ | | | 000 doneatscaletosave CPUhours 5 600 With MPLLIO s Ep CINICS USINg
how is control transferred and managed between them? Process 1 Process 2 v Method 1: A genetic data transfer repository to which each =) . . o e E£50- M| — B T with hybrid-division: scaling
. o | C
language mOdule deOSltS (Of querles) the data. Under the .“g’ 100 - Schedule/Serial —@ Schedule/MPLIO = 8 400 - | BN | B | o botdeneck due o ﬁle reading
.. : o i P /Serial @ P IMPI-IO —+— 2 I B B B Y
» How are resources (such as cores and network) and data shared hood, communication petformed by the repository. 5 log o el g 0 iulztrozﬁcicf)?efzgiits is climinated, while file output
between the two programming languages? v Method 2: Pointer-based d har . i = P L R s L = B BN e D , ’
ethod 2: Ponter-based data sharing via reserved memory - + E e B BN . is enabled at scale.
: : : within nodes assisted by explicit communication b 0.1 L ' ' | ' 0
= How easy-to-use and scalable 1s the interoperation methodology) y €Xp y 6k 39k 64k 178k 256Kk Sk 6k 32k 64k 128k 256k
. L roorammer code.
for pI‘OdUCthIl apphcatlons? p S Number of cores Number of cores

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-662677).

